某低品位金矿浸出工艺优化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源是人类赖以生存、发展的重要自然资源,随着社会和科技的不断进步,矿石的选别技术也在不断地发展。由于人类对矿产资源的不断开采和利用,金矿储量正在不断地减少,且趋向于“贫、细、杂”化。因此,充分合理的开发金矿资源,尤其是低品位、难选金矿的综合利用,具有重要的经济意义和社会意义。
     青海某金矿为低品位金矿,矿石共生关系复杂、嵌布粒度较细,目标矿物分离的难度较大,搅拌氰化浸出时矿石中的杂质矿物对浸出不利,金的浸出率较低。
     本文对该金矿进行了光谱分析、化学多元素分析、金的物相分析,并针对这一矿石性质,进行了一系列的探索试验,得出如下结论:
     (1)对金矿试样性质研究结果表明:该矿石为石英脉型金矿,矿石中金的含量为2.76(10-6),主要以自然金的形式存在,此外还有少量的类质同象金。自然金主要以微细粒的形式存在,以裂隙金和包裹金为主,其中裂隙金占金总量的41.7%左右,包裹金主要存在于长石当中,占金总量的30.83%。此外,泥质中还存在少量的包裹金,占金总量的17.68%。类质同象金主要分布于金属硫化物中,其品位为13.2(10-6),占金总量的9.57%。
     (2)试验分别考察了磨矿细度、氰化钠浓度、浸出时间以及过氧化氢、漂白粉、硝酸铅、铵盐等助浸剂对氰化浸出的影响,尤其是几种铵盐及其用量对金氰化浸出的辅助作用。
     (3)试验数据表明,由于矿石中可溶性铜的存在,金在氰化过程中受到了较大的影响。在搅拌浸出最初的5小时内,杂质矿物消耗了溶液中大部分的游离氰化钠,金的浸出率偏低。当杂质基本溶解后,剩余的氰化钠才逐渐溶解矿石中的金。
     (4)试验结果证明,氨浸-氰化提金工艺对该金矿有良好的浸出效果。氨的加入使得矿浆的pH有所升高,促进了氢氧化铜沉淀的形成,降低了溶液中铜离子的含量;氨与溶液中的Cu-CN-络离子协同作用,促进了金的溶解。
     (5)综合考虑实地生产、矿石性质和经济成本等因素,最终确定该金矿氰化浸出的最佳条件为:磨矿细度95%-200目,矿浆浓度40%,矿浆pH为10-11,氰化钠浓度12/万,浸出时间24小时,氨水或氯化铵为助浸剂较为适宜,氰化钠与氨的摩尔比为1:2,获得金浸出率为87.5%,氰化钠用量为1.53 kg/t矿石的较好浸出结果。
     (6)简述了过氧化氢、漂白粉及硝酸铅等强化浸金过程的原理,着重叙述了氨氰提金工艺的机理和特点。氰化提金过程中,矿石中的可溶性铜会造成氰化钠的大量消耗,影响金的浸出。而氨浸-氰化提金技术是处理各种铜金矿最有效的方法,氨可以有效降低铜对浸金过程造成的影响,减少氰化钠的用量,提高金的浸出率。
Mineral resources are important natural resources for human live and development. With the development of society and technology, mineral processing technology gets also developed too. Because of human constantly exploiting and utilizing mineral resources, the gold mine reserves is decreasing, and tend to be "poor, fine and complex". Therefore reasonably exploiting on gold resources, and especially comprehensive utilization for low-grade and refractory gold ore has important economic and social significance.
     In this paper a low-grade and refractory gold ore in Qinghai was studied. The granularity of embedding is small, so the target mineral is difficult to separate from and when blending the cyanide, the impurity in the ore is deleterious for leaching, thus, the rate of gold leaching is low.
     This paper conducted spectral analysis, chemical analysis and phase analysis on that gold ore, and carried series exploring tests based on its character, then got the following conclusions:
     (1) The test result shows that:this ore belongs to quartz vein-type gold ore. The gold in this ore is 2.76 (10-6). It mainly exists as natural gold format, and in addition, there are few isomorphism gold. Natural gold mainly exist as Micro-fine-grain, especially for fissure-filling gold and wrapped gold. Fissure-filling gold shares more or less 41.7%in the gold, where wrapped gold mostly exist in feldspar, and shares 30.83%in the gold. Besides, there are a little wrapped gold existing in clay, and it shares17.68%in the gold. Isomorphism gold mainly exists in Metal sulfides, its grade is 13.2 (10-6), and shares 9.57%of total gold.
