复杂环境下的无线传感器网络定位关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在无线传感器网络中,信息采集、目标跟踪、信息管理、环境监测和基于地理位置的消息路由等许多应用中都需要准确的节点位置信息作为保障。因此,定位技术是无线传感器网络的关键支撑技术。在现实应用环境中,网络呈现出三维分布、链路非确定、应用环境异构、部署区域非结构化等复杂特征,这对定位理论和算法提出了更高的挑战。由于现有定位技术的研究大部分是假设理想化的通信模型和网络部署环境,而忽略了实际应用时各种复杂因素对定位算法的影响,从而导致定位误差控制难、定位误差大、部署成本高及可扩展性差等问题,使之无法直接用于实际系统。本文在对现有定位技术进行研究分析的基础上,针对已有工作的不足,围绕复杂环境下的定位关键技术展开研究,通过系统地研究,提出更加接近实际应用环境的高精度、低开销、高能效、低成本的分布式定位方案,以满足复杂环境下的实际应用。主要研究内容和创新点包括:
     1.基于泛洪边界控制误差校正的定位策略
     针对将基于传统的定位方法直接扩展到复杂环境中时存在“模型失用”、误差控制困难等问题,设计了一个新的基于泛洪边界控制误差校正的定位策略3DPHDV-Hop。通过投影平面选取和目标区域划分,进行泛洪边界控制,采用最小均方差准则及归一化加权方法来进行跳距误差校正,从而实现高精度、低误差的细粒度定位。实验结果表明,与APIS、3D DV-Hop和3D-MDS等经典策略相比,3DPHDV-Hop策略的定位率分别提高了45.2%、35.4%和32.3%。
     2.基于空间几何分割的凹/凸分解定位机制
     针对存在障碍物的复杂3D凹/凸不平表面网络拓扑几何特性所带来定位误差大且能耗高的问题,提出了一种新的基于空间几何分割的凹/凸分解定位机制3D-CCD。按照节点的海拔高度先逻辑水平分层,再在层内按照凹/凸分解的方法将网络合理的划分为多个子区域,用于降低因地形分布凹/凸而造成的定位误差和能耗,定位过程中只需依靠被目前大多数定位机制所利用的RSSI来实现高精度、低开销的细粒度定位。实验结果表明,3D-CCD与SV和COLA相比,定位误差分别降低了10%、17%,计算成本分别降低了31%、22%。
     3.基于网络拓扑分形的三角划分定位算法
     针对存在障碍物的复杂3D凹/凸不平表面网络中锚节点部署难且成本高的问题,提出了一种新的基于网络拓扑分形的三角划分定位算法3DT-ST。该算法仅利用网络连通特性和特殊节点(特殊渡口节点),进行三角划分和建模,在每一个三角区域上采用MDS-MAP方法建立起局部相对位置地图,通过合并每个三角子区域,建立起整个网络全局的位置地图。实验结果表明,3DT-ST算法与目前使用的SV方法相比,定位误差降低了85.3%,且定位过程无需锚节点和迭代,仅通过节点间的连通性进行定位,这提高了定位的精度、降低了计算开销的同时节省了部署成本。
     4.基于图论的移动锚节点定位路径规划
     针对存在障碍物的复杂3D凹/凸不平表面网络中静止锚节点可扩展性差且能耗高的问题,提出一种新的基于图论的移动锚节点定位路径规划3DT-PP,它利用移动锚节点的路径规划在复杂的3D地形中实施定位节点,规划锚节点的避障路径,用最优路径遍历整个监测区域,达到快速定位及全网定位的目的。实验结果表明,3DT-PP方法比MDS-MAP方法、Landscape-3D方法位置误差分别降低了91%、8.7%,计算开销分别降低了75%、1.3%。该方法在最短时间内高性能地定位所有未知节点,减少了网络中的孤立节点和锚节点的数量,降低了障碍物对定位精度的影响,有效降低网络构建成本。
     综上,本文围绕复杂环境下的无线传感器网络定位关键技术展开了研究,提出了四个解决方案,并通过大量的实验进行验证。实验结果表明,提出的四个方案满足了精度高、开销低、效率高、成本低的实际需求。实验结果不仅具有重要的研究意义,更具有广泛的实际应用价值。
Localization is one of the most fundamental techniques and services in WirelessSensor Networks (WSNs). Many applications in WSNs, such as information collection,targets tracking, information management, environment monitoring, geographic routingand so on, all require accurate position information of sensors. Under complexenvironment, networks are characterized by3D distribution, link indeterminacy,environment heterogeneity and unstructured deployment properties. These factors bringgreater challenges to localization theories and algorithms. Currently, most localizationstudies assume that the communication model and network deployment environment areidealized, and they ignore the effects of various factors on the localization algorithms.As a result, these models and algorithms will become inefficient or useless in practicalapplications. To overcome the defects of existing work and to relax the challenge ofcomplex environment localization, four distributed localization solutions whichsatisfy the practical requirements of high precision, low overhead, high efficiency andlow cost in complex environment, are proposed in this dissertation. The maincontributions of this dissertation are listed as follows:
     1. Flood boundary control based error-correction localization strategy
     To solve the problem of model impropriety, large accumulated errors and matrixmulticollinearity form directly extending the traditional hop-based localization schemeto3D complex concave/convex surface with obstacles, a new hop-basederror-correction localization scheme called3DPHDV-Hop is proposed.3DPHDV-Hopuses the scheme of projection plane selection, hop control in N subareas from interestarea, hop distance correction and measurement correction to achieve fine-grainedlocalization with high accuracy and low error. Experiment results show that3DPHDV-Hop has higher localization rate than APIS,3D DV-Hop and3D-MDS, withthe ratio of45.2%,35.4%and32.3%, respectively.
