铸轧镁合金的变形工艺及其组织和力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有高的比强度、比刚度,良好的阻尼减震性,优良的机加工性能和易于回收利用,被誉为21世纪最具发展前途的金属结构材料,是近年来国内外材料界研究的热点之一。进一步提高镁合金的综合性能,满足某些结构件“以镁代铝”甚至“代钢”的性能要求;改善镁合金的塑性、减小各向异性,显著改善其塑性成形能力;简化镁合金制品的制备工艺,降低其生产成本,扩大镁合金的应用范围,是国内外研究的主要方向。
     本论文主要针对镁合金薄板制备难度大、性能较低且工艺稳定性较差、塑性较低且各向异性较大、塑性加工能力较差的问题,采用双辊铸轧法制备镁合金条带坯料,利用轧辊的急冷作用及半固态条件下的塑性变形细化坯料组织及第二相,减少偏析,从而改善其塑性变形能力,并缩短镁合金薄板制备工艺流程;通过轧制工艺参数及热处理工艺参数的优化,改善其综合力学性能、减小各向异性;并对铸轧过程中镁合金组织形成机理、温轧及热处理过程中组织演变及影响因素,以及轧制镁合金的强化机理进行了分析,为镁合金薄板的制备、镁合金组织及性能控制奠定了实验及理论基础。
     本文采用双辊铸轧(Twin Roll Casting,简记为TRC)法成功制备了厚度为3-3.5mm的ZK60和Mg-4.5Al-1.0Zn(简记AZ41)镁合金条带,确定了制备工艺参数:铸轧温度、轧辊转速及预留辊缝宽度分别为640~680℃、5~6rpm、2mm(ZK60)及630~650℃、5~6rpm、2mm(AZ41),并分析了其显微组织及形成机理。研究结果表明,双辊铸轧镁合金的组织呈枝晶状,枝晶间分布着细小的第二相,条带近表面有激冷区。铸轧过程中轧辊的急冷作用及半固态条件下的塑性变形导致铸轧镁合金的晶粒组织比传统铸锭法的组织显著细化,且晶界第二相尺寸也显著减小,分布均匀性明显改善,从而显著改善镁合金的塑性变形能力。
     通过讨论温轧工艺参数对铸轧ZK60镁合金组织和性能的影响,确定了0.5mm厚ZK60镁合金薄带制备的最佳轧制工艺,即先将3.5mm厚的铸轧条带在350℃轧制到1mm,1mm厚薄带在350℃退火30min,然后再在300℃下轧制到0.5mm,道次间压下量为30%,道次间退火温度为轧制温度,保温时间为5min。温轧变形改变了TRC镁合金的组织形态,由枝晶状变为纤维状组织,晶粒沿轧制方向被拉长,且薄带内部有剪切带、位错及孪晶产生。在轧制温度为350℃以上时,发生动态再结晶。随着轧制温度的降低、道次间压下量及总变形量的增加,镁合金的组织细化且剪切带的密度增加,镁合金的强度及硬度增加。在优化轧制工艺条件下,ZK60镁合金薄带的拉伸强度、屈服强度和伸长率分别为510MPa、441MPa和11.3%。
     通过分析退火、固溶、时效等热处理过程中温轧ZK60镁合金薄带的组织转变及其对性能的影响,确定了ZK60镁合金薄带最佳热处理工艺参数:退火热处理—375℃×10~3s;T6热处—375℃×3hrs+175℃×10hrs。在300℃及以上温度退火过程中有静态再结晶发生,随着退火温度升高和保温时间的延长,再结晶晶粒比例增加,得到均匀细小的等轴晶,继续提高温度或延长保温时间,晶粒明显长大。退火处理使硬度及强度有所降低,但塑性明显提高,在最佳退火工艺条件下,ZK60镁合金薄带的拉伸强度、屈服强度及伸长率分别为388MPa,301MPa和22.9%。适当的T6处理可获得均匀细小的等轴晶组织(平均晶粒尺寸为6.7μm),且显著减小了ZK60镁合金薄带力学性能的各向异性,其三个方向的拉伸强度、屈服强度和伸长率的偏差分别为23MPa、10MPa和1.0%。
     轧制态ZK60镁合金薄带表现出强的(0001)基面织构,由于试样内部存在高密度剪切带,使其织构分布向垂直于轧制方向分散。随着轧制温度降低、轧制变形量和道次间压下量增大,(0001)基面织构的最大极密度增加。温轧变形过程中产生的(0001)基面变形织构对合金起到强化作用。
     研究热处理过程中ZK60镁合金的相析出行为得知,退火处理后晶粒内部只有圆盘状的颗粒析出,而适当工艺参数的T6处理后薄带内部既有圆盘状的颗粒也有杆状的颗粒析出。这些强化相的析出有利于提高材料的组织均匀性和抗高温软化能力。无论是退火过程的圆盘状析出相还是T6处理过程的圆盘状析出相,均含有Zn元素和Zr元素,而杆状的析出相仅含有Zn元素不含Zr元素。另外,Zr还有一部分均匀分布在基体中,起到细化晶粒的作用。
     温轧变形ZK60镁合金变形过程中存在三种强化机制:细晶强化、第二相粒子强化和位错强化,三种强化机制分别在温轧变形的不同阶段起主导作用,在共同的强化作用下提高镁合金的强度。在三种不同强化机制共同作用的同时,温轧变形过程中产生的(0001)基面变形织构对镁合金起到强化作用。
Magnesium alloys are considered to have the most promising development outlook as metallic structural materials in 21~(st) century,for their high specific strength and specific stiffness,good damping capacity,excellent machinability and high recycling rate.Magnesium alloy has become one of the research hotspots in materials research field.The principal direction to improve the integrated properties of magnesium alloy is to satisfy the requirements of some structural materials,such as aluminum,or even steel.Researches which aim to increase the elongation,decrease the anisotropy and improve the plastic deformation capability,simplify fabrication technics,reduce manufacturing cost and expand the applications of magnesium alloy are also received global attention.
