临江河回水河段富营养化特性、机制及人工浮床控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡水库的建成将产生巨大的经济、防洪等综合效益。但是,水库的建成与运行也对库区的生态环境产生巨大影响,特别是对次级河流的影响。
     临江河是三峡库区库尾的一条次级河流。成库前,流速较快,河道比降大;但是在三峡水库蓄水以后,由于受到干流回水的顶托作用,临江河部分河段形成回水区(河段),该区域流速大幅减缓、河道变宽、水深加大,水体也由原来的河流型水体转变为湖泊型水体;加之氮磷充足、光照适宜,这些为回水河段的藻类生长提供了适宜条件。为此,论文以临江河回水河段为对象,全面研究了回水河段的富营养化特性、机制及影响因素;在此基础上,采用人工浮床技术对回水河段的富营养化进行防治,并就其机理展开了探讨。研究成果如下:
     ①通过水质分析、实地调研、TSI评价及因子综合得分评价等方法研究了临江河回水河段的富营养化特性。结果发现:
     1)回水河段始终处于富营养化水平,且有逐年加重的趋势,每年的5月和夏秋之交尤为严重,其中回水腹心区的富营养化程度又相对较重。
     2)绿藻、硅藻为回水河段的绝对优势藻群,以小球藻、四尾栅藻和颗粒直链藻为常见种。蓝藻为第三优势种群。
     3)水温、流速、磷和硅为临江河回水河段富营养化的主要控制因子。统计模型中,多元线性逐步回归模型是较为理想的模型。
     ②采用灰关联的分析方法评判了临江河回水河段富营养化影响因素影响程度的大小,发现在春季和冬季,水温的影响最大,SiO3-Si次之,TN的影响较小。
     ③通过物理模拟试验研究了不同条件下藻类的生长与消亡。结果表明:
     1)培养水体中Chla含量随时间的变化呈二次曲线的变化模式,其中温度、光照、水动力、泥沙含量和初始氮营养盐水平对藻类比生长速率的影响呈向上抛物线型,而初始TP浓度、硅酸盐浓度对比生长速率的影响呈对数关系。
     2)氮、磷及硅的半饱和浓度分别为0.326 mg/L、0.163 mg/L、0.095mg/L。
     3)藻类的最适生长条件为:平均水温22℃、硅酸盐浓度1.98mg/L、光照约4000~4200lx、水动力为60 r.p.m。
     ④论文采用人工浮床技术防治临江河回水河段的富营养化,在此基础上就人工浮床净化效果的影响因素与强化措施进行了探寻。结果发现:
     1)美人蕉浮床、风车草浮床对富营养化的防治效果良好,特别是抑藻效果良好。对COD、TN及TP的平均去除率达20%以上,可削减50%以上的Chla。
     2)浮床运行的最适水温为25~29℃;植物生长状况与浮床系统的净化能力呈线性关系;较为理想的岛覆盖率可取45%~60%。
     3)在植物根系悬挂人工介质是最好的强化措施;而通过机械曝气仅可增加去污能力;增大浮床覆盖率仅对提高Chla的削减能力有明显效果。
     ⑤论文还还从水力特性、DO特性及物料平衡等方面研究了人工浮床防治富营养化的机理。结果显示,人工浮床系统的实际流态介于理想推流和完全混合流之间;浮床系统沿程(水流方向)和水深方向均形成了良好的DO浓度梯度分布;底泥沉积是人工浮床系统中氮磷的主要去除途径,占氮磷去除总量的60%以上。人工浮床中的植物可通过吸收污染物、改善DO分布、提高DO含量、遮光及化感作用来控制富营养化。
The construction and operation of the three Gorges Reservoir (TGR) will generate tremendous benefits in economy, flood control, hydropower and etc. Meanwhile, the reservoir built also has significant impact on ecological environment, especially on tributaries.
     The Linjiang River is located in the upper reach of the Yangtze River. Before the construction of the TGR, the flow velocity of the river was considerably quick. When the TGR started impounding, parts of the Linjiang River became a bay, similar to a lentic reservoir due to the backwater from the Yangtze River, and the hydrodynamics in the bay changed substantially. Equally, the average flow velocity dropped sharply, both the river width and water depth increased significantly. Besides the nutrient concentration in the river is great, together with an appropriate illumination, which provided considerable conditions for algal growth.
     Field observations show that the algal bloom occurred in May and between in the summer and in the autumn but neither in the summer nor in the winter, in the backwater reach of the Linjiang River. Therefore, we took the backwater reach of the Linjiang River as an example to study its eutrophication charactertics,mechanism and influencing factors; in addition, the artificial floating bed technique used for eutrophication control as well as its removal mechanisms were also studied.