     2. Concave/convex decomposition localization mechanism based on spatialgeometric segmentation.
     To solve the problem of large localization error and energy consumption on thetopology of3D complex concave/convex surface with obstacles, a new concave/convexdecomposition localization mechanism called3D-CCD, which is based on spatial geometric segmentation, is proposed.3D-CCD utilizes the logical delamination andconcave/convex decomposition to divide the complex, irregular area to subareasaccording to the concave/convex topology. It only utilizes RSSI used by mostlocalization schemes to reach high accuracy, low consumption fine-grained localization.Experiments show that, compared with SV and COLA,3D-CCD reduces thelocalization error by10%and17%respectively, and reduces the energy consumption by31%and22%respectively.3D-CCD offers a brand new research method on3Dcomplex concave/convex surface localization.
     3. Triangulation based localization algorithm based on fractal networktopology
     In order to solve the problem that it is expensive and difficult to deploy anchornodes on3D complex concave/convex surface, a new triangulation localizationalgorithm (called3DT-ST) which is based anchor free and applies to complex3Dterrainis presented.3DT-ST only utilizes network connection and special nodes (specialport nodes, SPN) to triangulate and model. It establishes local relative maps in everytriangle areas, then combine triangle together to get global map of the network.Experiments show that when comparing with SV,3DT-ST reduces the localization errorby85.3%, and localization is an iteration-free process with only the information ofnetwork connection. It improves the localization accuracy, lowers the localization error,andsaves the cost of network deploying as well. It provides a new method on energysaving localization research over complex networks.
     4. Mobile anchor sensor routing planning of localization based on graphtheory.
     To address the problem that fixed anchor sensors has the disadvantage of lowexpansibility and high cost in3D concave/convex uneven surface networks, a newmobile anchor sensor routing planning of localization3DT-PP is proposed. It leveragesthe routing planning of mobile anchor sensor, locating sensors in complex3D terrain,planning the accessible route and traversing the entire monitored area with optimal routeto quickly locate the sensors in entire network. Experiments show that compared withMDS-MAP and Landscape-3D, the proposed method lowers the localization error by91%and8.7%respectively and reduces the computation overheads by75%and1.3%respectively. It can localize all nodes in a very short time with high performance, reducethe number of anchor nodes and isolated nodes, relieve the impact of obstacles and lower the cost of network establishment.
     In summary, this dissertation takes efforts on WSNs localization in complexenvironments. A series of experiments show that the proposed four solutions satisfy thepractical requirements of high precision, low overhead, high efficiency and low cost.Therefore they not only have important theoretical value, but also have extensiveapplication potential.
引文
[1] C. T. He, M. B. Huang, Blum, et al. Range-free localization schemes in large scale sensornetworks[C]. Proceedings of the9th annual international conference on Mobile computing andnetworking. ACM MobiCom, San Diego, California,USA,2003,81-95
    [2]王瑞锦,秦志光,王佳昊.无线传感器网络分簇路由协议分析[J].电子科技大学学报,2013,42(3):400-406
    [3]聂旭云,倪伟伟,王瑞锦,等.无线传感网数据聚合隐私保护协议分析[J].计算机应用研究,2013,30(5):1281-1302
    [4] M. Bshara, U. Orguner, F. Gustafsson, et al. Fingerprinting localization in wireless networks basedon received-signal-strength measurements: A case study on WiMAX networks[J]. VehicularTechnology, IEEE Transactions on,2010,59(1):283-294
    [5] F. Viani, F. Robol, M. Salucci, et al. WSN-based early alert system for preventing wildlife-vehiclecollisions in alps regions-From the laboratory test to the real-world implementation[C].Antennasand Propagation (EuCAP),20137th European Conference on. IEEE, Gothenburg,Sweden,2013,1913-1916
    [6]李建中.无线传感器网络专刊前言[J].软件学报,2007,18(5):1077-1079
    [7] M. Navarro, W. T. Davis, Y. Liang, et al. ASWP: a long-term WSN deployment for environmentalmonitoring[C]. Proceedings of the12th international conference on Information processing insensor networks. ACM, Philadelphia, USA,2013,351-352
    [8] Y. S. Chiang, C. Y. Kan, C. Y. Tu, et al. A Preliminary Activity Recognition of WSN Data onUbiquitous Health Care for Physical Therapy[M]. Springer Berlin Heidelberg: Recent Progress inData Engineering and Internet Technology,2013:461-467
    [9] Wikipedia. SOSUS[OL]. http://en.wikipedia.org/wiki/SOSUS, August27,2013
    [10] E. C. Nishimura, M. Dennis. IUSS dual use: monitoring whales and earthquakes usingSOSUS[J]. Journal of Marine Technology Society,1994,27(4):13–21
