开孔式加劲阻尼器的消能减震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开孔式加劲阻尼器(HADAS)是一种新型的位移型加劲阻尼器,主要由多片软钢消能片组成,通过消能片的面外弹塑性滞回变形来大量消耗结构引入的地震能量。它在未屈服前主要为结构提供刚度,屈服后则可进一步增加结构阻尼,提高建筑物的抗震性能,适用于新建建筑和已有建筑的抗震加固工程。因此,本文对HADAS阻尼器的消能减震性能进行了以下研究工作:
     1、作为本文研究的主要工作,本文设计实施了应用HADAS阻尼器消能减震的框架结构模型振动台试验,获得了该框架模型在不同地震水准作用、不同地震波输入、不同地震作用方向以及安装阻尼器与未装阻尼器等试验工况下的层间位移、楼层加速度、基底剪力等结构反应。从试验现象分析和数据对比可以看出,HADAS阻尼器明显减小了结构的变形和框架柱剪力,有效增加结构的耗能能力,减小甚至避免主体结构在设防地震作用下引起的破坏和损伤。并且通过试验得到的HADAS阻尼器滞回曲线和力学性能参数评价了HADAS阻尼器的滞回耗能性能和对结构抗震性能的影响。
     2、通过理论推导和有限元分析方法,本文还研究分析了HADAS阻尼器的初始刚度、屈服位移(或屈服力)、抗侧刚度、整体抗扭刚度等力学性能与阻尼器所采用钢材的材性及外观尺寸之间的关系。并且对振动台试验设计采用的阻尼器模型实施了低周反复荷载试验,结果显示阻尼器的滞回曲线饱满、稳定,其极限位移达到35mm,能够满足结构对它的变形能力要求。
     3、借助SAP2000程序,考虑几何非线性、材料非线性和连接单元非线性,对振动台试验模型进行了动力非线性时程分析,分析和探讨了HADAS阻尼器在框架结构处于弹塑性阶段的消能减震效果。
     最后,在总结本文内容的基础上,提出了HADAS阻尼器应用于工程实际的若干建议,并简单讨论了需要进一步研究的内容。
As a new type of displacement-dependent ADAS (Added Damping And Stiffness) dampers, HADAS damper consists of several mild steel energy-dissipation plates, which can dissipate a large amount of seimic energy induced into the structure by their out-of-plane inelastic hysteresis cycles and effectively improve the seimic behavior of structure. Before yielding, the damper adds up the stiffness of structure, and increases the damping of structure after its yielding. Therefore, HADAS damper is suitable for new-construct building and retrofit of existing structure. Focused on the energy dissipation and seismic response reduction of HADAS damper, the research work of this thesis can be summarized as follows:
     1. As the main research work of this thesis, a shake table test is designed and conducted on a three-story, steel moment-resistant frame structure (referred to as MRF) both with installaion of twelve HADAS dampers (referred to as HADAS-frame) and its bare configuration (no any HADAS dampers). The seismic reponses of MRF and HADAS-frame under different ground motion inputs of a range of intensity levels through different directions such as story drift, acceleration, base shear and so on are achieved. The performance analysis and results comparison between MRF and HADAS-frame indicate that the structural deformation and column shear force are significantly reduced, and the energy dissipation capacity of the structure is increased so that the damage and injury of major structure can be decreased or even avoided. The hysteresis energy dissipation capacity of HADAS damper and its influence on structural seismic behavior are evaluated by the hysteresis loops of dampers and their mechanical characteristics obtained from the test.
     2. Through theoretical analysis and finite element analysis methods, the relationship between the steel property, size parameters and the mechanical characteristics of HADAS damper, such as initial stiffness, yielding displacement (or yielding force), latral stiffness and torsional stiffness, are also analyzed in this thesis. Then a cyclic loading test of a HADAS damper used in the shake table test is performed to obtain the basic mechanical parameters of the damper and to make comparison with the results of shake table test and design value. The test results show that the hysteresis loop of HADAS damper is stable and with large areas, and its ultimate displacement reaches 35mm, which can completely meet the structural requirements of deformation.
