面向航迹规划的电子沙盘技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子沙盘是相对于传统的实物沙盘模型而言的,也称为数字沙盘或虚拟沙盘。它是集计算机、地理信息系统、虚拟现实、可视化技术和多媒体技术于一体的高新技术产品,为使用者提供一个实时、可交互操作的虚拟现实环境。电子沙盘作为可交互操作的实时虚拟现实环境,是一种既具有传统沙盘的特点,又集成了多种高新技术的产品,在军事、房地产、水利工程、消防等领域都得到了一定的应用。
     航迹规划是指在特定约束条件下,寻找运动体从初始点到目标点满足某种性能指标最优的运动轨迹。它的研究对象包括飞行器、水面舰艇、地面车辆以及机器人。军用飞行器航迹规划是以实现地形跟随/地形、威胁回避飞行为目的的新一代低空突防技术,其目的就是要利用地形和敌情等信息,规划出生存概率最大的飞行器突防轨迹。在防空技术日益完善的现代战争中,航迹规划是提高飞行器的作战效能,实施远程精确打击的有效手段。
     本文首先分析沙盘制作技术的变化与发展,即从传统的实物沙盘向现代的电子沙盘转变;提出了电子沙盘制作的技术方案,并介绍了数据处理、地形模拟与要素匹配等关键技术;然后以数字高程模型(DEM)和卫星遥感图像为数据源,在ArcGIS平台下实现了该地区电子沙盘的制作,最后在航迹规划中可以用精确的电子沙盘来代替真实地形,从而完成将高程数据库加载到航迹规划中的仿真,实现地形跟随/地形、威胁回避的功能,为决策者进行决策提供参考。
Electronic sand table, some called digital sand table or virtual sand table, is contrasted with traditional material sand table model. Unlike material sand table, electronic sand table is a new high-tech product with integration of computer application, geographical information system, virtual reality and multimedia. It can give users a real-time and interactive operation circumstance. With the development of computer technology, material sand table is now gradually substituted by electronic sand table.
     Path planning is to search the best flight track from start point to target point that can maximize survival probability and minimize sail distance according to terrain and enemy’s situation and some other limits. The airplane’s battle area is always very huge, so the path planning for the airplane plays an important role in completing mission. It is the key technology of the airplane mission planning system and the technology generate an optimal track to satisfy the airplane machine performance and war field environment under special, restrict condition.
     This paper not only introduces the design and realization scheme of the electronic sand table, but also presents the key technique of the technical scheme for the electronic sand table, such as data processing, terrain modeling, feature matching. What is more, based on digital elevation model (DEM) and satellite remote sensing image, we made the electronic sand table using the platform of ArcGIS. Finally, we can use the precise electronic sand table to represent the real surface features in the path planning and realize the function of Terrain Following/Terrain Avoidance and Threat Avoidance.
引文
[1]邬伦.地理信息系统原理、方法和应用[M].北京:科学出版社, 2000
    [2]邬伦,张晶,赵伟.地理信息系统[M].北京:电子工业出版社, 2002
    [3]郝力.城市地理信息形体及应用[M].北京:电子工业出版社, 2002
    [4]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社, 1999
    [5]吴信才. MAPGIS地理信息系统[M].北京:电子工业出版社, 2004
    [6]王黎明,文辉,王英.重庆市区域规划电子沙盘系统的设计与实现[J].地理研究, 2005, 24(2): 304-311
    [7]靳宏昌,王铁强,朱庆利.山东省南水北调电子沙盘系统研究[J].南水北调与水利科技, 2007, 5(2): 35-37
    [8]任波,陈新,李利军,王乘.城市规划电子沙盘系统设计[J].计算机与数字工程, 2006, 34(10): 124-126
    [9]杨志强,沈颖,王晓鹏.基于VRMap平台上的电子沙盘研制[J].现代测绘, 2005, 28(2): 9-11, 22
    [10]赵勇,李满春,张晓祥.面向土地利用规划的电子沙盘技术[J].现代测绘, 2004, 27(3): 15-17