     It is difficult to fabricate magnesium alloy sheet for its poor technologic stability, low elongation,severe anisotropy and poor plastic deformation capability.Twin roll casting(designated as TRC in short) technology has fast cooling rate and plastic deformation effect under semi-solid states.It combines casting and hot rolling into a single step,which can refine grain and second-phase size,reduce segregation, improve plastic deformation capability,and also shorten the fabrication process of magnesium alloy.This paper aims to improve the integrated properties,reduce anisotropy of magnesium alloy by optimizing the rolling and heat treatment parameters.The forming mechanism of TRC magnesium alloy's microstructure during strip casting process,the microstructure evolution of ZK60 alloy sheet during rolling and heat treatment process,and factors which influence the microstructure were studied systematically.In addition,the strengthening mechanism of warm rolled magnesium alloy was also discussed in this paper.With the above research,the experimental and academic foundations of helping improve the formability, microstructural uniformity and integrated properties of magnesium alloy sheet were obtained.
     ZK60 and Mg-4.5Al-1.0Zn(designated as AZ41 in short) strip with 3~3.5mm thickness were fabricated by TRC technology in this paper,and the fabrication parameters of TRC temperature,rolling speed and roller gap were also determined (those of ZK60 and AZ41 strip are 640~680℃,5~6rpm,2mm and 630~650℃, 5~6rpm,2mm,respectively).The forming mechanism of TRC magnesium alloy's microstructure during strip casting process was studied.The results showed that, chilled grain structure appeared just below the surface of the TRC strip,and dendrite structure developed from surface to the center of TRC strip along the thermal gradient. Fine eutectics and intermetallic compounds were seen in the interdendritic region.The grain size of TRC alloy was much smaller than that of CC alloy due to higher cooling rate and the plastic deformation effect under semi-solid states during TRC process. The intermetallic compounds were also refined and distributed uniformly,which could improve the deformation capability of magnesium alloy.
     The optimized rolling parameters were obtained by discussing the effect of rolling parameters on microstructure and mechanical properties of ZK60 alloy sheet. It should be separated into two steps to get ZK60 alloy sheet with 0.5mm thickness which possessed good properties.The TRC strip was rolled at 350℃to reduce the thickness from 3.5mm to 1mm in the first step.And then the warm rolled sheet was annealed at 350℃for 30min,after that changed the rolling temperature to 300℃to reduce the sheet thickness to 0.5mm.The rolling reduction ratio of 30%per pass was made for warm rolling.The sheet was annealed at the rolling temperature for 5min between the two passes of the rolling process.
     Warm rolling changed the shape of grains from dentrite to fibrous structure, which consisted of elongated grains along the rolling direction.High density shear bands,dislocation and twinning were formed during the rolling process.Dynamic recrystallization took place during the rolling process at and above 350℃.With the decreasing of the rolling temperature,increasing of the per pass rolling reduction and total rolling reduction,the grain size decreased,while the density of shear bands increased,strength and hardness increased.The tensile strength,yield strength and elongation of as rolled ZK60 alloy sheet produced by the optimized rolling parameters are 510MPa,441MPa and 11.3%,respectively.
     The optimized heat treatment parameters were also determined by analyzing the effect of annealing,solid solution and artificial aging heat treatment on microstructures and mechanical properties of warm rolled ZK60 alloy sheets.The optimized annealing parameter is annealed at 375℃for 10~3s.And the optimized T6 treatment parameter is solid solution treatment at 375℃for 3hrs,and then artificial aging at 175℃for 10hrs.
     Static recrystallization was observed during the annealing process of ZK60 alloy sheet at and above 300℃.Fine equiaxed structure was obtained after annealing treatment.Fraction of recrystallized grain increased with the increasing of annealing temperature and holding time,but too high annealing temperature and too long holding time would induce grain growth.The strength and hardness of ZK60 alloy sheet decreased a little after annealing heat treatment,but the elongation increased obviously.The tensile strength,yield strength and elongation of ZK60 alloy sheet annealed at optimized annealing parameter are 388MPa,301MPa and 22.9%, respectively.It can be noted that proper T6 treatment can obtain fine equiaxed structure(the mean grain size is 6.7μm),so the anisotropy of ZK60 alloy sheet's tensile properties was obviously decreased.The deviation of tensile strength,yield strength and elongation along different angle to rolling direction are 23MPa,10MPa and 1.0%,respectively.
     Warm rolled ZK60 alloy sheet exhibited high intensity of(0001) basal pole texture,and the formation of shear bands tends to cause the basal pole texture tilt slightly to the transverse direction.The maximum pole intensity of(0001) pole figure increased with the decreasing of rolling temperature,increasing of per pass rolling and total rolling reduction.ZK60 alloy was strengthened by(0001) basal pole texture.
     Disc-shaped precipitates could be observed after annealed at different temperatures,and both disc-shaped and rod-like precipitates could be found after proper T6 treatment in the warm rolled ZK60 alloy sheet.The existence of the dispersed strengthening particles improved the uniformity of structure and the resistance to softening at elevated temperatures of ZK60 alloy sheet.Zn could be found both in disc-shaped particles and rod-like particles.Zr was found in disc-shaped or irregular shaped particles,but was not found in the rod-like precipitates.In addition, the uniformly distributed Zr in the matrix plays a role of refining the grain size.
