我国不同生态型湖泊沉积物有机质赋存形态及其与重金属相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊富营养化是当今世界各国面临的水污染问题之一。在我国,长江中下游地区浅水湖泊已呈现不同的富营养化状态,其中有机质的富集是湖泊富营养化的重要特征。有机质成分极其复杂,其赋存形态影响着污染物的迁移转化。在富营养化湖泊中重金属是一类重要的污染物,有机质控制着重金属的迁移和生物毒性。有机质来源不同(土壤、河流、湖泊、垃圾滤液),其组成和结构不同,对重金属的结合作用也存在差异。因此,开展对不同生态类型、不同富营养化程度湖泊沉积物中有机质赋存形态及其与重金属相互作用的研究具有重要意义。
     本研究工作是国家973项目的子课题——富营养化湖泊复合污染机理及生态毒理效应(2008CB418204)。利用紫外-可见光谱、溶解有机碳分析仪、元素分析、傅立叶变换红外、荧光光谱、质子核磁共振等现代分析方法对藻型湖泊(太湖)、草藻型湖泊(南四湖)和草型湖泊(白洋淀)沉积物中不同来源的有机质进行存在形态、结构和组成研究;利用三维荧光光谱和质子核磁共振研究了湖泊沉积物溶解性有机质(DOM)中不同组分(类富里酸、类蛋白)与重金属的配位作用,其主要研究结果如下:
     1.湖泊富营养化渐进过程的标志就是营养盐的含量变化。同一湖泊不同采样点(不同区域)沉积物中积累的营养物质不同,反映了人类活动和自然因素的变化对湖泊整个生态环境的影响。根据单项污染指数和内梅罗综合指数分别对太湖、南四湖和白洋淀上覆水体进行评价,表明南四湖富营养化最为严重。在高营养盐浓度下,氮、磷营养盐结构对不同生态型湖泊富营养化有重要影响。通过对氮磷比值分析,太湖和白洋淀采样点水体基本均处于磷限制状态。南四湖水体处于氮磷共同限制状态。说明三个湖泊可以通过降低输入含氮磷污染物总量,来缓解富营养化。
     论文对三个湖泊沉积物中重金属总量、形态进行了分析。采用地积累指数法对重金属总量进行评价,结果表明,三个湖泊沉积物中重金属Cu污染程度为极强度污染,Zn和Pb为无污染或轻污染。三个湖泊中Zn以残渣态和铁锰氧化态为主。Cu以残渣态和有机物-硫化物结合态为主。说明随着沉积物有机质矿化分解及环境条件的改变,沉积物中Cu、Zn等重金属可能发生形态转化,具有较高的潜在生态风险。
     2.应用物理分组和化学提取方法,研究了三种不同生态类型的湖泊沉积物中总有机质(OM)、轻组有机质(LFOM)和重组有机质(HFOM)、活性有机质(LOM)、溶解性有机质(DOM)的赋存特征。结果表明,湖泊沉积物中LFOM含量均较低(<2%),说明三个湖泊11个沉积物有机质中以难分解的重组有机质为主。三个湖泊沉积物中的对照区轻组有机质和活性有机质含量均大于养殖区和污水排放区,溶解性有机质呈相反趋势。说明对照区中有机质与养殖区和污水排放区相比可能易矿化分解。
     3.紫外-可见吸收光谱研究结果表明:三个湖泊沉积物中E4/E6比值均大于3.5,说明DOM均为腐殖化程度不高、芳构化程度低、分子量不大。DOM中以富里酸为主,而腐殖酸含量不多。太湖沉积物DOM腐殖化程度、芳构化程度、分子量最低,白洋淀次之,南四湖最高。三个湖泊不同采样区沉积物中DOM紫外光谱特性不同,但总的趋势是对照区沉积物DOM腐殖化程度、芳构化程度、分子量最低。元素分析及红外图谱(FTIR)表明:三个湖泊对照区、养殖区、水生植物区沉积物DOM中含有相似的官能团,主要为:-COOH、胺类、醇、糖类及脂类等。养殖区还含有脂肪类、胺类等特征官能团。水生植物区还含有-NH4+等特征官能团。由于不同湖泊污染来源的不同,因此不同湖泊污水排放区沉积物DOM中含有特征官能团不同。太湖沉积物DOM中含有腈、有机卤化物等;南四湖有炔烃等;白洋淀有脂环、羧酸二聚体等。质子核磁共振(1HNMR)分析结果表明:不同生态类型湖泊、不同来源沉积物DOM中烷基链烃支链相对含量差异较大。但总的趋势是,养殖区和污水排放区沉积物DOM中烷基链烃含量相对较高,支链较长,分支少。对照区烷基链烃含量相对少,支链较短,分支较多。湖泊类型、污染历史、污染来源、污染程度等均为导致沉积物DOM中烷基链烃支链相对含量和结构的差异的主要因素。
     4.三个湖泊不同来源的沉积物中DOM的荧光光谱特性表明,11个沉积物样品DOM分别为紫外类富里酸、可见类富里酸和类蛋白,其中以类富里酸为主。据荧光指数f450/500推断,太湖和南四湖对照区沉积物中DOM的主要来自生物源。养殖区、污水排放区及水生植物区既有陆源也有生物源。白洋淀对照区沉积物中DOM以陆源输入为主,养殖区以生物源为主,污水排放区和水生植物区主要来自陆源和生物源。同步荧光光谱表明,白洋淀和南四湖沉积物DOM的腐殖质类物质较太湖而言,腐殖化程度高、结构复杂。三维荧光光谱(3DEEM)显示,沉积物DOM含有类富里酸(可见区类富里酸、紫外区类富里酸)和类蛋白(类色氨酸和类酪氨酸)荧光峰。三个湖泊除对照区外,养殖区、污水排放区和水生植物区均表现出极强的类蛋白荧光。荧光强度比值r(B,C)比值在未受污染的对照区为1左右,而受污染严重的水生植物区、养殖区和污水排放区r(B,C)比值在1.5-2.5。r(B,C)可用来指示湖泊受污染程度。三个湖泊采样点r(A,C)值为1.5-3.0,表明沉积物DOM的来源、组成都存在较大差异。
     5.荧光光谱特征表明,随Cu (Ⅱ)浓度增加,DOM中富里酸或类蛋白荧光强度降低。质子核磁共振谱图证实,Cu (Ⅱ)与DOM中糖类官能团、醌基、羟基或酚基发生配位作用,形成复杂的螯合物。应用修正型Stern-Volmer方程计算的Cu (Ⅱ)配位的荧光基团比例(f)和配位稳定常数(K)显示,DOM中可见光区类富里酸物质对Cu (Ⅱ)配位能力最强,类蛋白物质次之,紫外光区类富里酸物质最弱。溶液pH是影响Cu (Ⅱ)与DOM中富里酸和类蛋白形成配位化合物的稳定性主要因素之一。
     综上,不同生态型富营养化湖泊,不同来源的沉积物DOM含量、组分及结构性质存在较大差异。可以通过红外光谱、紫外-可见吸收光谱、荧光光谱、核磁共振等现代仪器分析手段,分析其结构组成。根据特征官能团推断污染来源;根据其结构腐殖化程度、分子量大小、支链多少等推断其分解速率,根据荧光光谱参数r(B,C)和类蛋白荧光推断指示湖泊受污染程度;根据其官能团与重金属的螯合稳定性,推断沉积物中重金属释放的可能性。沉积物DOM的光谱特性与沉积物来源、污染程度、分解速率等的定量关系,以及DOM特征官能团与重金属螯合的定量关系是今后研究的方向。
Eutrophication is one of serious water pollution problems that occur throughoutthe world. In China, some shallow lakes along the middle and lower reaches of theYangtze River are in the state of eutrophication. Organic matter enrichment is theimportant feature in lake eutrophication. In sediments, organic matter is the key factorto control the environmental behaviors of heavy metal pollutant because complexationbetween heavy metals and organic matter controls heavy metal migration andbiological toxicity. Therefore, the investigation on distribution of organic matter andits complexation with heavy metals in different ecological lakes is important to fightwater pollution.