     (2) The test investigated the effect on cyanide leaching by the impact of grinding fineness, sodium cyanide concentration leaching time, hydrogen peroxide, bleaching powder, lead nitrate, ammonium and other aid infusion. It especially investigated the supplement role of some ammonium salts and their consumption for cyanide leaching of gold.
     (3) The experiment shows that, due to the presence of dissolubility copper in the ore, gold leaching has been restarted in the cyanide process. In the first 5 hours of leaching, the impure mineral consumed most of free sodium cyanide of the liquor, in that case, the rate of gold leaching is low. When the impurities nearly dissolved, the remaining solution of sodium cyanide gradually dissolves the gold of ore.
     (4) The test results showed that ammonia leaching-cyanide gold extraction technique has good leaching result for that gold ore. Adding ammonia increased the PH value of ore pulp, it promoted the formation of cupric hydroxide precipitation, and reduced the content of copper ions in solution. Ammonia and the Cu-CN"ions of solution cooperate together, and then promoted the dissolution of gold.
     (5) Synthesis considering the field of production, minerals characters and economic costs, we definitely confirm the best condition for the cyanide leaching of that gold mine as follows:grinding fineness:95%-200 mesh, pulp density:40%, pulp pH value:10-11, sodium cyanide concentration:12/10000, leaching time:24 hours, ammonia or ammonium chloride is more appropriate to be assist infusion, the sodium cyanide and ammonia molar ratio is 1:2, gold leaching rate obtained was 87.5%, sodium cyanide dosage at 1.53 kg/tore will get better leaching results.
     (6) It outlines the principle of dipping gold process by hydrogen peroxide, bleaching powder and lead nitrate, and emphasized the introduction of ammonia-cyanide gold extraction mechanism and characteristics. In the cyanide gold extraction process, the soluble copper in the ore will cause a large number consumption of cyanide, and affect the gold leaching. The ammonia leaching-cyanide gold extraction technology is the effective method to deal with a variety of copper gold ore. Ammonia can effectively reduce the impact of copper on the process of leaching gold and reduce the consumption of sodium cyanide, then improving gold leaching rate.
引文
[1]李正勤.金的原子构型与意义[J].金银专刊,1993,(3):42-47.
    [2]兰新哲.张剪译.金的化学[M].陕西:陕西科学技术出版社,1992.
    [3]李正勤.金的晶体化学[J].金银工业,1992,(1):41-45.
    [4]蔡树型,黄超著.贵金属分析[M].北京:冶金工业出版社,1990.
    [5]Swaminathan C, et al. Reagent trends in the gold extraction industry [J]. Minerals Engineering,1993,6(1):1-16.
    [6]Aylmore M G, Muir D M. Thiosulfate Leaching of Gold:A Review[J]. Minerals Engineering,2001,14(2):135-174.
    [7]R.W.博伊尔著,马万均等译.金的地球化学及金矿床[M].北京:地质出版社,1984.
    [8]Adamson R J.南非黄金冶金[M].长春:吉林科学技术出版社,1984.
    [9]孙戬.金银冶金[M].北京:冶金工业出版社,1998.
    [10]涂光炽,刘秉光,王秀璋.金矿一人类最早认识和利用的矿产[M].北京:清华大学出版社,2002.
    [11]周延熙,徐晓军.有色金属矿产资源的开发及加工技术一选矿部分[M].云南:云南科技出版社,2000.
    [12]侯宗林.中国黄金资源潜力与可持续发展[J].地质找矿论丛,2006(9):151-155.
    [13]杨晓军(译).重选法的新进展[J].国外金属矿选矿,2002(10):18-20.
    [14]J.O.马尔斯顿.世界黄金加工技术概况[J].国外金属矿选矿,2007(1):4-8.
    [15]卡斯蒂尔K,等.离心重选设备的评述[J].国外金属矿选矿,2003(11):4-6.
    [16]刘汉钊,石仑雷.尼尔森选矿机及其在我国应用的前景[J].国外金属矿选矿,2008(7):8-11.
    [17]韩新剑,田宝国,李世桢,秦立起.STL型水套式离心选矿机的研制与应用[J].黄金,1998(6):41-45.
    [18]王良,闫永胜,侯延民,李华明.浮选技术在金属分离/富集及分析中应用研究进展[J].冶金分析,2008,28(7):36-41.