     Three strengthening mechanisms existed during the rolling process of ZK60 alloy—grain refining strengthening,second-phase particle strengthening and dislocation strengthening.The three strengthening mechanisms dominate the strength effect at different moment during rolling process separately,and the strength of ZK60 alloy was improved by their corporated effects.In addition,the formation of high density(0001) basal pole texture can also strengthen ZK60 alloy.
引文
1.曾小勤,王渠东,吕宜振,等.镁合金应用新进展.铸造,1998,11:39-43
    2.张春香,陈培磊,陈海军,等.镁合金在汽车工业中的应用及其研究进展.铸造技术,2008,29(4):531-535
    3.王渠东,曾小勤,吕宜振,等.高温铸造镁合金研究与应用.材料导报,2000,14(3):21-23
    4.陈振华,严红革,陈吉华,等.镁合金.北京:化学工业出版社,2004
    5.ASM Specialty Handbook:Magnesium and Magnesium Alloys.ASM International,1999
    6.李元东,郝远,阎峰云,等.铸造镁合金及其研究进展.材料导报,2002,16(6):24-27
    7.C.S.Roberts.Magnesium and Its Alloys,John Wiley & Sons,1960
    8.C.H.Caceres,D.M.Rovera.Solid solution strengthening in concentrated Mg-Al alloys.Journal of Light Metals,2001,1(3):151-156
    9.W.W.Du,Y.S.Sun,X.G.Min,et al.Microstructure and mechanical properties of Mg-Al based alloy with calcium and rare earth additions.Materials Science Engineering A,2003,356(1-2):1-7
    10.C.R.Hutchinson,J.F.Nie.Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy.Metallurgical and Materials Transactions A,2005,36(8):2093-2105
    11.M.Vogel,O.Kraft,E.Arzt.Creep behavior of magnesium die-cast alloy ZA85.Scripta Matefialia,2003,48(8):985-990
    12.M.Vogel,O.Kraft,G.Dehm,et al.Quasi-crystalline grain-boundary phase in the magnesium die-cast alloy ZA85.Scripta Materialia,2001,45(5):517-524
    13.M.Vogel,O.Kraft,E.Arzt.Effect of calcium additions on the creep behavior of magnesium die-cast alloy ZA85.Metallurgical and Materials Transactions A,2005,36(7):1713-1719
    14.K.Yu,W.X.Li.Production,properties and microstructures of Mg-RE-Zn-Zr(RE=MM,Nd)alloy.Journal of Materials Science Technology,2002,18(4):378-380
    15.赵志远.稀土金属在铸造镁合金中的应用.材料工程,1993,12:31-34
    16.W.H.Wu,C.Q.Xia.Microstructures and mechanical properties of Mg-Ce-Zn-Zr wrought alloy.Journal of Central South University of Technology(English Edition),2004,11(4):367-370
    17.Y.Q.Yan,T.J.Zhang,J.Deng,et al.Microstructural evolution and tensile properties features of wrought Mg-Nd alloy.Rare Metallurgical and Materials Engineering,2005,34(6):845-849
    18.Z.P.Luo,S.Q.Zhang,L.Q.Lu,et al.Effects of heat treatments on the properties and microstructures of extruded Mg-Nd-Zr alloy.Journal of Rare Earths,1994,12(4):296-298
    19.X.Tian,L.M.Wang,J.L.Wang,et al.The microstructure and mechanical properties of Mg-3Al-3RE alloys.Journal of Alloys and Compounds,2008,465(1-2):412-416
    20.A.Rakowska,M.Podosek,R.Ciach.Some aspects of solidification and homogenisation of Mg-Ag alloys.Materials and Design,1997,18(4-6):279-283
    21.H.M Chen,S.B.Kang,H.S Yu,et al.Microstructure and mechanical properties of Mg-4.5Al-1.0Zn alloy sheets produced by twin roll casting and sequential warm rolling.Materials Science and Engineering A,2008,492(1-2):317-326
    22.S.B.Kang,H.M Chen,H.W.Kim,et al.Effect of reheating and warm rolling on microstructure and mechanical properties of twin roll strip cast Mg-4.5Al-1.0Zn-0.4Mn-0.3Ca alloy sheet.In:M.O.Pekguleryuz,N.R.Neelameggham,R.S.Beals,and E.A.Nyberg,ed.,Magnesium Technology 2008,Warrendale,Pennsylvania:TMS,2008:147-152
    23.陈洪美,Suk-Bong Kang,于化顺,等.AZ451镁合金薄带的组织和力学性能研究.金属学报,2008,44(4):397-402
    24.陈洪美,Suk Bong Kang,于化顺,等.钙对AZ451变形镁合金组织和性能的影响.特种铸造及有色合金,2008,28(3):397-402
    25.Y.Ortega,J.Delrio.Study of Mg-Ca alloys by positron annihilation technique.Scripta Materialia,2005,52(3):181-186
    26.J.F.Nie,B.C.Muddle.Precipitation hardening of Mg-Ca(-Zn) alloys.Scripta Materialia,1997,37(10):1475-1481