     This study is one part of a key project (2008CB418204) financed by ourgovernment. Characters, structures and sources of dissolved organic matter (DOM) inthree different ecology lakes (Taihu Lake, Nansihu Lake and Baiyangdian Lake) wereanalyzed, respectively, using UV spectroscopy, elemental analysis, FTIR,1HNMRand fluorescence spectra. The main findings are as following:
     1.The water quality is worse than that required by Grade V in Taihu Lake,Nansihu Lake and Baiyangdian Lake. The concentrations of total nitrogen (TN) andtotal phosphorus (TP) are high in water and sediment in Nansihu Lake. This resultshows that it is important to control internal pollution sources. Under higher nutrientconcentration conditions, the mass ratio of nitrogen to phosphorus (N/P) impacts onlake eutrophication. Phosphorus is a limited factor of the eutrophication features inTaihu Lake and Baiyangdian Lake. Nitrogen and phosphorus are limited factor inNansihu Lake. Some measures should be carried out to reduce nitrogen andphosphorus pollutants, which could ease the eutrophic process in Taihu Lake,Nansihu Lake and Baiyangdian Lake. In addition, sedimentary heavy metal pollutionwas also studied through Tessie extraction procedure. The index of geo-accumulation(Igeo) was applied to evaluate the heavy metal pollution in the sediment. Our results show that Cu pollution is serious in the Taihu Lake, in Nansihu Lake and BaiyangdianLake. Zn mainly exists in residual fraction and the iron and manganese oxidationstate fraction ranks the second. Cu mainly exists in residual fraction and the organicthe sulfide phase fraction ranks the second. The results also reveal that Cu and Zn areeasily mobile and could bring ecological risk to the water ecological system.Anthropogenic activities contributed to potential sources of heavy metals.
     2.Distribution of total organic matter (OM), light fraction organic matter(LFOM),heavy fraction organic matter(HFOM),labile organic matter(LOM) and DOM in thesediments from three different shallow lakes (Taihu Lake, Nansihu Lake andBaiyangdian Lake ) were investigated by using physical separation methods. Theresults show that the light fraction organic matter (LFOM) is significantly low in allthe sediments. Heavy fraction organic matter (HFOM) is the dominant class amongthe organic matter compositions in Taihu Lake, Nansihu Lake and Baiyangdian Lakesediments. These results demonstrate that the persistent organic compounds accountfor most of the organic matters, and that light fraction organic matter was completelydecomposed.
     3.Different fractions of DOM have different origin. The hydrogen/carbon andoxygen/carbon ratios decrease from sanitary area, aquatic area, culture area to dirtywater area. These results suggest that the less the ratio, less the polarity, the morestability. The analyses of FTIR and1HNMR also show that DOM of different sourcehas different structural characterization. DOM in culture area and in dirty water iscomposed of the aromatic carbon, aliphatic amines, carboxylic acid dimmers andalkyl chain hydrocarbon material.
     4.DOM in Taihu Lake, Nansihu Lake and Baiyangdian Lake sediments were alsoinvestigated by using fluorescence spectroscopy. Fluorescence index (f450/500) could beused to distinguish sources. (f450/500) values ranged 1.4-1.9 in Taihu Lake, NansihuLake and Baiyangdian Lake sediments. This result indicated biology sources as wellas land sources of sediments DOM. Fluorescence finger print technique was used tocharacterize dissolved organic matter (DOM) in sediments from different sources.Two types of DOM fluorescence signals were observed in sediments: humic-like fluorescence and protein-like fluorescence. The intensities of both of protein-likefluorescence distinctly increase in culture area and in dirty water area. The values ofr(B,C) is 1 in sanitary area. The values of r(B,C) is 1.5-2.5 in culture zone and dirtywater area, revealing that this index is a indicator degree of lake contamination.Fluorescence finger print technique is potential tool to determine the sources of DOMin polluted lakes.
     5.Fluorescence spectrum technique has advantages of high sensitivity, andquick-and-easy detection and has widely applied to characterize the dissolved organicmatter (DOM). For better understanding the fluorescence characteristics of DOM inBaiyangdian Lake of China, fluorescence emission spectroscopy andthree-dimensional excitation emission matrix fluorescence spectroscopy (3DEEM)were used. Fluorescence quenching titration and1H NMR were used to investigate theinteraction between Cu (Ⅱ) and DOM. The1H NMR results show that DOM inBaiyangdian Lake is mainly composed of large amount of carbohydrate. Influorescence spectra obtained in our study, two fulvic acid-like fluorescence peaks(peak A and peak C) and protein-like (peakB) were observed. Compared with visiblefulvic-like, protein-like fluorescence intensity is high. The intensity for individualpeak A, B and C decreases as concentrations of Cu (Ⅱ) increase. DOM-Cu (Ⅱ)complexation constants and1H NMR suggest that the fluorescent groups interactmore strongly with Cu (Ⅱ) .
引文
[1]中华人民共和国行业标准[SL261-98]. 1998.
    [2]黄文钰,吴延根,舒金华.中国主要湖泊水库的水环境问题与防治建议[J].湖泊科学,1998,10(3):83-90.
    [3]国家环境保护总局编.“三河”“三湖”水污染防治计划及规划[M].北京:中国环境科学出版社,2000.
    [4]秦伯强.我国湖泊富营养化及其水环境安全[J].科学对社会的影响,2007,3:17-23.
    [5]王道洪,窦鸿身,颜京松,舒金华,张玉书.中国湖泊资源[M].北京:科学出版社,l989,49-60.
    [6]陈静生,王飞越.关于水体沉积物质量基准问题[J].环境化学,1992,11(3):60- 70.
    [7]汤鸿霄.环境科学中的化学问题一环境水质学中的几个化学前沿问题[J].化学进展,2000,12(4): 415-422.
    [8] Ross D J. Measurement of microbial biomass C and N in grassland soils byfumigation-incubation procedures: Influence of inoculums size and control [J]. SoilBoil. Biochem.1990, 22(6), 289-294.
    [9]Vance E D, Brookes P C, Jenkinson DS. An extraction method for measuring soilmicrobial biomass [J]. Soil Biol Biochem,1987,19:703-707.
    [10]马英军,万国江.湖泊沉积物-水界面微量重金属扩散作用及其水质影响研究[J].环境科学, 1999, 20(2): 7-11.