     Firstly, based on one-year monitoring data and field investigation, we studied the eutrophcation charactertics in the backwater reach of the Linjiang River, and then the trophic state of the reach was assessed using trophic state index and principal component analysis. The study indicated that the trophic state of the backwater reach was consitently eutrophic, and exhibited a aggravated trend. And the trophic state was the most serious in the middle reach of the backwaters in terms of the spatial variety.
     The Chlorophyta and diatiom were the predominat species in the reach, and followed by Cyanophyta.
     Additionally, we found that the temperature, the flow velocity, phosphorus and silion were the critical factors inducing the eutrophication in the reach, and the multivariate regression model exhibited the best accuracy among statistical models.
     Secondly, the influencing degree of related factors associated with the eutrophcation in the backwater reach was studied by gray relational analysis, and results revealed that the temperature has the greatest impact on the eutrophication, followed by SiO_3-Si, and TN ranked the last.
     Through the simulation test, the algal growth and death was studied. The study indicated that: The algal growth exhbibed a quadratic relationship with the water temperature, light intensity, the flow velocity, the TSS, the nitrogen leval, but a logarithm realationship with phosphorus and silicon, respectively. The semi-saturation concentration of nitrogen, phosphorus and silicon was 0.326 mg/L, 0.163 mg/L, 0.095mg/L, respectively. The optimal condition for algal growth was at 22℃in temperature, 1.98mg/L in silicon, 4000~4200lx in light and 60 r.p.m.
     In addition, the artificial floating bed was taken as an alternative to control the eutrophication in the backwaters, and the study demonstrated that the floating bed vegetated with Acorus calamus s for Canna indica exhibited a great potential to control the eutrophication, especially on the control of the algal growth.
     Also, we studied the effect of the temperature, the coverage of the floating bed and, the plant growth on the removal effect of artificial floating beds, and found that the optimal temperature and coverage were 25~29℃and 45%~60%, respectively, and the removal effect exhbibed a linear realationship with the plant growth.
     Some measures such as artificial aeration, the increase in the coverage etc., were carried out to enhance the removal effect and the results revealed susspendion of the fiber filler was the best enchancement for eutrophication.
     In addition, the control mechanism was studied in the field of the hydraulic characteristics, DO characteristics and mass balance and results indicated that more than 60% of phosphorus and nitrogen were removed by sedimentation, the actual flow pattern of the floating bed systems was intermediate between the ideal plug flow and a perfectly mixed flow and the floating bed exhibited a better DO gradient distribution. The plants played a critical role in eutrophication control through plant absorbition, allelopathic effects, shading and etc.
引文
[1] Zingone A, Enevoldsen H O. The diversity of harmful algal blooms: a challenge for science and management [J]. Ocean Coastal Manage., 2000, 43: 725-748.
    [2] Paerl H W. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations [J]. Ecol. Eng., 2006, 26:40-54.
    [3] Qin B Q. Lake eutrophication: Control countermeasures and recycling exploitation [J]. Ecol. Eng., 2009, 35: 1569-1573.
    [4] Smith V H, Schindler D W. Eutrophication science: where do we go from here?[J]. Trends in Ecology & Evolution,2009,24(4): 201-207.
    [5] Young K, Morse G K, Scrimshaw M D, et al. The relation between phosphorus and eutrophication in the Thames catchment, UK [J]. Sci.Total Environ., 1999, 228: 157-183.
    [6] Hudnell H K. The state of U.S. freshwater harmful algal blooms assessments, policy and legislation [J]. Toxicon, 2009: 1-11.
    [7] Asaeda D, Pham H S, Nimal Priyantha D G, et al. Control of algal blooms in reservoirs with a curtain: a numerical analysis [J]. Ecol. Eng., 2001, 16: 395-404.
    [8] Caron D A, Garneau M, Seubert E, et al. Harmful algae and their potential impacts on desalination operations off southern California[J]. Water Res., 2009, 1-32.
    [9] Heisler J, Glibert P M, Burkholder J M, et al. Eutrophication and harmful algal blooms: A scientific consensus[J]. Harmful Algae, 2008,8: 3-13.
    [10]钟成华.三峡库区水体富营养化研究[博士论文].四川大学,2004.
    [11] Duy T N, Lam P K S, Shaw G R, et al. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algae) toxins in water [J]. Rev. Environ. Contam. Toxicol, 2000, 163: 113-186.
    [12] Grindley J R,Nel E. Mussel poisoning and shellfish mortality on the West Coast of Africa. South African Journal of Science,1968, 64:420-2.
    [13] Wang J H, Wu J Y. Occurrence and potential risks of harmful algal blooms in the East China Sea[J]. Sci.Total Environ., 2009, 407: 4012~4021.