    [11] A. Press, K. Staff. Government OKs Boeing-built ‘virtual fence’ along border[EB/OL].http://www.kimatv.com/news/local/15888012.html, Feb22,2008
    [12] H. Wen, N. Bulusu, C. T. Chou, et al. Design and evaluation of a hybrid sensor network for canetoad monitoring[J]. ACM Transaction on sensor networks,2009,5(1):1-28
    [13] P. Sikka, P. Corke, P. Valencia, et al. Wireless ad-hoc sensor and actuator networks on thefarm[C]. Information Processing in Sensor Networks, Nashville,2006,492-499
    [14] C. Buratti, A. Conti, D. Dardari, el al. An overview on wireless sensor networks technology andevolution[J]. Sensors,2009,9(9):6869-6896
    [15] NSF’s sensor and sensor network program[OL].http://www.nsf.gov/news/special_reports/sensor/nsf_sensor.jsp, August27,2013
    [16] R. Poovendran. Network security lab at The University of Washington[OL].http://www.ee.washington.edu/research/nsl/faculty/radha/, August29,2013
    [17] A. Nasipuri, R. Cox, H. Alasti, et al. Wireless sensor network for substation monitoring: designand deployment[C]. Proceedings of the6th ACM conference on Embedded network sensorsystems (SenSys), Raleigh, North Carolina, USA,2008,365-366
    [18] B. Krishnamachari. Autonomous networks research group at The University of SouthernCalifornia[OL]. http://anrg.usc.edu/www/index.php/Research, August29,2013
    [19] I. F. Akyildiz, Broadband wireless networking lab at Georgia Institute of Technology[OL].http://www.ece.gatech.edu/research/labs/bwn/, August29,2013
    [20] A. Mainwaring, D. Culler, J. Polastre, el al. Wireless sensor networks for habitat monitoring[C].The1st ACM Workshop on Wireless Sensor Networks and Applications, Atlanta, USA,2002,88–97
    [21] MIT Computer science and artificial intelligence laboratory[OL]. http://www.csail.mit.edu/,August27,2013
    [22] SMART: Scalable medical alert and response technology[OL]. http://smart.csail.mit.edu/, August27,2013
    [23] Patient-centric network[OL]. http://nms.csail.mit.edu/projects/pcn/, August28,2013
    [24] The Cricket indoor location system[OL]. http://cricket.csail.mit.edu/, August28,2013
    [25] Vanderbilt Homecare Services. CareNet: An Integrated Wireless Sensor Networking Environmentfor Remote Healthcare.[EB/OL] http://vanets.vuse.vanderbilt.edu/carenet/, August28,2013
    [26] A. Purohit, P. Zhang. SensorFly: a controlled-mobile aerial sensor network[C]. Proceedings of the7th ACM Conference on Embedded Networked Sensor Systems (SenSys), New York, USA,2009,327-328
    [27] C.Y. Lu. Available from: http://www.cse.wustl.edu/~lu/shm, August28,2013
    [28] Networks research laboratory at The University of New South Wales[OL]http://www.cse.unsw.edu.au/research/groups/networks/, August28,2013
    [29] The intelligent system centre jointly set by Singapore Technologies Engineering and NanyangTechnological University[OL]. http://www3.ntu.edu.sg/intellisys/, August29,2013
    [30] Pervasive air-quality sensors network for an environmental friendly urban trafficmanagement[OL]. http://www.rescatame.eu/, August28,2013
    [31] Libelium[OL]. http://www.libelium.com/, August28,2013
    [32]50Sensor applications for a smarter world[OL].http://www.libelium.com/top_50_iot_sensor_applications_ranking, August28,2013
    [33] Geiger Counter-Radiation sensor board for Arduino[OL].http://www.cooking-hacks.com/index.php/documentation/tutorials/geiger-counter-arduino-radiation-sensor-board#intro, August28,2013
    [34]余向阳.无线传感器网络研究综述[J].单片机与嵌入式系统应用,2008,8(1):8-11
    [35]刘云浩.绿野千传:突破自组织传感网大规模应用壁垒[J].中国计算机学会通讯,2010,6(4):35-37
    [36] http://news.thmz.com/col58/2012/02/2012-02-211079665.html
    [37] G. M. Song. Research[OL]. http://robot.seu.edu.cn/~gmsong/, August28,2013
    [38] X. B. Wang. Selected Grants[OL]. http://iwct.sjtu.edu.cn/Personal/xwang8/project.htm, August28,2013
    [39] M. Li, Y. H. Liu. Underground coal mine monitoring with wireless sensor networks[J]. ACMTransactions on Sensor Networks,2009,5(2):1-29
    [40] J. Yick, B. Mukherjee, D. Ghosal. Wireless sensor network survey[J]. Computer Networks,2008,52(12):2292-2330
    [41] V. Kumar, S. Das. Performance of dead reckoning-based location service for mobile ad hocnetworks [J]. Wireless Communications and Mobile Computing,2004,4(2):189-202
    [42] K. Lorincz, M. Welsh. MoteTrack:a robust decentralized approach to RF-based locationtracking[J]. Springer Journal of Personal and Ubiquitous Computing,2007,11(6):489-503
    [43] H. Alemdar, C. Ersoy. Wireless sensor networks for healthcare: A survey[J]. Computer Networks,2010,54(15):2688-2710
    [44] D. H. Park, B. J. Kang, K. R. Cho, et al. A study on greenhouse automatic control system based onwireless sensor network[J]. Wireless Personal Communications,2011,56(1):117-130