    [19]Lu Y J, Liu J H, Tang J, et al. The removal of humic acids from water by solvent sublation[J]. J. Colloid Inter. Sci.2005,283:278-284.
    [20]Thoma G J, Bowen M L, Hollensworth D. Dissolved air precipitation/solvent sublation for oilfield produced water treatment[J]. Separation and Purification Technology,1999,16:101-107.
    [21]吕玉娟,朱锡海.溶剂气浮分离技术研究现状与发展方向[J].化学进展.2001,11:441-449.
    [22]金镜潭.黄金浮选的现状与发展[J].金属矿山,1997(4):30-35.
    [23]阙铎,潘琳,阙煊兰.国内外选矿药剂评述[J].国外金属矿选矿,1999(7):24-25.
    [24]刘殿文,张文彬.浮选柱研究及其应用新进展[J].国外金属矿选矿,2002(6):14-17.
    [25]杨琳琳,程坤,文书明.浮选柱的研究现状[J].矿业快报,2008(1):5-7.
    [26]张兴仁(译).新一代大容积充气式节能浮选机的研制与使用情况[J].国外金属矿选矿,2003(6):4-7.
    [27]印万忠.黄金浮选工艺的最新进展[J].黄金学报,2001(3):188.
    [28]文海滨,贾瑞强.金矿选别的新进展[J].国外金属矿选矿,2004(12):22-26.
    [29]黎鼎鑫,王永录.贵金属提取与精炼[M].长沙:中南大学出版社,1991.
    [30]郭振杰.提金新工艺—氰化法[J].内蒙古科技与经济,2007,24,(12):75.
    [31]江涛.提金化学[M].长沙:湖南科学技术出版社,1998.
    [32]李井坤.选提金技术发展分析[J].
    [33]李桂春,卢寿慈.非氰提金方法的研究进展[J].矿冶工程,2004(8):21-24.
    [34]石同吉.氰化提金技术发展现状评述[J].黄金科学技术,2001,(12):22-29
    [35]黄礼煌.金银提取技术[M].北京:冶金工业出版社,1995.
    [36]J. T. Woodcock, et al. The Metallurgy of Gold and Silver with Reference to Other Precious Metals [J]. AMF,1976(4).
    [37]吴振祥,闵国伟,吴庆华等.氰化提金—中国黄金生产实用技术[M].北京:冶金工业出版社,1998:233-245.
    [38]张明朴.氰化炭浆法提金生产技术[M].北京:冶金工业出版社,1994.
    [39]王俊,张全祯.炭浆提金工艺与实践[M].北京:冶金工业出版社,2001.
    [40]马弘,侯凯湖.贵金属回收中的离子交换树脂技术[J].中国资源综合利用,2006,24(9):9.
    [41]李飞,鲍长利,张建会.贵金属吸附预富集的新进展[J].冶金分析,2008,28(10):43-48.
    [42]叶飞跃,陈耀远.黄金选冶发展现状[J].世界有色金属,1992(4):2-8.
    [43]王岚.黄金选矿年评[A].第四届选矿年评报告会文集[C].北京:中国选矿科技情报网出版社,1987:147-148.
    [44]M. G. Aylmore and D. M. Muir. Thiosulfate leaching of gold-a review Minerals Engineering,2001:135-174.
    [45]Jeffrey M I, Chu, C K, Breuer P L. The Importance of Controlling Oxygen Addition During the Thiosulfate Leaching of Gold Ores[J]. Miner Process,2003, 72:323-330.
    [46]Tao J, Jin C, Shi X. Electrochemical and Mechanism of Leaching Gold with Ammoniacal Thiosulfate[c]. International Mineral Processing Congress,1993: 23-28.
    [47]张静,兰新哲,宋永辉,王碧霞,邢相栋.酸性硫脲法提金的研究进展[J].贵金属,2009,30(5):2.
    [48]张良,李东亮.非氰化浸金方法综述[J].有色金属,2002(7):54.
    [49]Deng T L, Liao M X, Wang M H. Technical note enhancement of gold extraction from biooxidation residues using an acidic sodium sulphite-thiourea system[J]. Minerals Engineering,2001,14(2):263-268.
    [50]Deng Tianlong, Liao Mengxia. Gold recovery enhancement from a refractory floation concentrate by sequential bioleaching and thiourea leach [J]. Hydrometallurgy,2002(63):249-255.
    [51]鲁志祥,王英滨,陈力平.硫脲浸金现状和发展前景[J].黄金,2003,24(7):34-38.