    [14]朱光灿,吕锡武.不同流态生物膜反应器对微囊藻毒素的降解特性[J].中国环境科学, 2003, 23(3): 267-271
    [15] Graneli E, Weberg M, Salomon P S. Harmful algal blooms of allelopathic microalgal species: The role of eutrophication [J]. Harmful Algae,2008, 8: 94-102.
    [16] Ding L, Wu J Q, Pang Y, et al. Simulation study on algal dynamics based on ecological flumeexperiment in Taihu Lake, China [J]. Ecol. Eng., 2007, 31: 200-206.
    [17] Li, S Y., Liu, W Z., Cheng, X L et al.. Spatio-temporal dynamics of nutrients in the upper Han River basin, China. J. Hazard.Mater., 2009, 162:1340-1346.
    [18] Dionysiou, D. Overview: Harmful algal blooms and natural toxins in fresh and marine waters- Exposure, occurrence, detection, toxicity, control, management and policy [J]. Toxicon, 2010, 55: 907-908.
    [19]刘丽萍.滇池水华特征及成因分析[J].环境科学研究,1999,12(5):36~37.
    [20] Kuo J T, Lung W S, Yang C P, et al. Eutrophication modelling of reservoirs in Taiwan[J]. Environ.Modell.Softw., 2006, 21: 829-844.
    [21] Burford M A, Alongi D M, McKinnon A D,et al. Primary production and nutrients in a tropical macrotidal estuary, Darwin Harbour, Australia[J]. Estuar.Coast.Shelf Sci., 2008, 79: 440~448.
    [22] Li Y, Cao W, Su C,et al. Nutrient sources and composition of recent algal blooms and eutrophication in the northern Jiulong River, Southeast China. Mar. Pollut. Bull. (2011), doi: 10.1016/j.marpolbul.2011.02.021
    [23]付春平,钟成华,邓春光.水体富营养化成因分析[J].重庆建筑大学学报, 2005, 21(5): 128- 131.
    [24]商照堂,任健,秦铭荣,等.气候变化与太湖蓝藻暴发的关系[J].生态学杂志,2010, 29(1):55-61.
    [25]朱广伟.太湖富营养化现状及原因分析[J].湖泊科学,2008,20(1):21-26.
    [26] Gameiro C, Cartaxana P, Brotas V. Environmental drivers of phytoplankton distribution and Composition in Tagus Estuary, Portugal [J]. Estuar.Coast.Shelf Sci., 2007, 75:21-34.
    [27]李锦秀,廖文根.三峡库区富营养化主要诱发因子分析[J].科技导报,2003,2:49-52.
    [28]曾辉,宋立荣,于志刚,等.三峡水库“水华”成因初探[J].长江流域资源与环境,2007, 16(3): 336-339.
    [29]王敏,张建辉,吴光应等.三峡库区神女溪水华成因初探[J].中国环境监测,2008, 24(1): 60-63.
    [30] Hall N S, Litaker R W, Fensin E, et al. Environmental Factors Contributing to the Development and Demise of a Toxic Dinoflagellate (Karlodinium veneficum) Bloom in a Shallow, Eutrophic, Lagoonal Estuary[J]. Estuaries and Coasts: JCERF,2008, 31:402-418.
    [31] Neal C, Hilton J, Wade A J, et al. Chlorophyll-a in the rivers of eastern England [J]. Sci Total Environ., 2006, 365:84-104.
    [32] Lohrenz, S E, Redalje, D G, Cai, W J, et al. A retrospective analysis of nutrients and phytoplankton productivity in the Mississippi River plume [J]. Cont.Shelf Res., 2008, 28: 1466-1475.
    [33]姚云,郑世清,沈志良.胶州湾营养盐及富营养化特征[J].海洋通报,2007,26(4):91-98.
    [34]刑伟.铁对水华蓝藻的生态生理学效应研究[博士论文].中国科学院研究生院,2007.
    [35]李坤阳,储昭升,金相灿等.巢湖水体藻类生长潜力研究[J].农业环境科学学报,2009,28(10): 2124-2131.
    [36] Lau SSS, Lane S N. Biological and chemical factors influencing shallow lake eutrophication: a long-term study. Sci Total Environ., 2002, 288: 167-181.
    [37] Domingues R B, Anselmo T P, Barbosa A B,et al. Nutrient limitation of phytoplankton growth in the freshwater tidal zone of a turbid, Mediterranean estuary[J]. Estuar.Coast.Shelf Sci.,2011, 91:282-297.
    [38] Havens K E, James R T, East T L,et al. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution [J]. Environ. Pollut., 2003, 122:379-390.
    [39] Phlips E J, Badylak S, Grosskopf T. Factors affecting the abundance of phytoplankton in a restricted subtropical lagoon, the Indian River lagoon, Florida, USA [J]. Estuar.Coast.Shelf Sci., 2002,55: 385-402.