    [11]王伟伟,吴宏海,郭杏妹.水体沉积物中有机质结构特征与毒害有机物的吸附模式研究[J].海洋环境科学,2 008, 27(6): 566-567.
    [12]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报, 2004,15(6):1084-1085.
    [13]朱广伟,陈英旭.沉积物中有机质的环境行为研究进展[J].湖泊科学, 2001, 13(3): 275-276.
    [14]Wallschlager D, Desai M V M, Spengler M. How humic substances dominatemercury geochemistry in contaminated floodplain soils and sediments [J]. J EnvironQual, 1998, 27(5): 1044-1054.
    [15]朱立中,徐霞,胡松,邹忠利.西湖底泥对水中苯胺、苯酚的吸附性能及机理[J].环境科学,2000, 20(2): 28-31.
    [16]陈颖,袁旭音.河口湿地沉积物中腐殖酸含量对外源重金属分布的影响研究[J].水土保持学报,2008, 22(4): 185-189.
    [17]蒋展鹏,廖孟钧.腐殖质及其在环境污染控制中的作用[J].环境污染与防治,1990, 12(3): 24-23.
    [18]Ghosh R, Banerjee D K. Complexation of trace metals with humic acids from soil,sediment and sewage[J]. Chemical Speciation and Bioavailability, 1997, 9(1):15-19.
    [19]汪斌,庄严,谭建新.低浓度富里酸对底泥中重金属铅的生物有效性影响[J].农业环境科学学报, 2006, 25(5):1182-1187.
    [20]范文宏,陈俊,王琼.胡敏酸对沉积物中重金属形态分布的影响[J].环境化学,2007, 26 (2) :2242227.
    [21]蒋煜峰,袁建梅,卢子扬.腐殖酸对污灌土壤中Cu ,Cd ,Pb ,Zn形态影响的研究[J].西北师范大学学报, 2005, 41 (6) :42-46.
    [22]吴丰昌,王立英,黎文.天然有机质及其在地表环境中的重要性[J].湖泊科学,2008,(1): 20.
    [23] Stone M and Droppo I G. Distribution of lead, copper and zinc insize-fractionated river bed sediment in two agricultural catch metals of southernontario[J].Canada Environ Pollut,1996, 93(3): 353-362.
    [24]曹军,李本纲,徐福留.水体与土壤中天然有机物与铜的络合作用及其影响因素[J].环境科学学报, 2001, 21(6):726-730.
    [25]杨志峰,崔保山,黄国和.黄淮海地区湿地水生态过程、水环境效应及生态安全调控[J].地球科学进展, 2006, 21(11):1119-1126.
    [26]Scheffer M, Hosper S H, Meier ML, Moss B. Alternative equilibria in shallowlakes [J]. Trends in ecology and evolution, 1993, 8:275-279.
    [27] Scheffer M. Ecology of Shallow Lakes [M]. Dordretcht (Netherlands): KluwerAcademic Publishers, 1998: 13-31.
    [28]Jeppesen E, Jensen J P, Sndergaard M, et al. Trophic dynamics in turbid andclearwater lakes with special emphasis on the role of zooplankton for water clarity[J].Hydrobiologia, 1999, 408/409: 217–231.
    [29]李英杰.浅水湖泊生态类型及其生态恢复研究[D].中国矿业大学,2008,3.
    [30] Marten Scheffer. Alternative Attractors of shallow lakes [J].The Scientific World.2001, 1: 254-263.
    [31]Marten S, Jonathan A. Catastrophic shifts in ecosystems[J]. Nature, 2001, 43(11):591-596.
    [32]Martin T. Eutrophication and restoration of shallow lakes concept of stableequilibria revisited [J]. Hydrobiologia, 2003, 506-509.
    [33] Graeme S. Multiple states in river and lake ecosystems [J]. The Royal Society,2002, 357: 635-345.
    [34] Hasler A D. Demonstration of the tangonistic action of large aquatic plants onalgae and rotifers [J]. Ecology, 1949: 346-359.
    [35] Jeppesen E. Fish manipulation as a lake restoration tool in shallow, eutrophic,temperate lakes: threshold levels, long-term stability and concussions[J].Hydrobiologia, 1990, 200/201:219-228.
    [36]肖兴富,李文奇,孙宇,等.沉水植物对富营养化水体的净化效果研究明[J].中国环境管理干部学院学报, 2005 , 15 ( 3 ): 62-65.
    [37]黄蕾,翟建平,王传瑜,等.4种水生植物在冬季脱氮除磷效果的试验研究[J].农业环境科学学报,2005 , 24 ( 2 ) : 366-370.
    [38]陈海东,邹惠仙,等.四种沉水植物的克藻效应[J]. Lake Sci ,2005,17(1):75-80.
    [39]Kononova M M. Soil organic matter, its nature, its role in soil formation and infertility [M]. London: Pergamon Press. 1964:5-20.
    [40]Stevenson F. Humus chemistry: genesis, composition, reactions [M]. Beijing:Beijing Agricultural University Press, 1 982:l-15.
    [41] Brandy N, Well R. The nature and properties of soi1s[M].NewJersey :PrenticeHa11,1999:446-489.
    [42]Gregorich E G. Biological attributers of soil quality[J]. In: Gregorich EG andCarter MR eds. Soil Quality for Crop Production and Ecosystem Health.Development in Soil Science 25, The Netherlands: Elsevier, 1997:81-113.
    [43]Stevenson F J, Xa R J. Humus Chemistry: Genesis, Composition, Reactions [M].Beijing: Beijing Agricultural University Press, 1994:1-15.
    [44]MICHALZIK B. Modelling the production and transport of dissolved organiccarbon in forest soils[J]. Biogeochemistry, 2003, 66:241-264.
    [45]梁重山,党志.土壤有机质提取方法的研究进展[J].矿物岩石地球化学通报,2001, 20(1):58-61.
    [46]Kuwatsuka S, Tsutsuki K.Cation bingding by humic substances[C], 1978, 24:337.
    [47]Blair G, Lisle L. Labile soil carbon fractions based on the degree of oxidation andthe development of a carbon management index for agricultural systems[J].AusJ,1995,46: 1459- 1466.
    [48]Turchenek L W, Oades J M. Fractionation of organo-mineral complexes bysedimentation and density techniques [J]. Geoder-ma, 1979, 2 1:311-343.
    [49]Christensen BT. Physical fraction of soil and organic matter in primary particlesize and density separates [J]. Adv Soil Sci, 1992, 20:2-90.
    [50]Gregorich E G, Ellert B H. Soil Sampling and Methods of Analysis[M]. BocaRaton, FL: Lewis Publishers, Division of CRC Press, 1993, 397-405.
    [51]Fischer T. Winterweizen and Winterroggen infertilizer mineralization functionof die mien-Biomass and dynamics Bodes [J] .ARCH ACKER, 2003, 37: 181-189.
    [52]倪进治,徐建民,谢正苗.土壤轻组有机质[J].环境污染治理技术与设备,2000,1( 2) : 58- 64.
    [53]王晶,谢宏图.土壤活性有机质的内涵和现代分析方法概述[J].生态学杂志.2003,22(6):109-112.