    [11]边雪清,曹金莲,杨燕.用MAPGIS开发电子沙盘的方法[J].测绘技术装备, 2006, 8(2): 43-44
    [12]江泳,方裕.基于Web Service的空间数据共享平台[J].地理与地理信息科学, 2004, 20(5): 1-5
    [13]孙庆辉,骆剑承,李宏伟.网格GIS及其关键技术[J].测绘学院学报, 2004, 21(3): 200-204
    [14]冯宪澄. GML在网格GIS中的应用研究[J].计算机工程, 2004, 30(10): 49-50, 174
    [15]姚宏伟,涂颖.南水北调电子沙盘系统的研究与开发[J].系统仿真学报, 2002, 14(12): 1598-1602
    [16]柳超,卜淮原.虚拟电子沙盘实现技术探析[J].重庆工业高等专科学校学报, 2002, 17(1): 39-42
    [17]孙才新.电力地理信息系统及其在配电网中的应用[M].北京:科学出版社, 2003
    [18]张晓倩,龚健雅. AM/FM/GIS在配网自动化系统中的应用[J].测绘信息与工程, 2003, 28(5): 12-14
    [19]高晖,陈欣,夏云程.无人机航路规划研究[J].南京航空航天大学学报, 2001, 33(2): 135-138
    [20]闵昌万.飞行器航迹规划与轨迹控制研究[D].西安:西北工业大学, 1999
    [21]闵昌万,袁建平.军用飞行器航迹规划综述[J].飞行力学, 1998, 16(4): 14-19
    [22]严平,丁明跃,周成平,郑昌文.飞行器多任务在线实时航迹规划[J].航空学报, 2004, 25(5): 485-489
    [23]杜萍,杨春.飞行器航迹规划算法综述[J].飞行力学, 2005, 23(2): 10-14
    [24]周克强,高晓光,白奕.改进的快速扩展随机树在航迹规划中的应用[J].系统工程与电子技术, 2006, 28(10): 1538-1540
    [25]汤代焱.运筹学[M].长沙:中南大学出版社, 2002
    [26]符小卫,高晓光.一种无人机路径规划算法研究[J].系统仿真学报, 2004, 16(1): 20-21
    [27]叶媛媛,闵春平,沈林成.基于VORONOI图的无人机空域任务规划方法研究[J].系统仿真学报, 2005, 17(6): 1353-1355
    [28]代晓巍,李树军,刘晓红. VORONOI图增点构造算法研究[J].测绘工程, 2007, 16(1): 20-21
    [29]缪永飞,汤晓安,韦红波.飞行器航迹规划与三维显示[J].现代电子技术, 2007, (9): 19-21
    [30]郑昌文,严平,丁明跃,苏康.飞行器航迹规划研究现状与趋势[J].宇航学报, 2007, (6): 1-6
    [31]史宗鹏,杜萍,毕义明.基于A*算法的实时航迹规划方法研究[J].海军工程大学学报, 2006, 18(5): 79-82
    [32]刘晓. GIS与分布式工作流管理系统的集成研究[D].合肥:合肥工业大学, 2007
    [33]汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社, 2006
    [34]吴秀芹,张洪岩,李瑞改,张正祥,董贵华. ArcGIS 9地理信息系统应用与实践(上下册)[M].北京:清华大学出版社, 2007
    [35]霍亮.空间物流信息系统研究[M].北京:测绘出版社, 2006
    [36]张治国, ArcGIS简明教程[M].北京:科学出版社, 2008
    [37]巴海涛.无人机航迹规划研究[D].西安:西北工业大学, 2006
    [38]杨颖,王琦. STK在计算机仿真中的应用[M].北京:国防工业出版社, 2005
    [39]黄杏元,马劲松,汤勤.地理信息系统概论[M].北京:高等教育出版社, 2005
    [40]苏康,关世义,宋玮,孙文芳.“3S”技术及其在新一代飞航导弹武器系统中的应用[J].飞航导弹, 1998, (6): 1-5
    [41]严建林,李春涛.无人机航路规划技术研究进展[J].航空计算技术, 2007, 37(5): 123-126
    [42]唐强,张翔伦,左玲.无人机航迹规划算法的初步研究[J].航空计算技术, 2003, 33(1): 125-128, 132
    [43]李春华.一种三维航迹快速搜索方法[J].宇航学报. 2002, 23(3): 13-17
    [44]赵世钰,周锐.基于协调变量的多导弹协同制导[J].航空学报, 2008, 29(6): 1605-1611
    [45]柳长安.无人机航迹规划方法研究[D].西安:西北工业大学, 2003
    [46]柳长安,李为吉,王和平.基于蚁群算法的无人机航路规划[J].空军工程大学学报, 2004, 5(2): 9-12
    [47]符小卫,高晓光.一种无人机路径规划算法研究系统仿真学报[J]. 2004, 16(1): 20-23
    [48]胡晓磊,胡朝晖,江洋溢.基于Dijkstra算法的水平航迹规划[J].火力与指挥控制, 2004, 29(4): 86-88, 92
    [49]赵文婷,彭俊毅.基于VORONOI图的无人机航迹规划[J].系统仿真学报, 2006, 18(增2): 159-162, 165
    [50]陈志全.巡航导弹航迹规划综述.战术导弹技术, 1994, (3): 29-32
    [51]沈林成.开放式飞行任务规蜘系统宇航学报, 1998, 19(2): 13-18
    [52]王永信,张成才,刘丹丹,严高霞.基于ArcGIS 9.0的DEM的生成及坡度分析[J].气象与环境科学, 2007, 30(2): 48-51
    [53] John F.Glmore, Andrew J. Czuchry. A neural network model for route planning constraint integration [J]. IEEE, 1992: 221-226
    [54] T. W. McLain,R. W. Beard. Trajectory planning for coordinated rendezvous of unmanned air vehicles [R]. AIAA, 2000: 4369-4372
    [55] Judd K B, McLain T W. Spline-Based Path Planning for Unmanned Air Vehicles [A]. Proceedings of Guidance, Navigation and Control Conference [C]. 2001: 1182-1190