    [52]黄孔宣(译).从非氰化物溶液中回收金的研究和开发活动[J].国外黄金参 考,1997,5:35-42.
    [53]王治科,陈东辉,陈亮.热力学分析氯化浸金体系规律[J].稀有金属,2006,30(10):5.
    [54]李民权,关玉蓉.氯化浸金机理研讨[J].黄金,2003(2):2
    [55]Udup A R.黄金提金工艺进展[J].国外金属矿选矿,1992(1):33-34.
    [56]周源,陈江安.非氰药剂浸金进展[J].南方金属,2003,134(10)
    [57]郁能文,张箭.石硫合剂(LSSS)法浸金的电化学研究[J].黄金,1998(2):34.
    [58]陈江安,周源.某金矿石石硫合剂法浸金工艺研究[J].有色金属(选矿部分),2004(5):16-18.
    [59]周军,兰新哲,宋永辉.改性石硫合剂(ML)浸金试剂稳定性研究[J].稀有金属,2008,32(8):4.
    [60]梁永清,郭慧理.金精矿中氰化物的测定[J].黄金,2006,12:63-64.
    [61]吕亚宁,金恩汝.碱性介质对氰化物测定的影响及评价[J].劳动医学,2000,17:43.
    [62]杨少华,李振坦,周源,杨凤丽.氰化浸金过程中过氧化物的助浸作用[J].湿法冶金,2003,22(9):133-135.
    [63]M. I. Jeffrey, L. Linda, P. L. Breuer, C. K. Chu. A Kinetic and Electrochemical study of the Ammonia Cyanide Process for Leaching Gold in Solutions Containing Copper[J]. Minerals Engineering,2002,15:1173-1180.
    [64]聂树人,索有瑞.难选冶金矿石浸金[M].北京:地质出版社,1997.
    [65]杨少华,李振坦,周源,杨凤丽.氰化浸金过程中过氧化物的助浸作用[J].湿法冶金,2003(9):133-135.
    [66]王越.重金属强化氰化浸金的动力学研究[J].甘肃冶金,2007,29(8):49-51.
    [67]肖松文,梁经冬,邱良邦.难浸金矿加熟石灰焙烧一氰化浸出新工艺研究[J].黄金,1993,14(10):31-35.
    [68]赵玲玲.氧化剂在氰化浸金中的试验研究[J].山西冶金,2003,2:33-34.
    [69]G. Deschenes.铜金矿石的氰化[J].湿法冶金,1998.
    [70]曹会兰.H202在氰化法中辅助浸金的研究[J].渭南师范学院学报,2003,18(3):48-49.
    [71]孙鑫泉.过氧化物辅助浸出(PAL)的氰化提金新工艺[J].黄金,1993,14(3):41-43.
    [72]童雄,钱鑫.供氧体在金溶解过程中的作用研究[J].黄金,1995,16(12):29-31.
    [73]王敏.氯酸钠对金氰化浸出的影响[J].四川有色金属,2007(9):31-32.
    [74]王喜良,童雄.强化含金矿石提金的理论与应用[M].云南:云南科技出版社,1999.
    [75]童雄,钱鑫.氧化剂提高金浸的热力学判别研究[J].有色金属,1996,48(3):75-78.
    [76]武钢,刘旭俐,童雄,周平.铅盐在氰化浸金中的作用及作用机理研究现状[J].湿法冶金,2002,21(9):113-116.
    [77]梁安,刘振升.铅盐在高铜金精矿氰化提金试验中的应用与工业实践[J].有色矿山,2003,32(6):17-20.
    [78]高志明,刘学杰.提高含银铅铜金矿石金回收率的研究与生产实践[J].黄金,2005,4:35-37.
    [79]林鸿汉.氨氰法从铜金精矿热压酸浸渣中提金工艺研究[J].黄金科学技术,2005,13(9):33-36.
    [80]S. VUKCEVIC. The Mechanism of Gold Extraction and Copper Precipitation from Low Grade Ores in Cyanide Ammonia Systems[J]. Minerals Engineering, 1997,3(10):309-326.
    [81]马斯列尼斯基.贵金属冶金学[M].北京:原子能出版社,1992.
    [82]林舒,吴雅睿,鲁琛琛,刘静,李绍卿.缅甸某砷质金矿中金的氰化浸出的研究[J].黄金科学技术,2007,15(10):54-57.
    [83]程东会,王金祥,李国斌,张晓燕,王立群.含铜金矿石氨氰体系浸金机理研究[J].有色金属(冶炼部分),2009,4:30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700