    [40]康康.水体中藻类增殖与TN/TP的相关性研究[D].重庆大学,2007.
    [41]刘春光,金相灿,孙凌等.不同氮源和曝气方式对淡水藻类生长的影响[J].环境科学,2006, 27(1): 101-104.
    [42]张毅敏,张永春,张龙江等.湖泊水动力对蓝藻生长的影响[J].中国环境科学,2007,27(5): 707-710.
    [43]胡正峰,张磊,邱勤,等.温度条件对澎溪河藻类生长的影响[J].江苏农业科学, 2010(2): 384-386.
    [44]高月香.水文气象因子对太湖富营养化和藻类生长的影响研究[D].扬州大学,2006.
    [45]孙霞.光照对东海赤潮高发区赤潮藻类生长的影响[博士论文].中国海洋大学,2005.
    [46] Liu H, Au D W T, Anderson D M, et al. Effects of nutrients, salinity, pH and light: dark cycle On the production of reactive oxygen species in the alga Chattonella marina [J]. Journal of Experimental Marine Biology and Ecology, 2007, 346:76-86.
    [47] Garcia V M T, Garcia C A E, Mata M M, et al. Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring [J]. Deep-SeaResearch I,2008, 55: 1150-1166.
    [48] Arhonditsis G B, Winder M, Brett M T, Schindler D E. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA)[J]. Water Res., 2004, 38: 4013-4027.
    [49] Xu J,Ho A Y T,Yin K,et al. Temporal and spatial variations in nutrient stoichiometry and regulation of phytoplankton biomass in Hong Kong waters: Influence of the Pearl River outflow and sewage inputs[J]. Mar.Pollut.Bull., 2008, 57: 335-348.
    [50]高天,钱新,储昭升,等.气候、水文和生态过程对洋河水库富营养化影响研究[J].水生态学杂志, 2010, ,3(3):28-31.
    [51]代玲玲.三峡水库富营养化藻类特征及环境因素影响研究[硕士论文].重庆大学,2007.
    [52]陈杰.三峡水库小江回水区浮游植物群落结构特点及其影响因素研究[硕士论文].重庆大学, 2006.
    [53]曾辉.长江和三峡库区浮游植物季节变动及其与营养盐和水文关系研究[博士论文].中国科学院研究生院, 2006.
    [54] Olli K, Heiskanen A S. Seasonal stages of phytoplankton community structure and sinking loss in the Gulf of Riga [J]. J.Mar.Systems, 1999,23: 165-184.
    [55] Hill V, Cota G, Stockwell D. Spring and summer phytoplankton communities in the Chukchi and Eastern Beaufort Seas [J]. Deep-Sea Research II, 2005, 52: 3369-3385.
    [56] Figueredo C C, Giani A. Phytoplankton community in the tropical lake of Lagoa Santa(Brazil): Conditions favoring a persistent bloom of Cylindrospermopsis raciborskii[J]. Limnologica, 2009, 39: 264-272
    [57]吴洁,虞左明.西湖浮游植物的演替及富营养化治理措施的生态效应[J].中国环境科学,2001, 21(6): 540-544
    [58]吴生才,陈伟民.太湖浮游植物生物量的周期性变化[J].中国环境科学2004, 24(2): 151-154.
    [59]吴晓东,孔繁翔,张晓峰,等.太湖与巢湖水华蓝藻越冬和春季复苏的比较研究[J].环境科学, 2008, 29(5): 1313-1318.,
    [60]李原,张梅,王若南.滇池的水华蓝藻的时空变化[J].云南大学学报(自然科学版),2005,27 (3 ) : 272-276.
    [61]林毅雄,刘秀芬,阎海.滇池铜绿微囊藻( Microcystis aeruginosa Küitz)毒素及其在水体中的变化[J].环境污染治理技术与设备,2001,2(5):10-13.
    [62]张远,郑丙辉,刘鸿亮.三峡水库蓄水后的浮游植物特征变化及影响因素[J].长江流域资源与环境, 2006,15(2):254-258.
    [63]张晟,刘景红,黎莉莉等.三峡水库成库初期营养盐与浮游植物分布特征[J]环境科学,2006, 27(6): 1056-1061.
    [64]胡建林,刘国祥,蔡庆华,等.三峡库区重庆段主要支流春季浮游植物调查[J].水生生物学报, 2006, 30(1):116-18.
    [65] Zeng H, Song L, Yu Z, et al. Distribution of phytoplankton in the Three-Gorge Reservoir during rainy and dry seasons [J]. Sci.Total Environ., 2006, 367: 999-1009.
    [66] Herath G. Freshwater Algal Blooms and Their Control: Comparison of the European and Australian Experience[J]. Journal of Environmental Management, 1997, 51:217–227.