    [54]AnderSon TH, application of eco-physiological quotients on microbial biomassesfrom soils of different cropping histories [J]. Soil biology, 1990, 22:251-255.
    [55]赵成大,郑载兴.物质结构[M].高等教育出版社,2010:382.
    [56]邰杰传.土壤有机质[J].土壤学报,1979,(3):226-133.
    [57]蔡金娟,史衍玺.不同腐殖酸组分对湖泊沉积物中重金属释放的影响[J].水土保持学报,2006.20(1):108-110.
    [58]吴景贵,席时权,姜岩.红外光谱在土壤有机质研究中的应用[J].光谱学与光谱化学,1998,18(1):52-57.
    [59]Wershaw R L, Leenheer J A, Kennedy K. FTIR for elucidation of degradationpathways during natural litter decomposition and compostion [J]. Soil Science, 1996,161:667~679.
    [60]卓苏能,文启孝.核磁共振技术在土壤有机质研究中应用的新进展[J].土壤学进展,1994,22(6):26-34.
    [61]Ingrid K. NMR spectroscopy as a tool in soil organic matter studies [J].Geoderma,1997, 80: 243-270.
    [62]Hogberg P, Ekblad A. Substrate-induced respiration measured in situ in a C3-plantecosystem using of C4-sucrose [J].Soil Biology and Biochemistry,1996,28:1131-1138.
    [63]Gregorich E G, Drury C F. Fertilization effects on protected light fraction organicmatter [J].Soil Science Society American Journal, 1997, 61 :482-484.
    [64]傅平青.水环境中的溶解有机质及其与金属离子的相互作用—荧光光谱学研究[D].中国科学院研究生院, 2004:33-52.
    [65]陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响[J].植物营养与肥料学报, 1998,4(3):201-210.
    [66]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999, 18(3):32-38.
    [67]Wang G, Gu X-G, Gao S-F etal. Adsorption of copper and cadmium on soils asaffected by water-soluble products of three organic materials[J]. Acta Pedol Sin(土壤学报), 1999,36(2):179-187(in Chinese).
    [68]Wu L H, Lou Y M, LuR H, etal. Organic control for remediation of coppercontaminated soil [J]. Release of copper in a copper treated red soil as influenced bydissolved organic matter and EDTA. Soil, 2000,32(2):62-66(in Chinese).
    [69] Kalbitz K, Wennich R. Mobilization of heavy metal and in Polluted wetland soiland its dependence on dissolved organic matter[J]. SciTotalEnviron, 1998, 209:27-39.
    [70]李玉,愈志明,曹西华,等.重金属在胶州湾表层沉积物中的分布与富集[J].海洋与湖沼, 2005, 36(6):580-589.
    [71]陈静生,王飞越等.中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J].环境化学,1996,15(1):13.
    [72]Gibbs R J.Transport phases of transition metals in the Amazon and Yukon river,[J] Giol. Soc. Am. Bull., 1977, 88 : 829-843.
    [73]Stumm W, Brauner P A. Chemical speciation in chemical oceanography[M].Academic Press, New York, 1975 : 173-279.
    [74]Forstner U. Metal pollution in aquatic environment [M]. Second Edition,1981:201-220.
    [75]Tessier A. Sequential extraction procedure for the speciation of particulate tracemetals [J] .Analytical Chemistry, 1979, 51(7) :844-851.
    [76] Maher W A. Evaluation of a sequential extraction scheme to study associationsof trace elements in estuarine an oceanic sediments [J]. Environ. Contam.Toxicol.1984, 32 :339-344.
    [77]Quevauviller P. Operationally defined extraction procedures for soil and sedimentanalysis Standardization [J].Trends in Ana1Chem.1998, 17 (5): 289-298.
    [78]Wiese S B. A recent history of metal accumulation in the sediments of theThames Estuary, United Kingdom [J]. Estuaries, 1997, 20 (3) : 483-493.
    [79]Fytianos K, Greece N. Speciation of elements in sediment samples collected atLake Volvi and Koronia, North Greece[J]. Environment International, 2003, 30 (1):11-17.
    [80]袁旭音,王爱华,许乃政.太湖沉积物中重金属的地球化学形态及特征分析[J].地球化学,2004,33(6):611-618.
    [81]Dezileau L, Pizarro C. and Rubio M.A. Sequential extraction of iron in marinesediments from the Chilean continental margin [J]. Marine Geology, 2007, 241:111-116.
    [82]杨春霖,欧阳通,张珞平.厦门西海域表层沉积物中重金属的赋存形态[J].厦门大学学报(自然科学版), 2007,46(1):89-93.
    [83]Han F X, Hargreaves J A. Accumulation, distribution and toxicity of copper insediments of catfish ponds receiving periodic copper sulfate applications [J]. Journalof Environmental Quality, 2001, 30 (3): 912-919.
    [84]Jones R P, Hassan S M. Influence of contact duration on sediment-associatedcopper fractionation and bioavailability [J]. Ecotoxicology and Enviromental Safety,2008, 71 (1):104-116.
    [85]Sehulten H. State of the Art structure Concept for humic substances [J]. Natureswissensehan, 1993,80:2-30.
    [86]Stevenson F. Humus Chemistry:genesis, composition, reactions, wiley[J].NewYork, 1994, 236-257.
    [87]朱燕婉,陈长清.腐殖酸—锌络合物稳定性的研究土壤学报[J].1982,l9(l):55-57.
    [88]李克斌,刘维屏等.重金属离子在腐殖酸上的吸附研究[J].环境污染与防治,1997,17(l):9-11.
    [89]杨亚提,朱一平.土壤胡敏酸与铜离子络合反应及吸附过程热力学特征的研究[J].土壤学报,1997,34(4):375-380.
    [90]Esteves D S. Biodegradability of dissolved matter [J].1995, 27(l):110-128.
    [91]Everett C R. High-pressure size exclusion chromatography analysis of dissolvedorganic matter isolated by tangential-flow ultrafiltration[J]. Limnol.oceanogr,1999,14(5) :1316-1322.
    [92]ShanleyJ B, SehusterP F. Mereury on the move during snowmelt in Vermont [J].EOS, 2002, 83(5):45-48.
    [93] Andren A W, HarrissR C. Observations on the association between mercury andorganic matter dissolved in nature waters [J]. Geo Chim. Acta, 1995.39:1253-1257.
    [94]吴文富,陆安娜,费清培.太湖流域气候资源研究[M].北京:气象出版社,1993.
    [95]太湖流域管理局水文处.太湖流域片水情年报[R]. 2007.
    [96]黄漪平主编.太湖水环境及其污染控制[M].北京:科学出版社, 2001: 1-14.
    [97]Wang H, Wang Ch X, Wu W , et al. Persistent organic pollutants in water andsurface sediments of Taihu Lake in China and risk assessment[J]. ChemosPhere, 2003,50: 557-56.
    [98]陈荷生.太湖的富营养化及N、P污染的治理[J].水文水资源, 2001, 22(3):17-20.
    [99]胡明,刘鸿志,任隆江.太湖富营养化现状及防治对策[J].中国环境管理,1998, (6): 13-15.