    27.徐培好.Mg-Zn-Al-Ca压铸镁合金的组织与力学性能.山东大学,硕士论文,2006
    28.卢庆亮.准晶增强Mg-Zn-Y合金的ECAP变形组织及力学性能.山东大学,博士论文, 2006
    29.胡静,谢飞,林栋梁,等.稀土钇对不同处理状态镁-铝-钙-钛铸造镁合金组织和硬度的影响.机械工程材料,2007,31(9):44-47
    30.刘方政,许春香,刘彦海,等.Y对AZ61镁合金金相组织和力学性能的影响.铸造设备研究,2008,1:15-17
    31.梁冬梅,赵群,褚丙武,等.Y对AZ31镁合金晶粒细化作用的研究.铝镁通讯,2008,2:29-32
    32.J.Koike,T.Kobayashi,T.Mukai,et al.The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys.Acta Materialia,2003,51(7):2055-2065
    33.D.G.McCartney,Grain refining of aluminum and its alloys using inoculants,International Materials Review,1989,34:247-260
    34.T.C.Chang,J.Y.Wang,C.M.O et al.Grain refining of magnesium alloy AZ31 by rolling.Journal of Materials Processing Technology,2003,140(1-3):588-591
    35.Y.C.Lee,A.K.Dahle and D.H.StJohn.The role of solute in grain refinement of magnesium.Metallurgical and Materials Transactions A,2000,31(11):2895-2906
    36.W.Boas,G.J.Ogilvie.The plastic deformation of a crystal in a polycrystalline aggregates.Acta Metallurgica,1954,2(5):655-659
    37.E.F.Emely.Principles of Magnesium Technology.Oxford:Pergamon Press,1966
    38.K.Kubota,M.Mabuchi,and K.Higashi.Review:Processing and mechanical properties of fine-grained magnesium alloys.Journal of Materials Science,1999,34(10):2255-2262
    39.张世军,黎文献,余琨,等.镁合金的晶粒细化工艺.铸造,2001,50(7):373-375
    40.冯刚,于化顺,张琳,等.镁合金组织细化的途径.材料导报,2004,18(10):41-43
    41.刘峰,冯可芹,杨屹.镁合金晶粒细化的研究现状及发展.铸造技术,2004,25(6):450-452
    42.刘子利,沈以赴,李子全,等.铸造镁合金的晶粒细化技术.材料科学与工程学报,2004,22(1):146-149
    43.刘生发,郭洪河,范晓明,等.镁及其合金铸造组织的细化.材料导报,2003,17(10):24-26
    44.杨明波,潘复生,李忠盛,等.镁合金铸态晶粒细化技术的研究进展.铸造,2005,54(4):314-319
    45.S.S.Park,J.G.Lee,Y.S.Park,et al.Fabrication of mg alloy strips by strip casting.Materials Science Forum,2003,419-422:599-604
    46.高珊,赵浩峰.碳纤维增强镁基复合材料腐蚀行为的研究.铸造设备研究,2004,(5):13-15
    47.陈煜,武凤.碳(石墨)纤维增强镁基复合材料的界面研究.稀有金属材料与工程,1997,26(3):20-25
    48.陈煜,吴桢干.石墨纤维增强镁基复合材料界面.中国有色金属学报,1997,7(3):124-126
    49.王浩伟,商宝禄.涂层碳纤维增强镁基复合材料.复合材料学报,1992,9(2):73-76
    50.李荣华,黄继华,殷声.镁基复合材料研究现状与展望.材料导报,2002,16(8):17-19
    51.郗雨林,柴东朗,张文兴,等.粉末冶金法制备SiC晶须增强MB15镁基复合材料.稀有金属材料与工程,2005,34(7):1131-1134
    52.姜传海,郑明毅,王德尊,等.碳化硅晶须镁基复合材料热残余应力及其调整.稀有金属,2001,25(4):286-288
    53.苏莹,张国定.SiCw+B_4Cp/MB15镁基复合材料力学性能与微观结构.材料工程.1996,(9):9-13
    54.胡连喜,丛飞.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的影响.中国有色金属学报,2000,10(5):680-683
    55.胡茂良,吉泽升,宋润宾,等.镁基复合材料国内外研究现状及展望.轻合金加工技术,2004,32(11):10-14
    56.肖利,于立军.晶须增强铝、镁金属基复合材料的研究进展.吉林师范大学学报(自然科学版,2004,2:76-78
    57.李四年,宋守志,余天庆,等.铸造法制备纳米碳管增强镁基复合材料.特种铸造及有色合金,2005,25(5):313-315
    58.洪成淼,审健,陈立佳,等.颗粒增强镁基复合材料的制备及性能.汽车工艺与材料,2005.2:7-9
    59.李新林,王慧远,姜启川.颗粒增强镁基复合材料的研究现状及发展趋势.材料科学 与工艺,2001,9(2):219-224
    60.于化顺.液态反应合成粒子增强Mg-Li基复合材料的研究.山东大学,博士论文,1997
    61.李四年,宋守志,余天庆,等.纳米碳管对镁基材料的强韧化作用.湖北工业大学学报,2003,18(6):13-16
    62.李四年,宋守志,郑重,等.纳米碳管增强镁基复合材料的复合工艺及性能研究.铸造技术,2004,25(12):904-907
    63.冯刚.Mg2Si粒子增强Mg-Al基复合材料的制备与性能研究.山东大学,硕士论文,2005
    64.李四年,宋守志,余天庆,等.复合铸造法制备纳米碳管增强镁基复合材料的研究.中国机械工程,2005,16(3):260-263
    65.纪秀林,王树奇,谢建华.内生颗粒增强镁基复合材料的研究现状.上海有色金属,2004,25(3):136-140
    66.孙志强,张荻,丁剑,等.原位增强镁基复合材料研究进展与原位反应体系热力学.材料科学与工程,2002,20(4):579-584
    67.T.Mukai,H.Watanabe,and K.Higashi.Application of superplasticity in commercial magnesium alloy for fabrication of structural components.Materials Science and Technology,2000,16:1314-1319
    68.C.J.Bettles and M.A.Gibson.Current wrought magnesium alloys:Strengths and Weaknesses.JOM,2005,57(5):46-49
    69.S.Kleiner and P.J.Uggowiter.Mechanical anisotropy of extruded Mg-6Al-Zn alloy.Materials Science and Engineering A,2004,379(1-2):258-263
    70.C.H.Caceres and D.M.Rovera.Solid solution strengthening in concentrated Mg-Al alloys.Journal of Light Metals,2001,1:151-156
    71.C.Davies and M.Barnett.Expanding the extrusion limits of wrought magnesium alloys.JOM,2004,56(5):22-24.