    [67] Huang L,Jian W,Song X,et al. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons[J]. Marine Pollution Bulletin, 2004, 49:588-596.
    [68]易绍兴.重庆双龙湖藻类组成变化及影响因素[硕士论文].重庆大学,2007.
    [69]胡鸿钧,魏印心.中国淡水藻类-系统,分类及生态[M].北京:科学出版社, 2006.
    [70] Brogueira M J, Oliveira M R, Oliveira G. Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal[J]. Mar.Environ.Res., 2007, 64: 616-628.
    [71] Karad?i? V, Subakov-Simi? G, Krizmani? J,et al. Phytoplankton and eutrophication development in the water supply reservoirs Gara?i and Bukulja (Serbia)[J]. Desalination, 2010.255: 91-96.
    [72] Specchiulli A, Focardi S, Renzi M, et al. Environmental heterogeneity patterns and assessment of trophic levels in two Mediterranean lagoons: Orbetello and Varano, Italy[J]. Sci.Total Environ., 2008,402, 285-298.
    [73]裴廷权,王里奥,韩勇等.三峡库区小江流域水体富营养化的模糊评价[J].农业环境科学学报,2008, 27(4):1427-1431.
    [74] Lu R S,Lo S L. Diagnosing reservoir water quality using self-organizing maps and fuzzy theory[J].Water Res.,2002,36(9):2265-2274.
    [75] Chen Q, Mynett A C. Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake[J].Ecological Modelling,2003,162:55-67.
    [76]姚云,郑世清,沈志良.利用人工神经网络模型评价胶州湾水域富营养化水平[J].海洋环境科学, 2007, 27(1): 10-12.
    [77] Wei B, Sugiura N, Maekawa T. Use of artificial neural network in the predication of algal blooms [J]. Water Res., 2001(35): 2022-028.
    [78] Recknagel F,Talib A, Molen D. Phytoplankton community dynamics of two adjacent Dutch lakes in response to seasons and eutrophication control unravelled by non-supervised artificial neural networks[J]. Ecological informatics, 2006(1): 277-285.
    [79]何强.基于地理信息系统(GIS)的水污染控制规划研究[博士论文].重庆大学,2001.
    [80]万幼川,谢鸿宇,吴振斌等. GIS与人工神经网络在水质评价中的应用[J].武汉大学学报(工学版),2003,23(3):2002-2007
    [81] Xu F, Tao S,Dawson R W,et al. A GIS-based method of lake eutrophication assessment[J]. Ecological Modelling, 2001, 144:231-244.
    [82] Camdevyren H, Demyr N, Kanik A. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs[J]. Ecol. Modell., 2005, 181: 581-589.
    [83] Cho K H, Kang J H, Ki S J, et al. Determination of the optimal parameters in regression models for the prediction of chlorophyll-a: A case study of the Yeongsan Reservoir, Korea [J].Sci.Total Environ., 2009, 407:2536-2545.
    [84] Vollenweider RA. Input–output models with special reference to the phosphorus loading concept in limnology[J]. Schweiz Z Hydrol, 197:37:53-82。
    [85]冉翊.多层营养盐协同作用藻类生长模型研究[硕士论文].重庆大学,2007.
    [86] Dillon P J, Rigler F H. A simple method for predicting the capacity of a lake for development based on lake trophic state[J]. Journal of the Fisheries Research Board of Canada 31, 1975, 1518 -1531.
    [87]韩菲,陈永灿,刘昭伟.湖泊及水库富营养化模型研究综述[J].水科学进展,2003,14(6): 785-781.
    [88]姜海萍.河口富营养化与赤潮生态关系的研究[博士论文].河海大学,2002.
    [89] Hernandez P, Ambrose R B, Prats D, et al. Modeling eutrophication kinetics in reservoir microcosms[J]. Water Res., 1997, 31: 2511-2519.
    [90] Reynolds C S, Irish A E, Elliott J A. The ecological basis for simulating phytoplankton responses to environmental change (PROTECH) [J]. Ecol. Model., 2001, 140: 271-291
    [91] Kuo J T, Hsieh P H, Jo W H. Lake eutrophication management modeling using dynamic programming[J]. J. Environ.Manage. 2008, 27: 677-687.
    [92] Shen J. Optimal estimation of parameters for a estuarine eutrophication model [J].Ecol. Modell, 2006, 191:521-537.
    [93] He G, Fang F, Bai S,et al. Application of a three-dimensional eutrophication model for the Beijing Guanting Reservoir, China[J]. Ecol. Modell.,2011,222:1491-1501.
    [94]张自杰.排水工程[D].中国建筑工业出版社,2000.
    [95]罗固源.水污染控制工程[D].高等教育出版社,2006.