    [45] J. Eriksson, L. Girod, B. Hull, et al. The Pathole patrol: Using a mobile sensor network for roadsurface monitoring[C]. Proc.6th Int. Conf. Mobile systems, applications, and services,Breckenridge, CO, USA,2008,29-39
    [46] J. Sallai, W. Hedgecock, P. Volgyesi, et al. Weapon classification and shooter localization usingdistributed multichannel acoustic sensors[J]. Journal of Systems Architecture,2011,57(10):869-885
    [47] Y. Liu, Z. Yang, X. Wang, et al. Location, localization, and localizability[J]. Journal of ComputerScience and Technology,2010,25(2):274-297
    [48] Y. Zhou, B. Gao, T. Xing, et al. Improvement on Localization Error and Adaptability in DV-HopAlgorithm[M]. Advances in Wireless Sensor Networks. Springer Berlin Heidelberg,2013:725-733
    [49] G. Mao, B. Fidan, B. Anderson. Wireless sensor network localization techniques[J]. Computernetworks,2007,51(10):2529-2553
    [50] N. Patwari, N. J. Ash, S. Kyperountas, et al. Locating the nodes: cooperative localization inwireless sensor networks[J]. Signal Processing Magazine, IEEE,2005,22(4):54-69
    [51] H. C. Ou, F. K. Ssu. Sensor position determination with flying anchors in three-dimensionalwireless sensor networks[J]. Mobile Computing, IEEE Transactions on,2008,7(9):1084-1097
    [52] C. Gentile, N. Alsindi, R. Alsindi, et al. Cooperative Localization in Wireless Sensor Networks:Centralized Algorithms[C]. Geolocation Techniques. Springer New York,2013,161-185
    [53] W. Xi, Y. He, Y. Liu, et al. Locating sensors in the wild:pursuit of ranging quality[C]. Proceedingsof the8th ACM Conference on Embedded Networked Sensor Systems. ACM, Zurich, Switzerland,2010:295-308
    [54] D. Niculescu, B. Nath. Trajectory based forwarding and its applications[C]. Proceedings of the9th ACM annual international conference on Mobile computing and networking (MobiCom),Atlanta, USA,2003:260-272
    [55] Y. Zhao, H. Wu, M. Jin, et al. Cut-and-sew: a distributed autonomous localization algorithm for3D surface wireless sensor networks[C]. Proceedings of the fourteenth ACM internationalsymposium on Mobile ad hoc networking and computing, Bangalore, India,2013,69-78
    [56] J. Liu, Y. Zhang, F. Zhao. Robust distributed node localization with error management[C].Proceedings of the7th ACM international symposium on Mobile ad hoc networking andcomputing. ACM, Florence, Italy,2006,250-261
    [57] Z.Yang, Y. Liu. Quality of trilateration: Confidence-based iterative localization[J]. IEEETransactions on Parallel and Distributed Systems(TPDS),2010,21(5):631-640
    [58] Z. Yang, Y. Liu. Understanding node localizability of wireless ad hoc and sensor networks[J].Mobile Computing, IEEE Transactions on,2012,11(8):1249-1260
    [59] S. Samanta, U. P. Tembhare, R. C. Pote. A Survey on3D Localization in Wireless SensorNetworks[J]. International Journal of Computer Science,2013,2(3):90-94
    [60] M. L. Brito, R. M. L. Peralta. An analysis of localization problems and solutions in wireless sensornetworks[J]. Tékhne-Revista de Estudos Politécnicos,2008(9):146-172
    [61] E. Kim, S. Lee, C. Kim, et al. Mobile beacon-based3D-localization with multidimensional scalingin large sensor networks[J]. Communications Letters, IEEE,2010,14(7):647-649
    [62] H. Kalosha, A. Nayak, S. Ruhrup, et al. Select-and-protest-based beaconless georouting withguaranteed delivery in wireless sensor networks[C]. The27th Conference on ComputerCommunications IEEE(INFOCOM2008), San Francisco, California, USA,2008,346-350
    [63] F. Zhao, J. shin, J. Reieh.Information-drivendy namie sensore collaboration[J]. IEEE SignalProeessing Magazine.2002,9(2):68-77
    [64] B. H. Wellenhoff, H. Lichtenegger, J. Collins, Global Positioning System:Theory and Practice[J].GPS-Global Positioning System.1997,1(1):389-395
    [65] H. Qu, G. Hou, Y. Guo, et al. Localization with Single Stationary Anchor for Mobile Node inWireless Sensor Networks[J]. International Journal of Distributed Sensor Networks,2013,Accepted8February2013
    [66] R. C. Luo, Y. Hong, W. Hsu, et al. Mobile sensor node localization and path planning forubiquitous service[C]. Proc. IEEE Int. Conf. Mechatronics and Automation. New York, USA,2009,1116-1121
    [67] A. Harter, A. Hopper, P. Steggles, et al. The anatomy of a context aware application[C].Proceedings of the5th annual ACM/IEEE International Conference on Mobile Computing andNetworking, New York, USA,1999,59-68
    [68] L. Girod, D. Estrin. Robust range estimation using acoustic and multimodal sensing[C].Proceedings of the IEEE/RSJ international Conference on Intelligent Robots and Systems.Piscataway, USA,2001,1312-1320
    [69] D. Niculescu, B. Nath. Ad hoc positioning system (APS) using AoA[C]. In INFOCOM2003.Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEESocieties. New York, USA,2003,1734-1743
