硅溶胶硅酸钾(钠)混合物体系稳定性及微量热热动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究了作为单组分涂料基料的硅溶胶与硅酸钾(钠)混合的混合物的室温放置稳定性,并用粒径测量、pH测量和等温热导微量热法对其作了表征。结果表明,含小的纳米(粒径在19.0 nm以下)胶体二氧化硅粒子的混合物以及当混合化学反应完全时的总焓变(总焓变为1.6234-3.3882 J)大的混合物稳定性好,稳定性受硅酸钾(钠)模数、硅溶胶在混合物中占的相对重量百分比(硅溶胶占53、65、75、85 wt%)、混合操作条件、原材料规格、温度、pH值、二氧化硅浓度、钾和钠离子、有机硅和硅烷偶联剂之类的稳定剂、高分子乳液、增稠剂与分散剂的合理搭配等等因素影响。加了适当稳定剂的该混合物稳定存放时间大大延长。最后再加入苯丙乳液配制成的基料在室温下可存放至少7个月以上。选择了助剂和颜填料,初步配制成的涂料所形成的膜具有光滑坚硬的特点。
     等温热导微量热法对于二氧化硅聚合反应是一种全新的表征方法,在25°、35°和45℃及搅拌条件下,采用该方法研究了硅溶胶与硅酸钾(钠)的混合过程。结果表明,硅溶胶与硅酸钾(钠)混合时立刻发生了不是酸碱中和而是二氧化硅溶解和聚合的化学反应并产生了热效应,热效应受温度、硅溶胶所占的相对重量百分比、钾和钠离子等因素的影响。其聚合反应的特征是反应级数从低到高、时刻都在快速不断变化;焓变随着温度升高而增大;当硅溶胶和硅酸钾里的二氧化硅低聚化反应处在3.0的反应级数时,反应速率常数在25.0℃最大,为1.22×10-4mol-2dm6s-1;二氧化硅单体低聚化可以分为两个温度区,在25.0°-35.0℃温度区,聚合反应快,在35.0°-45.0℃温度区,聚合反应慢。这两个温度区反映了两个阶段的低聚化反应,并且以两步阴离子机理形成了不同的低聚物。高温有利于环状和大的胶体二氧化硅粒子的形成,而低温所产生的是线性和支链的低聚物,低温形成的硅溶胶与硅酸钾的混合物更稳定。纳米胶体二氧化硅粒子的形成分为三个阶段。第一个阶段,硅溶胶与硅酸钾(钠)混合,pH值发生改变,硅溶胶和硅酸钾(钠)中的胶体粒子溶解,此为热谱曲线上的第1段。第二个阶段,混合物中的二氧化硅单体(原硅酸)聚合,不断生成二聚体、三聚体等等低聚物以及增长的二氧化硅胶体粒子,反应速率不断变小,直至反应完成,此为热谱曲线上的第2段。在这一阶段,硅溶胶的两个粒径分布(由强度)峰发生改变,硅酸钾(钠)里的“活性硅”再沉积到硅溶胶重新排列的粒子上,形成与原硅溶胶和硅酸钾(钠)都不同的新的粒径分布。硅溶胶所占的份额越多,热谱曲线峰越高,焓变越大,其混合物所形成的胶体二氧化硅粒子是小粒径的,反之则是大粒径的。小粒子形成增强的粒子间硅氧键,发展成凝结程度高的纤维状的并具有大的拉伸强度和好的耐水性的结构网络,但是,所形成的凝胶干燥后会开裂。第三阶段,粒子之间进行聚集,热效应很小,此为热谱曲线上的第3段。粒径测量观察到的是热谱曲线第2段的后面部分和第3段全部,这些部分在粒径分布统计图(由强度)上可以定性地指定为粒径在100 nm以下的基本粒子、100 nm以上至几百nm的由基本粒子增长而成的大的胶体粒子和1000 nm左右及以上的二氧化硅单体和低聚物等成分三个部分。微量热法、粒径和pH值测量结合,可以全面完整地观察硅溶胶和硅酸钾(钠)的混合及其陈化过程,为涂料配方设计和涂料研制提供了理论指导。
The stability (when aged at ambient temperature) of mixtures (as a one-component coating binder) of silica sol and potassium silicate (or potassium sodium silicate) was investigated. Some of the mixtures were characterized by using isothermal heat conduction microcalorimetry and by measuring their particle size and pH value. Experimental results showed better stability for the mixture containing small nano-sized colloidal silica particles (less than 19.0 nm in diameter) and for that in a larger total enthalpy change (1.6234-3.3882 J) for a mixing reaction when it has gone to completion. And the stability was affected by the molar ratio of silica to alkali metal oxide in the potassium silicate (or potassium sodium silicate), the percentage by weight of the silica sol (53,65,75, and 85 wt% fraction) in the mixture, operating conditions when mixing, raw material specifications, temperature, pH value, SiO2 concentration, K+ and Na+ ions, stabilizers such as organic silicon and silane coupling agent, polymer emulsion, a reasonable collocation between thickener and dispersing agent, etc. When appropriate stabilizers were added into a mixture, the mixture exhibited a significantly longer shelf life. Moreover, the shelf life of the binder which was prepared by mixing the mixture and stabilizers as well as styrene-acrylic emulsion can reach more than 7 months at ambient temperature. Selected additives and pigments and fillers, the coating from preliminary preparation formed a smooth and hard film.