     3. Considering geometric nonlinearity, material nonlinearity and link object material nonlinearity, a nonlinear dynamic analysis is performed to both MRF and HADAS-frame model by adopting general structural analysis program SAP2000. And the seismic energy dissipation capacity of HADAS damper, when major structure enters into inelastic phase, is evaluated.
     On the basis of above, some suggestions to practical engineering application of HADAS damper are pointed out and the problems requiring further studies are discussed.
引文
[1]Housner G.W.,Bergman L.A.and Caughey T.K.et al.Structural Control:Past,Present,and Future,Journal of Engineering Mechanics,Sep.1997:897-971
    [2]周云,徐彤,周福霖.抗震与减震结构的能量分析方法研究与应用.地震工程与工程振动,1999,V01.19(4):133-139
    [3]Kelly,J.M.,Skinner,R.I.and Heine,A.J.,Mechanisms of Energy Absorption in Special Devices for Use in Earthquake-Resistant Structures,Bull,N.Z.Nat.Soc.for Earthquake Engineering,1972,Vol.5(3):63-88
    [4]王亚勇,陈清祥,薛彦涛.开孔式软钢阻尼器 HADAS之抗震加固工程应用.抗震加固改造技术第一届学术交流会论文集,2004:279-285
    [5]同济大学土木工程学院结构工程与防灾研究所.应用于上海移动通信有限责任公司万荣局的位移型阻尼器试验报告,2006
    [6]中国建筑科学研究院建筑结构研究所实验报告.2007,报告编号:建结(结构)字(2007)第012号
    [7]吕西林,蒋欢军.结构抗震消能控制的试验与应用研究.振动工程学报,1999,Vol.12(2):210-217
    [8]吴斌,张纪刚,欧进萍.Pall型摩擦阻尼器的试验研究与数值分析.建筑结构学报,2003,Vol.24(2):7-12
    [9]Pall,A.S.and Marsh,C.,Response of Friction Damped Braced Frames,Journal of Structural Division,ASCE,1982,Vol.108(6):1313-1323
    [10]欧进萍,邹向阳,龙旭等.振戎中学食堂楼耗能减震分析与设计(Ⅰ)-反应谱法.地震工程与工程振动,2001,Vol.21(1):109-114
    [11]叶正强,李爱群,程文瀼,杨国华,丁幼亮.采用粘滞流体阻尼器的工程结构减振设计研究.建筑结构学报,2001,Vol.22(4):61-66
    [12]贺军利,汪大绥.消能减振房屋抗震设计方法研究述评.世界地震工程,2005,Vol.21(4):148-156
    [13]周云.粘滞阻尼减震结构设计.武汉:武汉理工大学出版社,2006
    [14]王亚勇,薛彦涛,欧进萍等.北京饭店等重要建筑的消能减振抗震加固设计方法.建筑结构学报,2001,Vol.22(2):35-39
    [15]周云,徐赵东,赵鸿铁.粘弹性阻尼结构的性能、分析方法及工程应用.地震工程与工程振动,1998,Vol.18(3):96-107
    [16]常业军,苏毅,吴曙光等.圆筒式粘弹性阻尼器的试验研究及工程应用.振动与冲击,2007,Vol.26(2):63-67
    [17]Soong T.T.,Dargush G.E,Passive Energy Dissipation Systems in Structural Engineering,John Wiley & Sons,1997
    [18]魏文晖,瞿伟廉.设置FVD框架结构的非线性地震反应控制研究.东南大学学报(自然科学版),2004,Vol.34(3):386-389
    [19]周强.带有耗能器平面钢框架体系数值分析与试验研究.博士学位论文.上海:同济大学土木工程学院,2000
    [20]吕西林,周强.铅芯橡胶耗能器与油阻尼器组合耗能系统的振动台试验与分析.力学季刊,2001,Vol.22(1):117-127
    [21]Whittaker,A.S.Bertero,V.V.Thompson,C.L.and Alonso,L.J.Seismic Testing of Steel Plate Energy Dissipation Devices.Earthquake Spectra,1991,Vol.7(4):563-604