    [100]朱广伟.太湖富营养化现状及原因分析[J].湖泊科学, 2008, 20(l):21-26.
    [101]沈吉,张恩楼,张祖陆.山东南四湖成湖时代浅析湖泊科学[J]. 2000,12(1):91-93.
    [102]张祖陆,孙庆义,彭利民.南四湖地区水环境问题探析湖泊科学[J].1999.11(1):86-90.
    [103]杨东海,张晴,潘勇伟.山东省南四湖及其流域环境特征江苏环境科技[J]. 2004,增刊:120-123.
    [104]年跃刚,宋英伟,李英杰等.富营养化浅水湖泊稳态转换理论与生态恢复探讨[J].环境科学研究, 2006,19(1):67-70.
    [105]王俊德.白洋淀环境管理与规划研究[J].河北水利水电技术,1999, 23(4):26-27.
    [106]时晓飞,徐斌.白洋淀水环境保护成分分析[J].河北水利水电技术,2003,1:110-107.
    [107]王为东,王亮,聂大刚.白洋淀芦苇型水陆交错带水化学动态及其净化功能研究[J].生态环境学报,2010,19(3):537-543.
    [108]中国环境保护部标准司.中华人民共和国地表水环境质量标(GB3838-2002).
    [109]国家环境保护局.水和废水监测方法[M].北京:中国环境科学出版社,2002.
    [110]鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [111]Christine G, Sylvaine T, Michel A. Fractionation studies of trace elements incontaminated soil sand sediments: a Review of sequential extraction procedures[J].Trend in Analytical Chemistry, 2002, 21:451-467.
    [112] Janzen H H, Campbell C A, Brabdts A. Light-fraction organic matter in soilsfrom long-term crop rotations[J]. Soil Science Society of America Journal,1992,56:1799-1806.
    [113]Whitbread A M, Lefroy R D B, Blair G J. A survey of the impact of cropping onsoil physical and chemical properties in north-western New South Wales[J].Australian Journal of Soil Research,1998,36:669-681.
    [114]Baham J, Sposito G. Chemistry of water-soluble, metal-complexing ligandsextracted from an anerobically-digested sewage sludge. J Environ Qual, 1983,12(1):96-100 .
    [115]周江敏,代静玉,潘根兴.土壤中水溶性有机质的结构特征及其与富里酸、胡敏酸的比较[J].土壤,2004, 36 (1): 46-50.
    [116]Provenzano M R. Thermal and spectroscopic characterization of composts frommunicipal solid wastes [J]. CompostScience&Utilization, 1998, 6(3):67-73.
    [117]Schnitzer M. Organic matter characterization [A].In: Page A L.Methods of soilanalysis. Part w.2nded [C]. ASA and SSSA, Madison, 1996.
    [118]张彩香,王焰新,祁士华.垃圾渗滤液中溶解有机质与内分泌干扰物的吸附机理[J].地球科学-中国地质大学学报,2008,33(3):399-402.
    [119]Vodaceka P. Environmental-effects on laser-induced fluorescence-spectra ofnatural-waters [J]. Emote Sensing of Environment, 1987,21(1):83-95.
    [200]何小松,席北斗,魏自民.堆放垃圾渗滤液水溶性有机物的荧光特性[J].中国环境科学, 2010,30(6):752-757.
    [201]Esteves J. Fluorescence quenching of anthropogenic fulvic acidsby Cu(Ⅱ),Fe(Ⅲ) [J].Talanta,1998,45:1155-1165.
    [202]戴雄武.中国湖泊的现状和开发途径[J].地域研究与开发,1989 ,8 (2):4-7.
    [203]金相灿,刘鸿亮.中国湖泊富营养化[M].第一版,中国环境科学出版社,1990.
    [204]金相灿,刘树坤,章宗涉编.中国湖泊环境(第一册)[M].北京:海洋出版社,1995.
    [205]Huang W, Campredom R. Variation of heavy metals in recent sediments frompiratininga Laggon (Brazil)- interpretation of geochemical data with the aid ofmultivariate analysis[J]. Environmental Geology, 2004, 36(4):241-247.
    [206]Lawson N M, Mason R, Laporate J.The fate and transport of mercury, methylmercury , and other trace metals in chesapeake Bay tributaries[J]. Wat Res, 2003,35(2):501-505.
    [207]韩宝平,王晓.徐州市荆马河底泥重金属污染特征研究[J].中国矿业大学学报(自然科学版),2003,32(2):138-140.
    [208]刘芳文,颜文,黄小平.珠江口沉积物中重金属及其相态分布特征[J].热带海洋学报,2003,22(5):16-20.
    [209]许海,刘兆普,焦佳国,等.太湖上游不同类型过境水氮素污染状况[J].生态学杂志, 2008, 27(1):43-49.
    [210]邵鹏.太湖周边典型区域水体污染的综合研究[D].东北师范大学,2010.32.
    [211]金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990.31-50.
    [212]高锡云,刘元波,陈宇炜.梅梁湾及太湖富营养化限制性营养盐研究[A].太湖环境生态研究.1998:50-54.
    [213] Somlyody L. Factors influencing lake recovery from eutrophication-the case ofbasin1of Lake Balaton [J].WatSci.Tech., 2001, 35(3):729-735.
    [214]张路,范成新,池俏俏,等.太湖及其主要入湖河流沉积磷形态分布研究地球化学[J]. 2004,33(4):423-432.
    [215]王晓蓉,华兆哲,徐菱,等.环境条件变化对太湖沉积物磷释放的影响[J].环境化学,1996,15(1):15-19.
    [216]刘庆.南四湖及其入湖河流底泥N、P释放及其影响因素研究[D].山东大学博士学位论文,2009.
    [217]朱广伟,高光,秦伯强,等.浅水湖泊沉积物中磷的地球化学特征[J].水科学进展, 2003,(14)6:714-719.
    [218]杨卓,李贵宝,王殿武,等.白洋淀底泥重金属的污染及其潜在生态危害评价[J].农业环境科学学报, 2005, 24(5):945-951.
    [219]刘鸿亮,金相灿,荆一凤.湖泊底泥环境疏浚工程技术[J].中国工程科学,1999,1(1):81-84
    [220]Pick F R. Species-specific phytoplankton responses to nutrient enrichment inlimnetic enclosures [J]. Arch. Hydrobiol, 1989, 32:177-187.
    [221]Piehler M F, Dyble J, Moisander P H, et al. Effects of modified nutrientconcentrations and ratios on the structure and function of the native phytoplanktoncommunity in the Neuse River Estuary, North Carolina, USA [J]. Aquat. Ecol., 2002,36:371-385.
    [222]Güsewel S, Koerselman W, Verhoeven A. Biomass N: P ratios as indicators ofnutrient limitationfor plant populations wetlands[J].Ecol.Appl., 2003,13(2):372-384.
    [223]Srinivasa R M, Shaik B,Sravan K,et al. Distribution, enrichment andaccumulation of heavy metals in coastal sediments of Alang Sosiya ship scrappingyard, India [J]. Marine Pollution Bulletin, 2004, 48:1 055-1 059
    [224]赵一阳.中国浅海沉积物化学元素丰度比较[J].科学通报,1992,13:1202-1204.