    [70] P. Bahl, N. V. Padmanabhan. RADAR: An in-building RF-based user location and trackingsystem[C]. INFOCOM2000. Nineteenth Annual Joint Conference of the IEEE Computer andCommunications Societies. Proceedings, Tel Aviv, Israel,2000,2:775-784
    [71] D.Son, B. Krishnamachari, J. Heidemann. Experimental study of concurrent transmission inwireless sensor networks[C]. Proceedings of the4th international conference on Embeddednetworked sensor systems. ACM, Colorado, USA,2006,237-250
    [72] R. Want, A. Hopper, V. Falc o, et al. The active badge location system[J]. ACM Transactions onInformation Systems (TOIS),1992,10(1):91-102
    [73] Y. Chen, L. Shu, M. Li, et al. The Insights of DV-based Localization Algorithms in the WirelessSensor Networks with Duty-cycled and Radio Irregular Sensors[C]. Communications (ICC),2011IEEE International Conference on. Kyoto, Japan,2011,1-6
    [74]李娟,王珂,李莉,等.基于锚圆交点加权质心的无线传感器网络定位算法[J].吉林大学学报(工学版),2009,39(6):1649-1653
    [75]刘志华,陈嘉兴,陈霄凯.无线传感器网络中序列定位新算法的研究[J].电子学报,2010,38(7):1552-1556
    [76]周勇,夏士雄,丁世飞,等.基于三角形重心扫描的改进APIT无线传感器网络自定位算法[J].计算机研究与发展,2009,46(4):566-574
    [77]王小平,罗军,沈昌祥.无线传感器网络定位理论和算法[J].计算机研究与发展,2011,48(3):353-363
    [78] X.Wang, J. Luo, Y. Liu, et al. Component-based localization in sparse wireless networks[J].IEEE/ACM Transactions on Networking2011,19(2):540-548
    [79] L. Zhang, L. Liu, C. Gotsman, et al. An as-rigid-as-possible approach to sensor networklocalization[J]. ACM Transactions on Sensor Networks,2010,6(4):1-21
    [80] Z. Yang, Y. Liu, X. Li. Beyond trilateration: On the localizability of wireless ad hoc networks[J].IEEE/ACMTransactions on Networking,2010,18(6):1806-1814
    [81] D. Niculescu, B. Nath. Error characteristics of ad hoc positioning systems (APS)[C]. Proceedingsof the5th ACM international symposium on Mobile ad hoc networking and computing. ACM,Philadelphia, Pennsylvania, USA,2004,20-30
    [82] T. He, C. Huang, B. M. Blum, et al. Abdelzaher, Range-free localization schemes in large scalesensor networks[C]. Proceedings of the9th annual international conference on Mobile computingand networking. ACM, San Diego, California, USA,2003,81-95
    [83] L. Doherty, J. S. K.Pister, E. L. Ghaoui. Convex position estimation in wireless sensornetworks[C]. In Proc. IEEE INFOCOM, Anchorage, USA,2001,1655-1663
    [84] N. Bulusu, J. Heidemann, D. Estrin. GPS-less low cost outdoor localization for very small devices[J]. Personal Communications, IEEE,2000,7(5):28-34
    [85] Y. Ji, S. Biaz, S. Pandey, et al. ARIADNE: A Dynamic Indoor Signal Map Construction andLocalization System [C]. Proceedings of the4th international conference on Mobile systems,applications and services. ACM, Uppsala, Sweden,2006,151-164
    [86] K. Whitehouse, A. Woo, C. Karlof, et al. The effects of ranging noise on multihop localization: anempirical study[C]. Proceedings of the4th international symposium on Information processing insensor networks. IEEE Press, Piscataway, USA,2005,10-18
    [87] L. Jian, Z. Yang, Y. Liu. Beyond triangle inequality: sifting noisy and outlier distancemeasurements for localization[J]. ACM Transactions on Sensor Networks (TOSN),2013,9(2):26-32
    [88] H. T. Kung, C. K. Lin, T. H. Lin. Localization with snap-inducing shaped residuals (SISR):Coping with errors in measurement[C]. Proceedings of the15th annual international conference onMobile computing and networking. ACM, Beijing, China,2009,333-344
    [89] Y. Shang,W. Ruml,Y. Zhang, et al. Localization from mere connectivity[C]. Proceedings of the4th ACM international symposium on Mobile ad hoc networking&computing (MobiHoc),Annapolis, Maryland, USA,2003,201-212
    [90] Y. Shang,W. Ruml,Y. Zhang, et al. Localization from connectivity in sensor networks[J]. IEEETransactions on Parallel and Distributed Systems,2004,15(11):961-974
    [91] A. Ahmed, H. Shi,Y. Shang. Sharp: A new approach to relative localization in wireless sensornetworks[C]. Proceedings of the Second International Workshop on Wireless Ad HocNetworking (WWAN)(ICDCS workshop), Columbus, Ohio, USA,2005,892-898
    [92] D. Nicolescu, B. Nath. Ad-hoc positioning systems(APS)[C]. Proceeding of the IEEEconference on Global Telecommunications(GLOBECOM), Texas, USA,2001,2926-2931
    [93] H. Lim, J. Hou. Localization for anisotropic sensor networks[C]. Proceedings of the24th AnnualJoint Conference of the IEEE Computer and Communications (INFOCOM), Miami, USA,2005,138-149
    [94] D. Goldenberg, P. Bihler, M. Cao, et al. Localization in sparse networks using sweeps[C].Proceedings of the12th annual international conference on Mobile computing and networking(MobiCom), Los Angeles, USA,2006:110-121
    [95] M. Li, Y. Liu. Rendered path: range-free localization in anisotropic sensor networks with holes [J].IEEE/ACM Transactions on Networking,2010.18(1):320-332
    [96] Q. Shi, H. Huo, T. Fang, et al. A3d node localization scheme for wireless sensor networks[J].IEICE Electronics Express,2009,6(3):167-172