    [22]Tsai,K.C.,Chert,H.W.,Hong,C.P.,and Stu,Y.E,Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction,Earthquake Spectra,1993,Vol.9(3):505-528
    [23]Tsai,K.C.,Li,J.W.et al.Welded Steel Triangular Plate Device for Seismic Energy Dissipation.Proc.of ATC-17-1 Seminar on Seismic Isolation,Passive Energy Dissipation,and Active Control,1993,Vol.2:11-12
    [24]Akira Wada,Mamoru Iwata,Yillua Huang.Seismic Design Trend of Tall Steel Building after the Kobe Earthquake.International Post-Smirt conference Seminar on Seismic Isolation,Passive Energy Dissipation and Active Control of Seismic Vibration of Structures,Taormina,Italy,1997,August:25-27
    [25]Martinez-Romero E.Experimences on the Use of Supplemtary Energy Dissipators on Building Structure,Earthquake Spectra,1993,Vol.9(3):223-227
    [25]吴斌,欧进萍.软钢屈服耗能器的疲劳性能和设计准则.世界地震工程,1996(4):8-13
    [27]欧进萍,吴斌.组合钢板耗能器——种新型耗能减震装置.地震工程与工程振动,1997,Vol.17(1):32-39
    [28]周云,刘季.加劲阻尼装置在建筑抗震中的应用.工程抗震,1997(1):34-38
    [29]吴波,郭安薪,王光远.软钢耗能器可靠度的分析方法.地震工程与工程振动,2000,Vol.20(2):13-18
    [30]周强.带有耗能器平面框架体系数值分析与试验研究.博士学位论文,同济大学,2000
    [31]陈竣,李犁,祝叶.加劲阻尼装置在结构减震中的作用.湖北工学院学报,2001,Vol.16(2):47-51
    [32]欧进萍,吴斌.组合钢板屈服耗能器性能及对其高层钢结构减振效果的试验研究.建筑结构学报.2001,Vol.22(1):26-32
    [33]邢书涛.新型软钢阻尼器及其在结构控制中的应用研究.硕士学位论文,中国地震局工程力学研究所,2003
    [34]邢书涛,郭迅,一种新型软钢阻尼器力学性能和减震效果的研究.地震工程与工程振动,2003,23(6):179-186
    [35]李东伟.一种新型加劲软钢阻尼器性能与应用的试验研究.硕士学位论文,哈尔滨工业大学,2005
    [36]李姝颖.菱形开洞软钢阻尼器的性能分析与应用研究.硕士学位论文,哈尔滨工业大 学,2005
    [37]建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001
    [38]台湾地震工程研究中心.HADAS钢板消能器构架与构建性能试验报告,2004
    [39]胡克旭,吕西林,陈清祥等.开孔式软钢阻尼器在某公司机房大楼抗震加固中的应用.结构工程师,2005(增刊):7-11
    [40]王亚勇,戴国莹.建筑抗震设计规范算例.北京:中国建筑工业出版社,2006
    [41]李钢,李宏男.新型软钢阻尼器的减震性能研究.振动与冲击,2006,Vol.25(3):66-72、206-207
    [42]李宏男,李钢.装有“双功能”软钢阻尼器结构的地震反应分析.第14届全国结构工程学术会议论文集,2005:65-68
    [43]建筑抗震设计规程(DGJ08-9-2003).上海市建设工程标准定额管理总站,2003
    [44]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南.北京:人民交通出版社,2006
    [45]Edward L.Wilson.Three-Dimensional Static and Dynamic Analysis of Structures.Computers ans Structures,Inc.2002
    [46]R.克拉夫,J.彭津著.王光远等译.结构动力学.北京:高等教育出版社,2006
    [49]FEMA273 NEHRP Guidelines for the Seismic Rehabilitation of Building.Federal Emergency Management Agency,1997
    [50]FEMA 356 The Seismic Rehabilitation of Buildings.Federal Emergency Management Agency,2000
    [51]ATC.1996.Seismic Evaluation and Retrofit of Concrete Buildings.Volume 1,ATC-40Report.Applied Technology Council.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700