     Isothermal heat conduction microcalorimetry is a novel characterization method for silica polymerization, and was adopted to investigate the polymerization processes of silica when the combination of silica sol and potassium (sodium) silicate was stirred at 25.0°,35.0°, and 45.0℃. Microcalorimetric results indicated that chemical reactions occurred immediately in the mixed silica sol and potassium (or sodium) silicate were not a acid-base neutralization reaction but the dissolution and complex polymerization of silica with heat evolved, which was affected by temperature, the percentage by weight of the silica sol in the mixture, and K+ and Na+ ions. The silica polymerization was characterized by reaction orders which were rapidly and continued changing from low to high all the time. And when the reaction order for the oligomerization of silica in the mixed silica sol and potassium silicate was 3.0, the maximum rate constant occurred at 25.0℃(k = 1.22 x 10﹣4 mol﹣2 dm6 s﹣1). The two temperature regions (25.0°-35.0℃region with a faster rate and 35.0°-45.0℃region with a lower rate) reflected a two-stage oligomerization of silica monomers with different oligomers formed in a two-step anionic mechanism. The enthalpy change was greater at each higher temperature. The formation of circular and large silica particles was favored at high temperature, and the formation of linear and branched-chain oligomers was done at low temperature. The mixture of the silica sol and potassium silicate was more stable at the low temperature than that at the high temperature. The formation of nano-sized colloidal silica particles can be divided into three stages. In the first phase, when the silica sol was mixed with the potassium (sodium) silicate, the pH value of both silica sol and potassium (sodium) silicate changed, both the small and large colloidal particles in the silica sol and potassium (sodium) silicate dissolved, this was reflected at sectionl in power-time curve in microcalorimetric experiments. The second stage, followed by silica monomer polymerization, continuously created dimers, trimers, etc. oligomers and growing particles of silica, became smaller reaction rate continuously until the reaction completed, this is section2 in the power-time curve. At this stage, the two original peaks of the silica sol on particle size distribution by intensity changed, "active silica" in the potassium (sodium) silicate then redeposited onto the particles of rearrangement of the silica sol to form a distinct particle size distribution from original that of the silica sol and potassium (sodium) silicate. In the mixture of the silica sol and potassium silicate, the more the silica sol fraction by weight in the mixture, the higher the peak height of power-time curve, the greater the enthalpy change, the smaller size the silica particles to form, otherwise the larger size the silica particles to do. Strengthening interparticle siloxane bonds resulted from small size particles can develop into greater coalescence and stronger and more fibrillar Si-O-Si chain structure network with great tensile strength and good water resistance, but gels formed by the small size particles will be cracking during drying. The third stage, that is section3 in the power-time curve, was the process of aggregation between silica particles occurred with much less heat evolved. The size and distribution observed by particle size measurement is the back section2 and the all section3 in the power-time curve. Size statistics reports by intensity or volume can be qualitatively designated as three parts for elementary particles in less than 100 nm size in diameter, large colloidal silica particles grown from the elementary particles in more than 100 nm to several hundred nm sizes and silica monomers and oligomers in 1000 nm around and above sizes. Microcalorimetric experiments, particle size and pH value measurements can be combined to observe comprehensively and completely processes in the mixed and aged silica sol and potassium (sodium) silicate, and to provide a theoretical guidance for the formulation and development of coatings.
引文
[1]林宣益.乳胶漆.北京:化学工业出版社,2004.
    [2]肖雪平.发展高耐沾污性外墙涂料.化学建材,1987,专辑2:45-48.
    [3]秦钢,邓荣汉.涂层耐沾污性评价方法的改进.化学建材,1987,专辑2:31-34.
    [4]胡桃苑.试谈无机涂料的耐沾污性.化学建材,1988,3:22-24.
    [5]徐峰,储健.系列耐沾污水性建筑涂料.现代涂料与涂装,2002,3:15-18.
    [6]邹候招,徐峰.抗污乳胶漆的研制.中国涂料,2002,1:35-37.
    [7]徐峰,邹候招.耐沾污乳胶漆的研制.新型建筑材料,2002,9:28-29.
    [8]徐峰.耐沾污仿瓷涂料的研制.新型建筑材料,2001,5:5-7.
    [9]邹候招,徐峰.抗沾污仿瓷涂料的研制与开发.房材与应用,2001,29(2):30-32.
    [10]徐峰.耐沾污型有机-无机复合涂料的研制.现代涂料与涂装,2001,6:9-11.
    [11]徐峰,王自银.耐沾污型硅溶胶-丙烯酸酯乳液复合外墙涂料的研制.现代涂料与涂装,2004,2:21-24.
    [12]卢荣明,王飞,范晓玲.高耐沾污弹性外墙漆的研制.上海建材,2001,6:9-12.