    [97] Q. Xiao, B. Xiao, J. Cao, et al. Multihop range-free localization in anisotropic wireless sensornetworks: a pattern-driven scheme[J]. IEEE Transaction on mobile computing (TMC),2010.9(11):1592-1607
    [98] G. Tan, H. Jiang, S. Zhang, et al. Connectivity-based and anchor-free localization in large-scale2d/3d sensor networks[C]. Proceedings of the eleventh ACM international symposium on Mobilead hoc networking and computing. ACM, Chicago, Illinois, USA,2010,191-200
    [99] H. Jiang, W. Liu, D. Wang, et al. Connectivity-based skeleton extraction in wireless sensornetworks[J]. IEEE Transactions on Parallel and Distributed Systems(TPDS),2010,21(5):710-721
    [100] W. Liu, D. Wang, H. Jiang, et al. Approximate convex decomposition based localization inwireless sensor networks[C]. INFOCOM,2012Proceedings IEEE, Orlando, USA,2012,1853-1861
    [101] S. H. AbdelSalam, S. Olariu. A3d-localization and terrain modeling technique for wireless sensornetworks[C]. Proceedings of the2nd ACM international workshop on Foundations of wireless adhoc and sensor networking and computing. ACM, New Orleans, USA,2009,37-46
    [102] Y. Zhao, H. Wu, M. Jin, et al. Localization in3D surface sensor networks: Challenges andsolutions[C]. The31st Annual IEEE International Conference on Computer Communications(IEEE INFOCOM2012), Orlando, Florida, USA,2012,55-63
    [103] N. Dou, G. Bo, Z. Wei, et al.3D localization method based on MDS-RSSI in wireless sensornetwork[C]. Intelligent Computing and Intelligent Systems (ICIS),2010IEEE InternationalConference on. IEEE, Beijing, China,2010,714-717
    [104] Y. C.Shih, J. P. Marrón. COLA: Complexity-reduced trilateration approach for3D localization inwireless sensor networks[C]. Sensor Technologies and Applications (SENSORCOMM),2010Fourth International Conference on. IEEE, Venice/Mestre, Italy2010,24-32
    [105] Q. Liu, P. Ren, Z. Zhou. Three-dimensional Accurate Positioning Algorithm based on WirelessSensor Networks[J]. Journal of Computers,2011,6(12):2582-2589
    [106] C. Liu, H. Jiang, L. D. Zeng. Unitary Matrix Pencil Algorithm for Range-Based3D Localizationof Wireless Sensor Network Nodes[J]. Journal of Networks,2012,7(9):1384-1390
    [107] S. Lederer, Y. Wang, J. Gao. Connectivity-based localization of large scale sensor networks withcomplex shape[J]. ACM Transactions on Sensor Networks (TOSN),2009.5(4):1-32
    [108] Y. Wang, J. Gao, B. S. J. Mitchell. Boundary recognition in sensor networks by topologicalmethods[C]. Proceedings of the12th annual international conference on Mobile computing andnetworking. ACM, Los Angeles, California, USA,2006,122-133
    [109] Y. Wang, S.Lederer, J. Gao. Connectivity-based sensor network localization with incrementaldelaunay refinement method[C]. Proceedings of the28th Annual Conference of the IEEEComputer and Communications (INFOCOM), Rio de Janeiro, Brazil,2009,2401-2409
    [110]吕良彬,曹阳,高洵,等.基于球壳交集的传感器网络三维定位算法[J].北京邮电大学学报,2006,5(29):48-51
    [111] H. Chen, P. Huang, M. Martins, et al. Novel centroid localization algorithm for three-dimensionalwireless sensor networks[C]. Wireless Communications, Networking and Mobile Computing,2008.WiCOM'08.4th International Conference on. IEEE, Dalian, China,2008,1-4
    [112] E. Guerrero, J. Alvarez, L. Rivero.3D-ADAL: A three-dimensional distributed range-freelocalization algorithm for wireless sensor networks based on unmanned aerial vehicles[C]. DigitalInformation Management (ICDIM),2010Fifth International Conference on. Thunder Bay, Ontario,Canada,2010,332-338
    [113] S. Yang, Z. Bo, W. Kun, et al. DB: A Developed3D Positioning Algorithm in WSN Based onDV-Hop and Bounding Cube[C]. Computer and Management (CAMAN),2011InternationalConference on. IEEE, Wuhan, China,2011,1-4
    [114] R. Stoleru, T. He, S. S. Mathiharan, et al. Asymmetric Event-Driven Node Localization inWireless Sensor Networks[J]. Parallel and Distributed Systems, IEEE Transactions on,2012,23(4):634-642
    [115] H. Jiang, Y. Zhang, H. Cui, et al. Fast three-dimensional node localization in UWB wirelesssensor network using propagator method digest of technical papers[C]. Consumer Electronics(ICCE),2013IEEE International Conference on. IEEE, Shenzhen, China,2013,627-628
    [116] L. Zhang, X. Zhou, Q. Cheng. Landscape-3D: a robust localization scheme for sensor networksover complex3D terrains[C]. Local Computer Networks, Proceedings200631st IEEE Conferenceon. IEEE, Tampa, Florida, USA,2006,239-246
    [117] H. Cui, Y. Wang. A survey of localization schemes in wireless sensor networks with mobilebeacon[C]. Proc.3rd Int. Conf. Computer and Automation Engineering, Chongqing, China,2011,147-151
    [118]姚忠孝,俞立,董齐芬.基于移动锚的DV-Hop无线传感器网络定位算法[J].传感技术学报,2009,22(10):1504-1509