    72.M.R.Barnett,J.Y.Yao and C.H.J.Davies.Extrusion limits for AZ alloys with Al content <3%.Proceedings of the Light Metals Technology Conference 2003,ed.A.Dahle,(CAST Center Pry Ltd,Australia),333-338.
    73.张青来,卢晨,丁文江.分流挤压镁合金管材工艺研究.轻合金加工技术,2003,31(10):28-30
    74.袁广银,孙扬善,张为民.Bi对铸造镁合金组织和力学性能的影响.铸造,1998,5:5-7
    75.刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002
    76.《轻金属材料加工手册》编写组编.轻金属材料加工手册.北京:冶金工业出版社,1979
    77.F.M.Elkin and V.G.avydov.Russian ultralight constructional Mg-Li alloys,their structure,properties,manufacturing,applications.Magnesium,ed.K.U.Kainer(Weinheim Germany:Wiley-VCH,2004),95-99
    78.S.R.Agnew,M.H.Yoo and C.N.Tome.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y.Acta Materialia,2001,49(20):4277-4289
    79.F.W.Bach,M.Schaper and C.Jaschik.Influence of Li on HCP Magnesium alloys.Materials Science Forum,2003,419-422:1037-1042
    80.J.P.Doan and G.Ansel.Some effects of Zr on extrusion properties of magnesium-base alloys containing Zn.Transaction AIME,1947,171:286-305
    81.Y.Zhang,X.Q.Zeng,L.F.Liu,et ai.Effects of Y on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr alloys.Materials Science and Engineering A,2004,373(1-2):320-327
    82.X.Q.Zeng,Y.Zhang,C.Lu,et al.Precipitation behavior and mechanical properties of a Mg-Zn-Y-Zr alloy processed by thermo-mechanical treatment.Journal of Alloys and Compounds,2005,395(1-2):213-219
    83.Q.Li,Q.D.Wang,H.T.Zhou,et al.High strength extruded Mg-5Zn-2Nd-1.5Y-0.6Zr-0..Ca alloy produced by electromagnetic casting.Materials Letters,2005,59(19-20):2549-2554
    84.O.Sivakesavam and Y.V.R.K.Parasd.Hot deformation behavior of as-cast Mg-2Zn-1Mn alloy in compression:A study with processing map.Materials Science and Engineering A,2003,362(1-2):118-124
    85.W.H.Sillekens,J.A.F.M.Schade van Westrum,A.J.Den Bakker,et al.Hydrostatic extrusion of magnesium:Process mechanics and performance.Materials Science Forum,2003,426-432:629-636
    86.陈振华.变形镁合金.北京:化学工业出版社,2005
    87.陈振华,夏伟军,严红革,等.镁合金材料的塑性变形理论及其技术.化工进展,2004,23(2):127-135
    88.罗吉荣,吴树森,夏巨谌.对当前镁合金研究与应用的几点认识.特种铸造及有色合金,2001,(压铸专刊):76-78
    89.吕炎,徐福昌,薛克敏,等.镁合金上机匣等温精锻工艺的研究.哈尔滨工业大学学报,2000,32(4):127-129
    90.丁文江,等.镁合金科学与技术.北京:科学出版社,2007
    91.李英虹,许光明,郑佳伟,等.双辊铸轧.热轧镁合金组织的试验研究.轻合金加工技术,2006,34(11):28-32
    92.Y.Chino,M.Mabuchi,R.Kishihara,et al.Mechanical properties and press formability at room temperature of AZ31 Mg alloy processed by single roller drive rolling.Materials Transactions,2002,43:2554-2560
    93.H.Watanabe,T.Mkai,K.Ishikawa.Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties.Joural of Materials Science,2004,39(4):1477-1480
    94.张青来,卢晨,朱燕萍,等.轧制方式对AZ31镁合金薄板组织和性能的影响.有色金属学报,2004,14(3):391-397
    95.孙斌熠.板带铸轧理论与技术.北京:冶金工业出版社,2002
    96.谢建新,等.材料加工新技术与新工艺.北京:冶金工业出版社,2004
    97.S.R.Agnew and O.Duyglu.Plastic Anisotropy and the Role of Non-basal Slip in Magnesium Alloy AZ31B.International Journal of Plasticity,2005,21(6):1161-1193
    98.许越,陈湘,日祖顺,等.镁合金表面的腐蚀特性及其防护.哈尔滨工业大学学报,2001,12(6):753-757
    99.T.Haga,S.Suzuki.Roll casting of aluminum alloys trip by melt drag twin roll caster.Journal of Materials Processing Technology,2001,118(1-3):165-168
    100.C.A.Santos,J.A.Spim Jr,A.Garcia.Modeling of solidification in twin-rolls trip casting. Journal of Materials Processing Technology,2000,102(1-3):33-39
    101.T.Haga,S.Suzuki.Study on high-speed twin-roll caster for aluminum alloys.Journal of Materials Processing Technology,2003,143-144:895-900
    102.T.Haga,T.Nishiyama,S.Suzuki.Strip casting of A5182 alloy using a melt drag twin-roll caster.Journal of Materials Processing Technology,2003,133(1-2):103-107
    103.T.Haga.Semi-solid roll casting of aluminum alloys strip by melt drag twin roll caster.Journal of Materials Processing Technology,2001,111(1-3):64-68
    104.D.Liang,C.B.Cowley.The twin-roll strip casting of magnesium.JOM,2004,05:26-28
    105.娄花芬,李周,李宏磊,等.变形镁合金连续铸轧技术研究进展.材料导报,2005,19(4):58-61