    [96] Suwa, Y., Suzuki, T., Toyohara, H., et al. Single-stage, single-sludge nitrogen removal by activated sludge process with cross-flow filtration [J]. Water Res., 1992,26 (9), 1149–1157.
    [97] Gao M, Yang M, Li H,et al. Comparison between a submerged membrane bioreactor and a conventional activated sludge system on treating ammonia-bearing inorganic wastewater[J]. Journal of Biotechnology, 2004, 108:265–269.
    [98] Abegglen C, Ospelt M, Siegrist H. Biological nutrient removal in a small-scale MBR treating household wastewater [J]. Water Res., 2008, 42:338-346.
    [99] Kornboonraksa H, Lee S H. Factors affecting the performance of membrane bioreactor for piggery wastewater treatment [J]. Bioresour.Technol., 2009, 100(12):2926-2932.
    [100] Brown P, Ong S K, Lee Y W. Influence of anoxic and anaerobic hydraulic retention time on biological nitrogen and phosphorus removal in a membrane bioreactor[J]. Desalination,2011, 270:227-232.
    [101] Zheng,X, Tong J, Li, H, et al. The investigation of effect of organic carbon sources addition in anaerobic–aerobic (low dissolved oxygen) sequencing batch reactor for nutrients removal from wastewaters[J]. Bioresour.Technol., 2009, 100: 2515-2520.
    [102] Zhu R, Wu M, Zhu H,et al. Enhanced phosphorus removal by a humus soil cooperated sequencing batch reactor using acetate as carbon source[J]. Chemical Eng.,2011, 166, 687-692
    [103] Kyambadde K, Kansiime F, Gumaelius L,et al. A comparative study of Cyprus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate [J]. Water Res., 2004,38: 475-485.
    [104] Calheiros C S C, Rangel A O S S, Castro P M L. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis [J]. Bioresou.Technol., 2009,100(13):3205-3213.
    [105] ?Luanaigh N D, Goodhue R, Gill L W. Nutrient removal from on-site domestic wastewater in horizontal subsurface flow reed beds in Ireland[J]. Ecol.Eng., 2010,36:1266-1276.
    [106] Stefanakis A I, Akratos C S, Tsihrintzis V A. Effect of wastewater step-feeding on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands [J]. Eco. Eng., 2011,37 :431-443
    [107]张木兰,潘纲,陈灏,等.改性沉积物除藻对水质改善的效果研究[J].环境科学学报, 2007,27 (1) : 13-17.
    [108]史顺玉.溶藻细菌对藻类的生理生态效应及作用机理研究[博士论文].中国科学院研究生院, 2006.
    [109]叶绿.三峡库区香溪河水华现象发生规律与对策研究[硕士论文].河海大学,2006.
    [110]郑丙辉,曹承进,张佳磊,等.三峡水库支流大宁河水华特征研究[J].环境科学,2009, 30(11): 3218-3226.
    [111]郑丙辉,曹承进,秦延文,等.三峡水库主要入库河流氮营养盐特征及来源分析[J].环境科学, 2008,29(1):1-6.
    [112]曹承进,秦延文,郑丙辉,等.三峡水库主要入库河流磷营养盐特征及来源分析[J].环境科学,2008,29(2):310-315.
    [113]张晟,郑坚,刘婷婷,等.三峡水库入库支流水体中营养盐季节变化及输出[J].环境科学,2009, 30(1): 58-63.
    [114]任春坪,钟成华,邓春光,等.三峡库区重庆主城江段营养状态变化分析[J].三峡环境与生态,2010,32(4):14-18.
    [115]彭绪亚,张鹏,贾传兴,.重庆三峡库区农村生活污水排放特征及影响因素分析[J].农业环境科学学报,009,29(4):758-763
    [116]杜军,张宏华,李劲松.三峡库区重庆段富营养化物质氮磷污染负荷比较研究[J].2004,23(1): 121-125.
    [117]张永跃.三峡库区重庆段水体中营养盐负荷与藻类调查分析[D].重庆大学, 2006.
    [118] Li, F.Q., Ye, L., Liu, R.Q., et al., Dynamics of main nutrient input to Xingjian Bay of the Three-Gorges Reservoir[J]. Acta Ecologica Sinica, 2008,28(5):2073-2079.
    [119]张智,兰凯白占伟.蓄水后三峡库区重庆段污染负荷与时空分布研究[J].生态环境2005, 14(2): 185-189.
    [120]钟成华.三峡水库对重庆段水环境影响极其对策[D].西南师范大学出版社,2004.
    [121]三峡库区消落带污染特性及水环境影响研究[博士论文].重庆大学,2007.
    [122]三峡库区腹心带消落区土壤氮磷含量调查及其释放潜力研究[硕士论文],重庆大学,2009.
    [123]贾海燕,雷阿林,叶闽,等.三峡水库水位消落区典型土壤磷释放特征及其环境效应[J].水科学进展,2007,18(3): 433-438.