    [119] Y. Ding, C. Wang, L. Xiao. Using mobile beacons to locate sensors in obstructed environments[J].Journal of Parallel and Distributed Computing,2010,70(6):644-656
    [120] B. Xiao, H. Chen, S. Zhou. Distributed localization using a moving beacon in wireless sensornetworks[J]. IEEE Transactions on Parallel and Distributed Systems,2008,19(5):587-600
    [121] C. Sun, J. Xing, Y. Ren, et al. Distributed grid-based localization algorithm for mobile wirelesssensor networks[M]. Springer Berlin Heidelberg: Advances in Electronic Engineering,Communication and Management,2012,315-321
    [122]刘克中,张金奋,胡富平,等.移动导标条件下的无线传感器网络节点定位方法[J].北京邮电大学学报,2010,33(2):16-19+33
    [123] B. Zhang, F. Yu. LSWD:Localization scheme for wireless sensor networks using directionalantenna[J]. IEEETransactions on Comsumer Electronics,2010,56(4):2208-2216
    [124] Z. Guo, Y. Guo, F. Hong, et al. Perpendicular intersection: Locating wireless sensors with mobilebeacon[J]. IEEE Transactions on Vehicular Technology,2010,59(7):3501-3509
    [125]史清江,何晨.多功率移动锚节点辅助的分布式节点定位方法[J].通信学报,2009,30(10):8-13
    [126] H. Cui,Y. Wang. Four-mobile-beacon assisted localization in three-dimensional wireless sensornetworks[J]. Computers&Electrical Engineering,2012,38(3):652-661
    [127]李洪峻,卜彦龙,薛晗,等.面向无线传感器网络节点定位的移动锚节点路径规划[J].计算机研究与发展,2009,46(1):129-136
    [128]李石坚,徐从富,杨旸,等.面向传感器节点定位的移动锚路径获取[J].软件学报,2008,19(2):455-467
    [129] D. Koutsonikolas, S. M. Das, Y. C. Hu. Path planning of mobile landmarks for localization inwireless sensor networks[J]. Computer Communications,2007,30(13):2577-2592
    [130] Z. Zhong, D. Luo, S. Liu, et al. An adaptive localization approach for wireless sensor networksbased on Gauss-Markov mobility model[J]. Acta Automatica Sinica,2010,36(11):1557-1568
    [131] R. Huang, G. V. Zaruba. Static path planning for mobile beacons to localize sensor networks[C].Pervasive Computing and Communications Workshops,2007. PerCom Workshops'07. FifthAnnual IEEE International Conference on IEEE, New YorK, USA,2007,323-330
    [132]魏叶华,李仁发,陈洪龙,等.无线传感器网络定位中动态锚移动路径规划[J].系统仿真学报,2009,21(22):7258-7261
    [133] H. Cui, Y. Wang, Q. Guo, et al. Getting obstacle avoidance trajectory of mobile beacon forlocalization[J]. International Journal of Computer Network and Information Security,2010,2(1):45-51
    [134] L. Hu, D. Evans. Localization for mobile sensor networks [C]. Proceedings of the10th annualinternational conference on Mobile computing and networking. ACM, Philadelphia, Pennsylvania,USA,2004,45-57
    [135] S. Zhang, J. Cao, S. Member, et al. Accurate and energy-efficient range-free localization formobile sensor networks[J]. IEEE Transactions on Mobile Computing,2010,9(6):897-910
    [136] S. Jabbar, M. Z. Aziz, A. A. Minhas, et al. A novel power tuning anchors localization algorithmfor mobilewireless sensor nodes [C]. Computer and Information Technology (CIT),2010IEEE10th International Conference on IEEE, Bradford, UK,2010,2441-2446
    [137] H. Zhu, X. Zhong, Q. Yu, et al. A localization algorithm for mobile wireless sensornetworks[C].Intelligent System Design and Engineering Applications (ISDEA),2013ThirdInternational Conference on. IEEE, Hong Kong, China,2013,81-85
    [138] F. Desprez, B. Tourancheau. LOCCS: Low Overhead Communication and ComputationSubroutines[J]. Future Generation Computer Systems,1994,10(2):279-284
    [139]王瑞锦,秦志光,包红来,等.基于三角划分的复杂3D凹/凸不平表面网络定位算法[J].计算机应用研究.2013,30(9):2823-2830
    [140] R. J. Wang, Z. G. Qin. A Weighted3D Localization Algorithm Based on Partial HopSize inWireless Sensor Network[J]. International Journal of Advancementsin Computing Technology,2012,4(9):504-513
    [141] P. Xie, H. J. Cui. An FEC-based reliable data transport protocol for underwater sensornetworks[C]. Computer Communications and Networks,2007. ICCCN2007. Proceedings of16thInternational Conference on. IEEE, Hawaii, USA,2007,747-753
    [142] Q. Liang, X. Cheng. Underwater acoustic sensor networks:Target size detection and performanceanalysis[J]. Ad Hoc Networks,2009,7(4):803-808
    [143] C. Wang, L. Xiao. Locating sensors in concave areas[C]. Proceedings of the24th Annual JointConference of the IEEE Computer and Communications (INFOCOM), Barcelona, Spain,2006,1-12
    [144] D. Niculescu, B. Nath. DV based positioning in ad hoc networks[J]. Telecommunication Systems,2003,22(1-4):267-280
    [145] H. Zhou, N. Ding, M. Jin, et al. Distributed algorithms for bottleneck identification andsegmentation in3D wireless sensor networks[C]. SECON. Utah, USA,2011,494-502
    [146] H. Zhou, H. Wu, S. Xia, et al. A distributed triangulation algorithm for wireless sensor networkson2d and3d surface[C]. INFOCOM,2011Proceedings IEEE, Shanghai, China,2011,1053-1061
    [147] R. J. Wang, H. l. Bao, Z. G. Qin, et al.3D-CCD: a Novel3D Localization AlgorithmBased on Concave/Convex Decomposition andLayering Scheme in WSN[J]. Ad Hoc&SensorWireless Networks.2013.3,Accepted