    106.苏鸿英.世界镁工业生产和技术展望.世界有色金属,2004,8:36-39
    107.白丁.镁带材生产近况.世界有色金属,2004,7:62-63
    108.张莹,耿茂鹏,王艳春,等.镁合金的双辊板带连续铸轧技术.铸造技术,2005,26(1):79-81
    109.丁培道,蒋斌,杨春媚,等.薄带连铸技术的发展现状与思考.中国有色金属学报,2004.14:192-196
    110.L,Lochte,H.Westengen,J.Rodseth.An efficient route to magnesium alloy sheet twin roll casting and hot rolling.Magnesium Technology 2005,TMS 2005,247-252
    111.H.Watari,K.Davey,M.TRasgado,et al.Semi-solid manufacturing process of magnesium alloys by twin-roll casting.Journal of Materials Processing Technology,2004,155-156:1662-1667
    112.H.Watari,N.Koga,R.Paisam,et al.Formability of magnesium alloy sheets manufactured by smi-solid roll strip casting.Materials Science Forum,2004,449-452:181-184
    113.H.Watari,T.Haga,K.Davey,et al.Mechanical properties of magnesium alloy sheets produced by semi-solid roll strip casting.Materials Science Forum,2003,426-432:617-622
    114.李铮.双辊铸轧镁合金薄带实验研究.东北大学,硕士论文,2004
    115.李永林,李铮,邸洪双,等.AZ31镁合金薄带直接铸轧新工艺.轻合金加工技术,2004,32(7):15-17
    116.李铮,赵凯,邸洪双,等.双辊铸轧法生产变形镁合金薄带新工艺的研究.轻金属,2003,12:35-37
    117.张颂阳.半固态镁合金铸轧板带制备及其组织性能研究.南昌大学,博士论文,2007
    118.D.Y.Ju,X.D Hu.Effect of casting parameters and deformation on microstructure evolution of twin-roll casting magnesium alloy AZ31.Transactions of Nonferrous Metals Society of China,2006,16(s2):874-877
    119.冯康.双辊铸轧AZ31B镁合金板坯的二次轧制工艺.辽宁科技大学,硕士论文,2007
    1.陈振华,等.变形镁合金.北京:化学工业出版社,2004
    2.R.Ninomiya,T.Ojiro,K.Kubota.Improved heat resistance of Mg-Al alloys by the Ca addition.Acta Metallurgica et Materialia,1995,43(2):669-674
    3.F.Wang,Z.Liu,B.Y.Yu,et al.Elects of Ca addition on tensile properties and microstructures of hot—extruded AZ91 alloy tube.Transactions of Nonferrous Metals Society of China,2006,16:s1736-s1740
    4.W.W.Du,Y.S.Sun,X.G.Min,et al.Influence of Ca addition on valence electron structure of Mg_(17)Al_(12).Transactions of Nonferrous Metals Society of China,2003,13(6):1274-1279
    5.K.Hirai,H.Somekawa,Y.Takigawa,et al.Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature.Materials Science Engineering A,2005,403(1-2):276-280
    6.V.G.Tkachenko,V.G.Khoruzhaya,K.A.Meleshevich,et al.Phase equilibria in the Mg-Al-Ca system(reign 50~100mass%Mg).Powder Metallurgy and Metal Ceramics,2003,42(5-6):268-273
    7.T.Murai,H.Oguri,S.Matsuoka.Effects of manganese contents on extruded magnesium alloys.Materials Science Forum,2005,488-489:515-518
    8.潘复生,韩恩厚.高性能变形镁合金及加工技术.北京:科学出版社,2007
    9.ASTM E0M-03.Standard Test Methods for Tension Testing of Metallic Materials[Metric]
    1.E.Aghion,B.Bronfin.Magnesium alloys development to towards the 21st century.Materials Science Forum.2000,350-351:19-28
    2.田乃媛.薄板坯连铸及热装直接轧制.北京:冶金工业出版社,1993
    3.Alien R V,East D R,Johnson T J,et al.Magnesium alloy produced by twin roll casting.Ed,Hryn J N.Magnesium Technology 2001,Publication of TMS,Warrendale,Pennsylvania,U.S.A,2001,75-79
    4.H.M.Chen,S.B.Kang,H.S.Yu,et al.Microstructure and mechanical properties of Mg-4.5Al-1.0Zn alloy sheets produced by twin roll casting and sequential warm rolling.Materials Science Engineering A,2008,492(1-2):317-326
    5.S.B.Kang,H.M.Chen,H.W.Kim,et al.Effect of reheating and warm rolling on microstructure and mechanical properties of twin roll strip cast Mg-4.5Al-1.0Zn-0.4Mn-0.3Ca alloy sheet,ed.M.O.Pekguleryuz,N.R.Neelameggham,R.S.Beals,and E.A.Nyberg,Magnesium Technology 2008,Publication of TMS,Warrendale,Pennsylvania,U.S.A,2008,147-152
    6.陈洪美,Suk-Bong Kang,于化顺,等.AZA51镁合金薄带的组织和力学性能研究.金属学报,2008,44(4):397-402
    7.Y.S.Park,S.B.Lee,N.J.Kim.Microstructure and mechanical properties of strip cast Al-Mg-Si-X alloys.Materials Transaction,2003,44(12):2617-2624
    8.上海交通大学《金相分析》编写组.金相分析.北京:国防工业出版社,1982
    9.邸洪双.双辊铸轧薄带钢理论与实验研究.东北大学,博士后研究工作报告,1998
    10.鲍培玮,邸洪双,王国栋,等.双辊铸轧薄带钢组织特点及其形成机理分析.钢铁研究,2002.4:25-28
    11.胡汉起.金属凝固原理.北京:机械工业出版社,1991
    12.马幼平,许云华.金属凝固原理与技术.北京:冶金工业出版社,2008
    13.R.Kopp,F.Hagemann,L.Hentschel,et al.Thin-strip casting—modelling of the combined casting:metal-forming process.Journal of Materials Processing Technology,1998,80-81:458-462