    [124]国家环境保护总局编《.水与废水监测分析方法》[M].4版.北京:中国环境科学出版社.2002:
    [125]张文彤,董伟.SPSS统计分析基础高级教程[M].北京:高等教育出版社,2004.
    [126]杨虎,刘琼荪,钟波.概率论与数理统计[M].重庆:重庆大学出版社,2007.
    [127]余立华,李道季,方涛等.三峡水库蓄水前后长江口水域夏季硅酸盐、溶解无机氮分布及氮比值的变化[J].生态学报,2006,26(9):2817-2826.
    [128] Turner R E , Rabalais N N. Changes in Mississippi River water quality this century- implications for coastal food webs.Bioscience,1991,41:140-147.
    [129]柴超,俞志明,宋秀贤,等.三峡工程蓄水前后长江口水域营养盐结构及限制特征[J].环境科学,2007,27(1): 64-69.
    [130]张智,曾晓岚,王利利,等.泥沙沉降对水库富营养化指标的影响[J].中国环境科学, 2007, 27(2):213-216.
    [131]邓聚龙.灰色系统基本方法[M] .武汉:华中理工大学出版社,1987.
    [132]王利利.水动力条件下藻类生长相关影响因素研究[硕士论文].重庆大学, 2006.
    [133]季铁军.SUFR反应器流型分析及导流参数对其脱氮除磷效果的影响研究[博士论文].重庆大学, 2007.
    [134]蒋文清.流速对水体富营养化的影响[硕士论文].重庆交通大学.2009.
    [135] Tung C T, Lee Y J. The innovative performance evaluation model of grey factor analysis: A case study of listed biotechnology corporations in Taiwan[J]. Expert Systems with Applications, 2010, 37(12):7844-7851.
    [136] Lasfar S, Monette F, Millette L,et al., Intrinsic growth rate: A new approach to evaluate the effects of temperature, photoperiod and phosphorus–nitrogen concentrations on duckweed growth under controlled eutrophication[J] .Water Res.,2007,41: 2333-2340.
    [137]柴小颖.光照和温度对三峡库区典型水华藻类生长的影响研究[硕士论文].重庆大学,2009.
    [138]孙小静,秦伯强,朱广伟.蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放[J].中国环境科学, 2007,27(3): 341-345
    [139]吴珊,张晓萍,张福萍.两种藻类储磷释磷过程与生长情况对比[J].河海大学学报(自然科学版), 2009,12(1):12-16
    [140] Ambrose R B., Wool T A., Connolly J P, et al. WASP7.2: A Hydrodynamic and Water Quality Model. EPA/600/3-87/039, U.S. Environmental Protection, Agency, Athens, GA.
    [141]绕群.大型水体富营养化数学模拟的研究[D].河海大学,2001.
    [142]邓春光.三峡库区富营养化研究[D].中国环境科学出版社,2003.
    [143]罗固源,吴松,肖华等.风车草泡板型浮床在污染河水中的脱氮试验[J].重庆大学学报, 2008, 31(10):1169-1173.
    [144]罗固源,韩金奎等.美人蕉和风车草人工浮床治理临江河试验研究[J].水处理技术
    [145]郑剑锋,罗固源,许晓毅等.低温下生态浮床净化重污染河水的研究[J].中国给水排水,2008, 24(21): 17-20.
    [146]罗固源,郑剑锋,许晓毅等.4种浮床栽培植物生长特性及吸收氮磷能力的比较[J].环境科学学报,2009, 29(2):285-290。
    [147]罗固源,卜发平,许晓毅等.生态浮床的去污效果与机理研究[J].四川大学学报(工程科学版),2009,41(6):108-113.。
    [148]罗固源,卜发平,许晓毅,等.温度对生态浮床系统的影响[J].中国环境科学,2010,30(4): 499-503.
    [149]罗固源,肖华,韩金奎.人工浮床处理重污染河水的效能分析[J].重庆大学学报,2008,31(8): 932-936.
    [150]韩金奎.人工浮床技术在三峡库区重污染次级河流治理中的技术研究[硕士论文].重庆大学, 2008.
    [151]彭永臻,张自杰.活性污泥法处理系统中温度对动力学常数的影响[J].环境科学学报,1990, 10(2): 226-232.
    [152] Obaja O, MacéS, Costa J, et al. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor [J]. Bioresource Technology, 2003, 87:103-111.
    [153] Panswad T, Doungchai A, Anotai, J, et al. Temperature effect on microbial community of enhanced biological phosphorus removal system [J]. Water Research, 2003, 37:409-415.