    [56] M de Berg, M van Kreveld, M. Overmars, O. Schwarzkopf. Computational Geometry Algorithms and Applications (Second Edition) [M]. Springer-Verlag Berlin Heidelberg New York, 2000
    [57] Lydia E. Kavraki et al. Analysis of probabilistic roadmaps for path planning [J]. IEEE transactions on Robotics and Automation, 1998, 14(1): 166-171
    [58] Robert Bohlin, Lydia E. Kavraki. Path planning using lazy PRM [J]. Proceedings of the 2000 IEEE International Conference on Robotics and Automation, 2000: 521-528
    [59] M. B. Pellazar. Vehicles route planning with constraints using genetic algorithms [J]. Proceedings of the IEEE 1994 National Aerospace and Electronic Conference, 1994: 111-119
    [60] John F.Gilmore, Andrew J. Czuchry. A neural network model for route planning constraint integration [J]. IEEE, 1992: 221-226
    [61] Scott A. Bortoff. Path planning for UAVs [J]. Proceedings of the American Control Conference, 2000: 364-368
    [62] I M Oliver, D J Smith, J R C Holland. A Study of Permutation Crossover Operators on the TSP [R]. In: Proc of the 2nd International Conference on Genetic Algorithms and Their Applications. Cambridge, UK, 1987: 224-230
    [63] Cheng Victor H L. Automatic guidance and control for helicopter obstacle avoidance [J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1252-1259
    [64] Zelenka Richard E. Result from the NASA automatic nap-of-the-earth program [J]. Journal of the American Helicopter Society, 1997: 107-115
    [65] Swenson Harry N. Design and flight evaluation of an integrated navigation and near-terrain helicopter guidance system for night-time and adverse Weather operations [J]. NASA-TM-108837, 1994
    [66] Dias JM S. Multiuser 3D Virtual Environment [J]. IEEE Computer Graphics and Applications, 1997, 17(2): 325-335
    [67] Wang Liming, Wen Hui, Wang Ying. 1km Grid Spatial Data Platform for Regional Man-Land System [J]. The Proceedings of the China Association for Science and Technology, 2004, 1(1): 663-666
    [68] Fan B, Li X, Xue J, Zhao Q, Wang N. The Designing of an Intelligent Electronic Sand Table [J]. Proceedings of the International Symposium on Test and Measurement, 2001, 1: 323-325.
    [69] Ioannis K. Nikolos, Kimon P Valavanis, Nikos C. TSourveloudis. Evolutionary Algorithm Based Offline/Online Path Planner for Navigation [J]. IEEE Transactions on Systems Man and Cybernetics, 2003, 33(6): 898-912
    [70] PK.A. Menon, E. Kim, VH.L. Cheng. Optimal Trajectory Synthesis for Terrain-Following Flight [J]. IEEE J. Guidance, 1991, 14(4): 807-813
    [71] Lu Ping. Tracking Control of Nonlinear Systems with Bounded Controls and Control Rates [J]. Automatic, 1997, 33(6): 1199-1202
    [72] Li Zhong Hua. Optimal Design of Adaptive Tracking Controllers for Nonlinear Systems [J]. Automatic, 1997, 33(3): 287-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700