    [225]章申,唐以剑,等.白洋淀区域水污染控制研究(第一集):水陆交错带水环境特征与调控机理[M].北京:科学出版社, 1995.
    [226]张新英,宋书巧.重金属元素背景值研究[J].广西师院学报(自然科学版),1999, 16 (4): 98-101.
    [227]滑丽萍,华路,高娟,等.中国湖泊底泥的重金属污染评价研究土壤[J].2006,38(4):366-373.
    [228]安文超.南四湖及主要入湖河口沉积物的污染特征及磷吸附释放研究[D].博士学位论文,2008:104.
    [229]Farkas A, Erratico C, Vigano L. Assessment of the environmental significance ofheavy metal pollution in surficial sediments of the River Po[J]. Chemosphere, 2007,68:761-768.
    [230]Fan W H, Wang W X, Chen J S, et al. Cu, Ni, and Pb speciation in surfacesediments from a contaminated bay of northern China [J]. Marine Pollution Bulletin,2002, 44:816-832.
    [231]霍文毅,黄凤茹,陈静生,等.河流沉积物重金属污染评价方法比较研究[J].地理科学, 1997, 17(1):81-86.
    [232]Martin J.Heavy metal concentrations in sediments from the Thames estuary, UK[J]. Marine pollution bulletin, 1995, 30(11):742-744.
    [233]袁旭音,王爱华,许乃政.太湖沉积物中重金属的地球化学形态及特征分析地球化学,2004,33(6):611-618.
    [234]陈牧霞,地里拜尔·苏力坦,杨潇,等.新疆污灌区重金属含量及形态研究干早区资源与环境[J].2007,21(2):150-154.
    [235]刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J].环境科学.2007, 28(6):1377-1382.
    [236]González M J, Ramos L, Hernández L M. Distribution of trace metals insediments and their relationship with their accumulation in earthworms[J]. Int. J.Environ. Anal. Chem., 1994,57:135-150
    [237]Ramos L, Gonzalez M J, Hernandez L M. Sequential extraction of copper, lead,cadmium, and zinc in sediments from Ebro River (Spain):Relationship with levelsdetected in earthworms[J]. Bulletin of Environmental Contamination andToxicology,1999,63:301-308.
    [238] Warren A. The importance of surface area in metal sorption by oxides andorganic matter in a heterogeneous natural sediment [J]. Applied Geochemistry,1994,9,(3) :245-254.
    [239] Liu H. Fraction distribution and risk assessment of heavy metals in sediments ofMoshui lake [J]. Journal of Environmental Sciences, 2008, 20 :390-397.
    [240]王伟伟,吴宏海,郭杏妹,等.水体沉积物中有机质结构特征与毒害有机物的吸附模式研究[J].海洋环境科学, 2008, 27(6):566-567.
    [241]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报, 2004, 15(6):1084-1085.
    [242]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):194-195.
    [243]易文利,王圣瑞,金相灿,王国栋.长江中下游浅水湖沉积物中有机质及其组分的赋存特征[J].西北农林科技大学学报(自然科学版),2008,36(5):141-142.
    [244]李振宇,朱荫湄.西湖沉积物有机质特征[J].环境化学,1999,18(2):122-126.
    [245]Dell'Anno M. Mesoscale variability of organic matter composition in NWAdriatic sediments [J]. Chemistry and Ecology, 2003, 19(1):33-45.
    [246] Rengasamy A. Biogeochemistry of surficial sediments in the intertidal systemsof a tropical environment [J]. Chemistry and Ecology, 2008, 24 (4):247-258.
    [247]周启星,朱荫湄.西湖底泥不同供氧条件下有机质降解及CO2与CH4释放速率的模拟研究[J].环境科学学报,1999,19(1):11-15.
    [248]Gale P M, Reddy K R, Graetz D A. Mineralization of sediment organic matterunder anoxic condition [J]. J Environ Qual, 1992, 21(3):394-400.
    [249]许磊,李华,陈英旭,等.南太湖地区小型浅水湖泊自净能力季节变化研究[J].环境科学, 2010, 31 (4):924-930.
    [250]刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流沉积物中磷的赋存形态研究[J].地球化学, 2008, 37(3):290-291.
    [251]吴庆龙,陈开宁,胡耀辉,等.东太湖河蟹网围养殖的环境效应[J].农业环境保护, 2001, 20 (6): 432-434.
    [252]王国祥,成小英,濮培民.湖泊藻型富营养化控制-技术、理论及应用[J].湖泊科学, 2002, 14(3): 273-282.
    [253] Janzen H H, Campbell C A, Brabdts A. Light-fraction organic matter in soilsfrom long-term crop rotations[J]. Soil Science Society of America Journal,1992,56:1799-1806.
    [254] Zhang W J, Wu J S, Xiao H A, Tong C L. Profile distribution characteristics andaccumulation of organic carbon in typical wetlands in Sanjiang Plain[J]. Advances inEarth Science, 2004, 15(4):558-562.
    [255] Wu T Y, Schoenau J, Li F M, Qian P Y, Zhang S Q, Sukhadev S,Wang F. Concepts and relative analytical techniques of soil organic matter [J].Chinese Journal of Applied Ecolog. 2004,15(4):717-722.
    [256] Wang Q K, Wang S L, Feng Z W, Huang Y. Active soil organic matter and itsrelationship with soil quality [J]. Acta Ecologica Sinica,2005,25(3):513-519.
    [257] Pinckney J L, Paerl H W, Tester P, Richardson T L. The role of nutrient loadingand eutrophication in estuarine ecology[J]. Environ Health Perspect, 2001,109(suppl5): 699-706.
    [258] Shen J, Zhang Z L, Yang L Y, Sun Q Y. Nansihu lake-Research on Environmentand Resources[M].Beijing: Earthquake Press, 2009:42-47.
    [259]KalbitzK, Solinger. Control on the dynamics of dissolved organic matter in soilsA review[J].Soil Science,2000,165,(4):277-304.
    [260]Geraldine D K. Elemental composition of dissolved organic matter andbacteriop lank ton production in the Faroe-Shetland Channel (NorthAtlantic) [J].Deep-SeaResearch, 2005, 52:85-97.
    [261]Huo S L, Xi B D. Characteristics of dissolved organic matter (DOM) in leach atewith different landfill ages [J].J Environ.Sci, 2008, 20:492-498.
    [262]占新华,周立祥等.污泥堆肥过程中水溶性有机物光谱学变化特征[J].环境科学学报,2001,21(4):470-474
    [263]钟润生,张锡辉等.三维荧光指纹光谱用于污染河流溶解性有机物来源示踪研究[J].光谱学与光谱分析, 2008, 28(2):247-350.
    [264]Leenheer J A. Comprehensive approach top reparative isolation and fraction ofdissolved organic carbon from natural water sand waste waters [J]. Environ.Sc&iTech., 1981,15(5):578-587.
    [265]Donald R G. Potential role of dissolved organic carbon in phosphorus transportin forested soils [J]. Soil Sci Soc AmJ., 1993,57:1611-1618.
    [266]Homann P S. Molecular weight distribution of soluble organics fromlaboratory-manipulated surface soils [J].SoilSciSocAmJ.,1992, 56:1305-1310.