    [154] Feng H, Hu F, Mahmood Q, et al. Effects of temperature and feed strength on a carrier anaerobic baffled reactor treating dilute wastewater [J]. Desalination, 2009(239):111-121
    [155] Soda S, Ike M, Ogasawara Y, et al. Effects of light intensity and water temperature on oxygen release from roots into water lettuce rhizosphere [J]. Water.Res., 2007, 41:487-49.
    [156]许保玖,龙腾锐.当代给水与废水处理原理(第2版)[M].北京:高等教育出版社, 2000, 49- 111.
    [157]戚以政,汪叔雄.生物反应动力学与反应器[M].北京:化学工业出版社,2007:142-262.
    [158]付贵萍,吴振斌,任明迅,等.复合垂直流湿地反应动力学及水流流态的研究[J].中国环境科学, 2001,21(6):535-539
    [159]陆琦.人工湿地系统水力学优化设计研究[硕士论文].浙江大学,2005.
    [160] Séguret F, Racault Y and Sardin M.Hydronynamic behaviour of full scale tricking filters. Water Res. 2000, 34(5):1551-1558.
    [161] Saravanathamizhan, R., Paranthaman, R., Balasubramanian,et al.. Residence time distribution in continuous stirred tank electrochemical reactor. Chem.Eng. J.2008, 142, 209-216.
    [162] Jenkins, G.A and Greenway M.The hydraulic efficiency of fringing versus banded vegetation in constructed wetlands. Ecol. Eng., 2005, 25, 61-72.
    [163] Mu?oz P,Drizo A, Hession, W C. Flow patterns of dairy wastewater constructed wetlands in a cold climate[J]. Water Res. 2006, 40, 3209-3218.
    [164] Suliman F, Futsaether C, Oxaal U. Hydraulic performance of horizontal subsurface flow constructed wetlands for different strategies of filling the filter medium into the filter basin[J]. Eco.Eng., 2007, 29:45-55.
    [165] Brix, H.Do macrophytes play a role in constructed treatmentwetlands?[J]. Water Sci. Technol., 1997, 35 (5):11–17.
    [166] Ye F, Li Y. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities [J]. Ecol.Eng, 2009, 3:1043-1050.
    [167] Li Y Z, He Y L, Ohandja, D G et al. Simultaneous nitrification–denitrification achieved by an innovative internal-loop airlift MBR: Comparative study[J]. Bioresour.Technol.2008, 99, 867- 5872.
    [168] Kyambadde, J., Kansiime, F., Gumaelius, L, et al. A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate[J]. Water Res., 2004, 38, 475–485.
    [169] Quintana M., Colmenarejo M F, Barrera J,et al. Removal of phosphorus through struvite precipitation using a by-product of magnesium oxide production (BMP): Effect of the mode of BMP preparation[J]. Chem.Eng. J., 2008, 136, 204-209.
    [170] Chung A.K.C,Wu Y, Tam NFY,et al. Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater[J]. Ecol. Eng.,2008,32, 81–89.
    [171] Zhou S,Hosomi M. Nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water treatment using forage rice in Japan[J]. Ecol. Eng.,2008 32,147–155.
    [172]赵建.人工湿地对污染河水的净化效果及机理研究[硕士论文].河海大学,2006.
    [173] Yeh T Y, Ke T Y, Lin Y L. Algal Growth Control Within Natural Water Purification Systems: Macrophyte Light Shading Effects[J] .Water, Air, & Soil Pollution, 2011, 214(1-4):575-586.
    [174] Nakai S, Inoue Y, HosomiM, et al. Growth Inhibition of Blue-green Algae by the Allelopathic e. ects of Macrophytes[J].Wat Sci and Technol, 1999, 39 (8): 47-53.
    [175]唐萍,吴国荣,陆长梅,等.太湖水域几种高等水生植物的克藻效应[J].农村生态环境, 2001, 17 (3) :42~44 ,47 .
    [176]鲜啟鸣,陈海东,邹惠仙,等.四种沉水植物的克藻效应[J].湖泊科学,2005,17(1):75-80.
    [177] Lürling M, Geest G,Scheffer M. Importance of Nutrient Competition and Allelopathic Effects in Suppression of the Green Alga Scenedesmus obliquus by the Macrophytes Chara, Elodea and Myriophyllum [J]. Hydrobiologia, 2006, 556(1): 209-220.
    [178]汤仲恩,种云霄,吴启堂,等. 3种沉水植物对5种富营养化藻类生长的化感效应[J].华南农业大学学报,2007,28(4):42-46.
    [179] Zhang C,Fu S. Allelopathic effects of eucalyptus and the establishment of mixed stands of eucalyptus and native species [J]. Forest Ecology and Management, 2009, 258:1391-1396.
    [180] Zhang T T, Zheng C Y, Hu W, et al. The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa [J]. Journal of Applied Phycology, 2010, 22(1): 71-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700