    14.N.Zapuskalov.Effect of coiling operation on strip quality of 4.5%Si steel in twin-roll casting process.ISIJ international,1999,39(5):463-470
    1.K.Iwanaga,H.Tashiro,H.Okamoto,et al.Improvement of formability from room temperature to warm temperature in AZ31 magnesium alloy.Journal of Materials Processing Technology,2004,155-156:1313-1316
    2.ASM Sepeiahy Handbook.Magnesium and Magnesium alloys.Materials Park,ASM International,2000
    3.王渠东,丁文江.镁合金研究开发现状与展望.世界有色金属,2004,(7):8-12
    4.S.S.Park,J.G.Lee,Y.S.Park,et al.Fabrication of mg alloy strips by strip casting.Materials Science Forum,2003,419-422:599-604
    5.F.J.Humphreys,M.Hatherly.Recrystallizetion and Related Annealing Phenomena,Second ed,UK,Elsevier Ltd,2004,11-12
    6.S.R.Agnew and O.Duyglu.Plastic Anisotropy and the role of non-basal sip in magnesium alloy AZ31B.International Journal of Plasticity,2005,21(6):1161-1193
    7.S.B.Kang,H.M.Chen,H.W.Kim,et al.Effect of reheating and warm rolling on microstructure and mechanical properties of twin roll strip cast Mg-4.5Al-1.0Zn-0.4Mn-0.3Ca alloy sheet,ed.M.O.Pekguleryuz,N.R.Neelameggham,R.S.Beals,and E.A.Nyberg,Magnesium Technology 2008,Publication of TMS,Warrendale,Pennsylvania,U.S.A,2008,147-152
    8.T.C.Chang,J.Y.Wang,C.M.O,et al.Grain refining of magnesium alloy AZ31 by rolling.Journal of Materials Processing and Technology,2003,140(1-3):588-591
    9. Y.N. Wang, J.C. Huang. Review: Texture analysis in hexagonal materials. Materials Chemistry and Physics 2003, 81(1): 11-26
    10. S.R. Kalidindi. Modelling anisoptropic strain hardening and deformation textures in low stacking fault energy materials. International Journal of Plasticity, 2001, 17(6): 837-860
    11. P. Yang, Y. Yu, L. Chen, et al. Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31. Scripta Materialia, 2004, 50(8): 1163-1168
    12. S.R. Kalididi. Incorporation of deformation twinning in crystal plasticity models. Journal of the Mechanics and Physics of Solids, 1998,46(2): 267-290
    13. M.T. Prado, J.A. del Valle, O.A. Ruano. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling. Scripta Materialia, 2004, 50(5): 667-671
    14. T. Walde, H. Riedel. Modeling texture evolution during hot rolling of magnesium alloy AZ31. Materials Science and Engineering A, 2007,443(1-2): 277-284
    15. A. Styczynski, C. Hartig, J. Bohlen, et al. Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Materialia, 2004, 50(7): 943-947
    16. M.R. Barnett, M.D. Nave, C.J. Bettles. Deformation microstructures and textures of some cold rolled Mg alloys. Materials Science and Engineering A, 2004, 386(1-2): 205-211
    17. F. Kaiser, D. Letzig, J. Bohlen, et al. Anisotropic properties of magnesium sheet AZ31. Materials Science Forum, 2003,419-422: 315-320
    1.M.M.Avedesian,B.Baker(Eds.).ASM Specialty Handbook Magnesium and Magnesium Alloys.ASM International,Materials Park,OH,1999
    2.S.B.Kang,H.M.Chen,H.W.Kim,et al.Effect of reheating and warm rolling on microstructure and mechanical properties of twin roll strip cast Mg-4.5Al-1.0Zn-0.4Mn-0.3Ca alloy sheet.In:M.O.Pekguleryuz,N.R.Neelameggham,R.S.Beals,and E.A.Nyberg,ed.,Magnesium Technology 2008,Warrendale,Pennsylvania:TMS,2008:147-152
    3.H.M.Chen,S.B..Kang,H.S.Yu,et al.Microstructure and mechanical properties of Mg-4.5Al-1.0Zn alloy sheets produced by twin roll casting and sequential warm rolling.Materials Science Engineering A,2008,492(1-2):317-326
    4.M.M.Myshlyaev,H.J.McQueen,A.Mwembela,et al.Twinning,dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy.Materials Science Engineering A,2002,337(1-2):121-133
    5.J.C.Tan,M.J.Tan.Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet.Materials Science Engineering A,2003,339(1-2):124-132
    6.M.T.P'erez-Prado,O.A.Ruano.Texture evolution during annealing of magnesium AZ31alloy.Scripta Materialia,46(2002) 149-155.