    [267]周江敏,代静玉,潘根兴.土壤中水溶性有机质的结构特征及环境意义[J].农业环境科学学报,2003,22(6):731-735.
    [268]蒋疆,王果,林志亮,等.草炭溶解态有机物质与Cu2+、Cd2+、Pb2+、Zn2+络合物的红外光谱[J].福建农林大学学报(自然科学版),2002,31(2):266-269.
    [269]许中坚,刘广深,刘维屏.土壤中溶解性有机质的环境特性与行为[J].环境化学,2003,22(5):427-429.
    [270]代静玉,秦淑平,周江敏.土壤中溶解性有机质分组组分的结构特征研究[J].土壤学报,2004,41(5):721-722.
    [271]朱启红,夏红霞,李强,等.外源可溶性有机物(DOM)活化土壤Cu(Ⅱ)模型研究[J].环境化学,2010,29(4):578-582.
    [272]Zhou L X, Wong J C. Effect of dissolved organic matter from sludge compost onsoil copper sorption[J]. J Environ Qual, 2001, 30:878-883.
    [273]MaPanda F, Mangwayana E N, Nyamangara J. The effect of long-term irrigationusing wastewater on heavy metal contents of soils under vegetables in Harare,Zimbabwe [J]. Agriculture, Ecosyms and Environment, 2005,107:151-165.
    [274] Forstner U. Metal pollution in aquatic environment [M]. Second Edition, 1981.
    [275] D’Angelo E M, Reddy K R. Diagenesis of organic matter in a wetland receivinghypereutrophic lake water: I. Distribution of dissolved nutrients in the soil and watercolumn [J]. J Environ Qual, 1994, 23(5):928-936.
    [276]Stevenson F J. Humus chemistry: Genesis, composition, reactions [M].NewYork:JohnWiley&Sons.1982.
    [277]Gressel N, Powers R F. Spectroscopy of aqueous extracts of forest litterI.Suitability of methods [J].SoilSciSocAmJ,1995,59:1715-1723.
    [278]ChenY, Senesi N, Schnitzer M. Information provided on humic substances byE4/E6 ratios [J].SoilSciSocAmJ,1977, 41:352-358.
    [279]Kalbitz K, Geyer S, Geyer W. A comparative characterization of dissolvedorganic matter by means of original aqueous samples and isolated humic substances[J]. Chemosphere, 2000, 40: 1305-1312.
    [280]Veeken A, Nierop K, de Wilde V et al. Characterisation of NaOH-extractedhumic acids during composting of a biowaste [J]. Bioresource Technology, 2000, 72:33-41.
    [281]Artinger R. Characterization of ground、water humic substances: influence ofsedimentary organic carbon [J]. AppIied Geochemistry, 2000,15:97-116.
    [282]RM,GC,TC.有机化合物光谱鉴定[M].北京:科学出版社,1982:65-130.
    [283]Douben P E. PAHs: Ecotoxicological Perspective. Chichester: John Wiley andSons Ltd,2003:9-33.
    [284]Herbert E. Characterization of isolated fraction of dissolved organic matter fromnatural waters and a wastewater effluent [J].Wat.Res.,2001,35(4):985-996.
    [285]Christensen J B, Jensen D L. Characterization of the dissolved organic carbon inlandfill leachate-polluted groundwater [J]. Wat. Res., 1998, 32(1):125-135.
    [286]顾志忙,王晓蓉等.傅里叶变换红外光谱和核磁共振法对土壤中腐殖酸的表征.分析化学,2000,28(3):314-317.
    [287]Zech W. Characterization of water-soluble organic substances from a typicdystrochrcpt under spruce using GPC, IR,1H-NMR and13C-NMR Spectroscopy [J].Soil Sci., 1988, 146:445-452.
    [288] Wilson M.Application of nuclear magnetic resonance spectroscopy to the studyof the structure of soil organic matter [J].E.J.Soil Sci,1981, 32(2):167-186.
    [289] Christensen J B. Characterization of the dissolved organic carbon in landfillleachate-polluted ground water.Wat.Res., 1998,32(1):125-135.
    [290]吴景贵,席时权,姜岩.土壤腐殖质的分析化学研究进展[J].分析化学,1997,25(10):1221-1227.
    [291]王晓蓉.环境化学[M].南京:南京大学出版社,1993:53-67.
    [292]马英军,万国江.湖泊沉积物-水界面微量重金属扩散作用及其水质影响研究[J].环境科学,1999,20(2):7-11.
    [293]陶澎,曹军.中国东部土壤水溶性有机物荧光特征及地域分异[J].地理学报,2001,56(4):409-616.
    [294]中国科学院地球化学研究所编.高等地球化学[M].北京:科学出版社,1998.
    [295]Paez O F,Bojorquez L H,Green R C.Total carbohydrates: organic carbon inlagoon sediments as an indicator of organic effluents from agriculture andsugar-cornindustry[J].EnvironPollut,1998,102:321-326.
    [296]王威,李成等.不同来源水溶性有机物光谱学特性研究[J].东北农业大学学报,2011,42(6):135-140.
    [297]王志刚,刘文清,张玉钧等.不同来源水体有机综合污染指标的三维荧光光谱法与传统方法测量的对比研究[J].光谱学与光谱分析,2007,27(12):2514-2517.
    [298]傅平青,刘丛强,吴丰昌等.溶解有机质的三维荧光光谱特征研究[J].光谱学与光谱分析,2005,25(12):2024-2028.
    [299]李宏斌,刘文清,张玉钧,等.水体中溶解有机物的三维荧光光谱特征分析[J].大气与环境光学学报.2006.1(3):216-221.
    [300]徐栋,冯科,吴峰,邓南圣.天然水体底质中腐植酸的光谱表征[J].分析科学学报.2003,19(6):499-501.
    [301]黄勇,庞小峰.三维荧光光谱用于成都沙河溶解性有机物来源的研究[J].生命科学仪器, 2010,(8):52-54.
    [302]杨策,钟宁宁.煤矿区水体溶解有机质三维荧光光谱特征[J].光谱学与光谱分析,2008,28(1):174-177.
    [303]Van Loon G, Duffy S. Environmental Chemlstry [M]. New York.OxfordUniversity Press, 2000: 239-257.
    [304] Sierra M. Fluorescence and DOC contents of Pore waters from coastal [J]. Org.Geoehem, 200, 32:1319-1328.
    [305]Thurman E.M. Organic goehemistry of ntural waters [J]. Martinus. 1988.
    [306]夏达英,李宝华,吴永森等.海水黄色物质荧光特性的初步研究[J].海洋与湖沼,1999,30(6):719-725.
    [307] Baker A. Fluorescence excitation-emission matrix characterization of somesewage-impacted rivers [J]. Environ Sci Technol, 2001, 35:948-953.
    [308] Cory M.Fluorescence spectroseopy reveals ubiquitous presence of oxidized andreduced quinines in dissolved organic matter [J]. Sci. Technol, 2005,39:514-519.
    [309]高洪峰,曹文达,纪明侯.海水腐植质的基本化学组成研究海洋与湖沼[J].2007,27(1):35-40.