    [148] K. Sohrabi, J. Gao, V. Ailawadhi, et al. Protocols for self-organization of a wireless sensornetwork[J]. Personal Communications, IEEE,2000,7(5):16-27
    [149] H. Zhou, H. Wu, M. Jin. A robust boundary detection algorithm based on connectivity only for3Dwireless sensor networks[C]. INFOCOM,2012Proceedings IEEE, Orlando, USA,2012,1602-1610
    [150] J. Wang, L. Huang, X. Li, et al. A collaborative localization scheme from connectivity in wirelesssensor networks[C]. Wired/Wireless Internet Communications. Springer Berlin Heidelberg,2008,213-223
    [151] L. Kleinrock, J. Silvester. Optimum transmission radii for packet radio networks or why six is amagic number[C]. Proceedings of the IEEE National Telecommunications Conference.Birimingham, Alabama,1978,4:1-4
    [152] F. Kuhn, T. Moscibroda, R. Wattenhofer. Unit disk graph approximation[C]. Proceedings of the2004joint workshop on Foundations of mobile computing, Philadelphia, USA,2004,17-23
    [153] C. Detweiler, M. Doniec, I. Vasilescu, et al. Autonomous depth adjustment for underwater sensornetworks: design and applications[J]. Mechatronics, IEEE/ASME Transactions on,2012,17(1):16-24
    [154] Y. Wang, Y. Liu, Z. Guo. Three-dimensional ocean sensor networks: A survey[J]. Journal ofOcean University of China,2012,11(4):436-450
    [155] Y. Shang, W. Ruml. Improved MDS-based localization[C]. INFOCOM2004. Twenty-thirdAnnualJoint Conference of the IEEE Computer and Communications Societies. IEEE, Hong Kong,China,2004,2640-2651
    [156] B. Delaunay. Sur la sphere vide[J]. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii iEstestvennyka Nauk,1934,7(1-2):793-800
    [157] A. Rao, S. Ratnasamy, C. Papadimitriou, et al. Geographic routing without locationinformation[C]. Proceedings of the9th annual international conference on Mobile computing andnetworking. ACM, San Diego, California, USA,2003,96-108
    [158] H. Zhou, S. Xia, M. Jin, et al. Localized algorithm for precise boundary detection in3d wirelessnetworks[C]. Distributed Computing Systems (ICDCS),2010IEEE30th International Conferenceon. IEEE, Genova, Italy,2010:744-753
    [159] D. Dong, Y. Liu, X. Liao. Fine-grained boundary recognition in wireless ad hoc and sensornetworks by topological methods[C]. Proceedings of the tenth ACM international symposium onMobile ad hoc networking and computing. ACM, Beijing, China,2009:135-144
    [160] P. S. Fekete, A. Kr ller, D. Pfisterer, et al. Neighborhood-based topology recognition in sensornetworks[M]. Springer Berlin Heidelberg:Algorithmic Aspects of Wireless Sensor Networks,2004:123-136
    [161] Q. Fang, J. Gao, J. L.Guibas. Locating and bypassing holes in sensor networks[J]. MobileNetworks and Applications,2006,11(2):187-200
    [162] A. Savvides, C. C. Han, B. M. Strivastava. Dynamic fine-grained localization in ad-hoc networksof sensors[C].Proceedings of the7th annual international conference on Mobile computing andnetworking ACM, Rome, Italy,2001,166-179
    [163] G. Vorono. Nouvelles applications des paramètres continus à la théorie des formes quadratiques.Deuxième mémoire. Recherches sur les parallélloèdres primitifs[J]. Journal für die reine undangewandte Mathematik,1908,134:198-287
    [164] H. A.Thiessen. Precipitation averages for large areas[J]. Monthly weather review,1911,39(7):1082-1089
    [165] S. Biasotti, D. Giorgi, M. Spagnuolo, et al. Reeb graphs for shape analysis and applications[J].Theoretical Computer Science,2008,392(1):5-22
    [166] R. J. Wang, Z. G. Qin, D. F. Li, et al.3DT-PP: Localization and Path Planning of Mobile Anchorsover Complex3D Terrains[J]. High Technology Letters.2013, Accepted
    [167] H. Bao, B. Zhang, C. Li, et al. Mobile anchor assisted particle swarm optimization (PSO) basedlocalization algorithms for wireless sensor networks[J]. Wireless Communications and MobileComputing,2012,12(15):1313-1325
    [168]王小平,罗军,沈昌祥.无线传感器网络定位理论和算法[J].计算机研究与发展,2011,48(3):353-363
    [169] R. Huang, V. G. Zaruba. Static path planning for mobile beacons to localize sensor networks[C].Pervasive Computing and Communications Workshops,2007. PerCom Workshops'07. FifthAnnual IEEE International Conference on. IEEE, California, USA,2007,323-330
    [170]王书明,刘玉兰,王家映.蚁群算法[J].工程地球物理学报,2009,2:135-140
    [171]徐俊明.每点都与3度点相邻的最大临界3棱连通图的结构[J].中国科学技术大学学报,1987,17(4):441-447
    [172] M. Chen, S. Gonzalez, M. C. V. Leung. Applications and design issues for mobile agents inwireless sensor networks[J]. Wireless Communications, IEEE,2007,14(6):20-26
    [173]王继春.无线传感器网络节点定位若干问题研究[D].合肥:中国科学技术大学,2009
    [174]文中华,姜云飞.用分层关联方法求有向图中所有Hamilton回路的算法[J].计算机研究与发展,2005,42(10):1809-1814
    [175] H. W. Foy. Position-location solutions by Taylor-series estimation[J]. Aerospace and ElectronicSystems, IEEE Transactions on,1976(2):187-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700