    7.A.Jager,P.Lukac,V.Gartnerova,et al.Influence of annealing on the microstructure of commercial Mg alloy AZ31 after mechanical forming.Materials Science and Engineering A 2006,4320-2):20-25.
    8.L.Y.Wei,G.L.Dunlop,H.Westengen.Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys.Metallurgical and Materials Transactions A 1995,26(7):1705-1716
    9.J.B.Clark.Transmission electron microscopy study of age hardening in a Mg-5wt.%Zn alloy.Acta Metallurgica,1965,13(12):1281-1289
    10.J.H.Cho,Y.M.Jin,H.W.Kim,et al.Microstucture and mechanical properties of ZK60 alloy sheets during aging.Materials Science Forum,2007,558-559:159-164
    11.H.M.Chen,S.B.Kang,H.S.Yu,et al.Effect of heat treatment on microstructure and mechanical properties of ZK60 sheets.Journal of Alloys and Compounds,doi:10.1016/j.jallcom.2008.05.077
    12.刘子利,沈以赴,李子全,等.铸造镁合金的晶粒细化技术.材料科学与工程学报,2004,22(1):146-149
    13.Y.C.Lee,A.K.Dahle,D.H.StJohn.Grain refinement of magnesium.In,H.I.Kaplan,J.Hryn,B.Clow,Magnesium Technology 2000,Nashville,Tennessee,2000,211-218
    14.Y.C.Lee,A.K.Dahle and D.H.StJohn.The role of solute in grain refinement of magnesium.Metallurgical and Materials Transactions A,2000,31(11):2895-2906
    15.M.Qian,D.H.StJohn,M.T.Frost.Characteristic zirconium-rich coring structures in Mg-Zr alloys.Scripta Materialia,2002,46(9):649-654
    16.T.Yosuke,K.Norio,M.Tetsuichi.Grain refining mechanism and casting structure of Mg_2Zr alloy.Journal of Japan Institute of Light Metal,1998,48:185-189
    17.S.S.Park,Y.S.Oh,D.H.Kang,et al.Microstructural evolution in twin-roll strip cast Mg-Zn-Mn-Al alloy.Materials Science and Engineering A,2007,449-451:352-355
    18.S.B.Kang,J.H.Cho,H.W.Kim,et al.Effect of heat treatment on microstructure and mechanical properties in ZK60 alloy sheet.Material Science Forum,2008,567-568:361-364
    1.杨德庄.位错与金属强化机理.哈尔滨:哈尔滨工业大学出版社,1981
    2.丁道云,等译,K.H.马图哈主编.非铁合金的结构与性能.北京:科学出版社.1999
    3.陈维平,陈宛德,詹美燕,等.轧制温度和变形量对AZ31镁合金板材组织和硬度的影响.特种铸造及有色合金,2007,27(5):338-341
    4.陈洪美,Suk Bong Kang,于化顺,等.温轧变形对双辊铸轧ZK60镁合金组织和性能的影响.材料科学与工艺,2008,16(s1):42-46
    5.陈振华,等.变形镁合金.北京:化学工业出版社,2004
    6.H.Hosokawa,Y.Chino,J.K.Shimo,et al.Mechanical properties and blow forming of rolled AZ31 Mg alloy sheet.Materials Transaction,2003,44(4):484-489
    7.李鹏喜,张波萍,陈晶益,等.变形工艺对AZ31B镁合金薄板组织及力学性能的影响.材料热处理学报,2006,27(3):60-64
    8.H.M Chen,S.B.Kang,H.S Yu,et al.Microstructure and mechanical properties of Mg-4.5Al-1.0Zn alloy sheets produced by twin roll casting and sequential warm rolling.Materials Science and Engineering A,2008,492(1-2):317-326
    9.T.C.Chang,J.Y.Wang,C.M.O et al.Grain refining of magnesium alloy AZ31 by rolling.Journal of Materials Processing Technology,2003,140(1-3):588-591
    10.F.J.Humphreys,M.Hatherly.Recrystallizetion and Related Annealing Phenomena.Second ed,UK,Elsevier Ltd,2004
    11.黄克琴,杨节,杨觉先,等译,п.и.波,卢欣,等著.塑性变形的物理基础.北京:冶金工业出版社,1989
    12.王占学.塑性加工金属学.北京:冶金工业出版社,1991
    13.E.F.Emely.Principles of Magnesium Technology,Oxford:Pergamon Press,1966
    14.C.Sanchez,G.Nussbaum,P.Azavant,et al.Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths.Materials Science Enginerring A,1996,221(1-2):48-57
    15.S.Isserow,F.J.Rizzinato.Investigation of microquenched Mg ZK60A alloy.International Journal of Powder Metallurgical and Powder Technology,1974,19:217-227
    16.石德珂.材料科学基础.北京:机械工业出版社,2003
    17.潘复生,韩恩厚,等.高性能变形镁合金及加工技术.北京:科学出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700