    [310]王江涛,关哈斯高娃,赵卫红,王修林.东海海水中荧光溶解有机物质的三维荧光光谱特征[J].光谱学与光谱分析,2009,29(5):1345-1348.
    [311]陈茂福,吴静,律严励,陈庆俊.城市污水的三维荧光指纹特征[J].光学学报,2008,28(3):578-582.
    [312] Wu F C,Midorikawa T,Tanoue E. Fluorescence properties of organic ligands forcopper (Ⅱ) in Lake Biwa and its rivers[J].Geochemical Journal,2001,35: 333-346.
    [313] Patel S N,Mounier S,Benaim J Y. Excitation-emission fluorescence matrix tostudy pH influence on organic matter fluorescence in the Amazon basin rivers[J]. WatRes, 2002, 36: 2571-2581.
    [314] Desouza S. Fluorescence spectroscopy of coastal and marine waters [J].MarineChemistry,1994,47:127-144.
    [315]FERRARIGM.The relationship between chromophoric dissolved organic matterand dissolved organic carbon in the European Atlantic coastal area and intheWestMediterraneaSea(Gulfoflions)[J]. MarineChemistry,2000,70:339-357.
    [316]CHENRF.The fluorescence of dissolved organic matter in seawater[J].MarineChemistry,1992,37:191-221.
    [317]Senesi N.Characterisation differentiation and classification of humic substancesby fluorescence spectroscopy.Soil Science, 1992,152(4):259-271.
    [318] William H. Dissolved organic matter in soils-future directions and unansweredquestions[J]. Geoderma, 2003,113 ( 3) :179-186.
    [319]Clark L, Ingall D, BennerR.Marine phosphorus is selectively remineralized [J].Nature, 1998,393:426.
    [320]张运林,秦伯强,马荣华,等.太湖典型草、藻型湖区有色可溶性有机物的吸收及荧光特性[J].环境科学, 2005, 26(2):160- 166.
    [321]Coble PG. Characterization of dissolved organic matter in the Black Sea byfluorescence spectroscopy. Nature,1990, 348(4):432-435.
    [322]Baker A.Fluorescence properties of some farm wastes: implications for waterquality monitoring. Water Research,2002,36(1):189-195.
    [323]Day DL.Utilisation of livestock wastes as feed and other dietary products. WaterResearch,1977:295-297.
    [324]曹会聪,王金达,张学林.东北地区污染黑土中重金属与有机质的关联作用[J].环境科学研究,2007 ,20 (1) :36-41.
    [325]Huang W , Campredom R , Abrao J J, et al. Variation of heavy metals in recentsediments from piratininga Laggon (Brazil)-interpretation of geochemical data withthe aid of multivariate analysis [J]. Environmental Geology, 2004, 36(4):241-247.
    [326]郑伟,杨曦,张金凤.水环境中有机污染物与溶解性有机质相互作用研究[J].环境保护科学,2007,33,(6):17-19.
    [327]Zhou L X, Wong J C. Effect of dissolved organic matter from sludge compost onsoil copper sorption[J]. J Environ Qual, 2001,30:878-883.
    [328]MaPanda F, Mangwayana E N, Nyamangara J,et al. The effect of long-termirrigation using wastewater on heavy metal contents of soils under vegetables inHarare, Zimbabwe [J]. Agriculture, Ecosyms and Environment, 2005, 107:151-165.
    [329]Tipping E, Woof C. Humic s ubst ances in acid organic soils: Modeling theirrelease to the soil solution in t erms of humic charge [J]. Soil Sci , 1990,1: 573-586.
    [330]Tipping E, Hurley MA. A model of solid solution interactions in acid soils,based on the complexation properties of humic substances [J]. Soil Sci, 1988,1:570-573.
    [331]Erwi J. Copper mobi lity in a copper contaminated sandy soil as affected by pHand solid and dissolved organic matter [J]. Environ Sci Tech, 1997, 31: 1109-1115.
    [332]袁可能主编.土壤化学[M].北京中国农业出版社出版.1987:109-122.
    [333]Esteves D, Joaquim CG.hemom. Incell.Lab.Syst1995, 27(l):115-128.
    [334]Sehulten R,Sehnit M . State of the structure concept for humic nature schaften[J]. Environ Sci Technol, 1993, 80:29-30.
    [335]傅平青,刘丛强,吴丰昌.三维荧光光谱研究溶解有机质与汞的相互作用[J].环境科学,2004,25( 6) : 140-144.
    [336]Hua L, Chen S B , Bai L Y. Studies on stability ofl09Cd ,65Zn complex withhumus acids. Sci Agric Sin, 2001, 24 (2):187-191.
    [337]何小松,席北斗,魏自民,等.堆放垃圾渗滤液水溶性有机物的荧光特性[J].中国环境科学,010,30(6):752-757.
    [338]Temminghoff E, Van S E. Copper mobility in a copper-contaminated sandy soilas affected by pH andsolid and dissolved organic matter[J]. Environ Sci&Tech,1997,31( 4) : 1109-1115.
    [339]王辉,懂元华.江苏集约化养殖禽畜粪便盐分含量及分布特征分析[J].农业工程学报, 2007,23(11):229-233 .
    [340]Baker A. Fluorescence excitation-emission matrix characterization of somesewage-impacted rivers[J]. Environ Sci Technol, 2001,35:948-953.
    [341]郭旭晶,席北斗,何小松,等.乌梁素海周边土壤溶解性有机质荧光特性及其与Cu(Ⅱ)的配位研究[J].环境化学, 2010,29(6):1121-1125.
    [342]Croue J P. Characterization and copper binding of humic and non humic organicmatter isolated from the South Platte River[J]. Environmental Science and Technology,2003,37(2):328-336.
    [343]Yamashita Y.Characterizing the interactions between trace metals and dissolvedorganic matter using excitation emission matrix and parallel factor analysis [J].Environmental Science and Technology, 2008, 42(19):7328-7330.
    [344]Diana Hernández,César Plaza,Nicola Senesi,et al.Detection of copper(Ⅱ)and zinc(Ⅱ) binding to humic acids from pig slurry and amended soils byfluorescence spectroscopy[J]. Environmental Pollution, 2006,143: 212-220.
    [345] Merrington G, Oliver I, Smernik R J. The influence of sewage sludge propertieson sludge-borne metal availability [J]. Advances in Environmental Research, 2003, 8:21-36.
    [346]廖敏,黄昌勇,谢正苗. pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报, 1999, 19(1): 81-86.
    [347]陈春羽,王定勇.水溶性有机质对土壤及底泥中汞吸附行为的影响[J].环境科学学报,2009,9( 2) :12-317.
    [348]Lu X Q, JafféR. Interaction between Hg(Ⅱ) and natural dissolved organicmatter: fluorescence spectroscopy based study[J].Water Res, 2001,35: 1793-1803.
    [349]卢信,赵炳梓,张佳宝,等.不同可溶性有机碳对铜在土壤中迁移的影响[J].土壤学报, 2007,44(3):418-424.
    [350]吴志坚,刘海宁.离子强度对吸附影响机理的研究进展[J].环境化学, 2010, 29(6):998.
    [351]胡立刚,蔡勇.砷的生物地球化学[J].化学进展, 2009, 21(3):460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700