    [13]陈炳强,陈炳耀,陈明毅.高性能弹性外墙涂料配方设计及其影响因素.化学建材,2008,24(2):7-10.
    [14]郭林晖.单层耐沾污弹性涂料的研制.涂料工业,2004,34(5):27-29.
    [15]鹿现栋.耐沾污外墙涂料的研制.中国涂料,2004,11:16-18.
    [16]王贤明,王华进,阎永江.耐沾污涂料.涂料工业,2004,34(9):32-36.
    [17]徐龙贵,袁培福,赵德华等.亲水耐沾污户外涂料研究.涂料工业,2006,36(12):45-48
    [18]酒新英.有机硅改性丙烯酸高耐候性外墙涂料.中国涂料,2006,21(5):36-37.
    [19]刘建颖.耐沾污性—硅丙外墙乳胶涂料的研制与应用.中国涂料,2006,21(6):25-27.
    [20]陈立军,陈丽琼,张欣宇等.环保型高耐沾污性纯丙乳胶漆的研制.新型建筑材料,2006,11:1-4.
    [21]赵明敏.耐沾污外墙乳胶漆的开发.涂料工业,2007,37(7):67-69.
    [22]徐文,胡剑青,涂伟萍.环境友好耐沾污隔热涂料的研制.涂料工业,2008,38(10):1-3,11.
    [23]瞿金东,彭家惠,陈明凤等.Nano-SiO2/丙烯酸酯核壳乳液制备及外墙涂料耐沾污性.重庆大学学报(自然科学版),2007,30(12):76-79,88.
    [24]刘华萨,郑佩莹.丙烯酸系核壳乳液耐沾污外墙涂料的试验研究.新型建筑材料,200.8,7:77-79.
    [25]张心亚,黄洪,阎虹等.高耐候、耐污外墙乳胶涂料的配方设计.江苏大学学报(自然科学版),2009,30(2):183-187.
    [26]邱振新,陈凯,常维峰等.弹性乳胶漆耐沾污性研究.山东建材,2008,6:41-43.
    [27]董善刚,祝洒虎,张洪梅.高耐沾污弹性涂料的制备.中国涂料,2009,24(4):57-58,65.
    [28]崔学军.高性能含氟乳液的合成及水性含氟涂料耐沾污性建模:[博士学位论文].长春:吉林大学,2008.
    [29]夏娟.外墙乳胶涂料的耐沾污性研究:[硕士学位论文].重庆:重庆大学,2007.
    [30]张人韬.含氟乳胶及纳米材料在建筑涂料中的应用研究.国外建材科技,2004,25(4):35-38.
    [31]Nakaya T. Development of a staining preventive coating for architecture. Progress in Organic Coatings,1996,27:173-180.
    [32]Wagner 0, Baumstark R. How to control dirt pick-up of exterior coatings. Macromol.Symp.,2002,187:447-458.
    [33]Wagner 0, Baumstark R. Dirt pick-up of exterior coatings. Surface Coatings Australia, December 2003,12-16.
    [34]Smith A, Wagner O. Factors affecting dirt pickup in latex coatings. Journal of Coatings Technology,1996,68 (862):37-42.
    [35]Smith A, Wagner O.影响乳胶漆积尘沾污性的因素.中国涂料,1997,3:45-48.
    [36]Bhagwat GA. Advances in minimizing dirt pick-up on exterior latex paints. Paintindia, December 2001,35-42.
    [37]Zielecka M. Hydrophobic and hydrophilic silicone-containing systems for external antisoiling protection of porous building materials. Surface Coatings International Part A,2003,5:187-190.
    [38]Zhang W, Yang MJ. Study on siloxane-acrylic aqueous dispersions for use in exterior decorative coatings. Surface Coatings International Part B:Coatings Transactions,2005,88 (B2):107-111.
    [39]沈丽华,傅徽,林宣益.浅谈建筑涂料涂层耐沾污性能的试验方法.化学建材,2005,21(4):16-19.
    [40]游劲秋.浅析表面能和乳胶漆耐沾污性能的关系.化学建材,2003,4:12-14.
    [41]郑公劭.外墙乳胶漆耐沾污性及其人工加速测试方法的探讨.上海涂料,2005,43(3):36-39.
    [42]赵从华,康芦笙,冉龙泉.影响外墙乳胶漆耐沾污性的因素.涂料工业,2003,33(1):17-18.
    [43]张心亚,蓝仁华,陈焕钦.建筑外墙乳胶涂料的耐沾污性及其控制方法.新型建筑材料,2004,(5):52-54.
    [44]郭清泉,黎永津,陈焕钦.漆膜的耐沾污性及影响因素.化学建材,2003,5:15-18.
    [45]梁丽芸,黎永津,蓝仁华等.建筑外墙乳胶涂料的耐沾污性研究.化学建材,2002,6:9-10,14.
    [46]王雪松,张玲华.外墙涂料配方因素与涂膜耐沾污性机理研究.新型建筑材料,2006,11:4-7.
    [47]夏娟,彭家惠,瞿金东等.低表面能助剂对外墙乳胶漆耐沾污性的影响及其改性机理.新型建筑材料,2007,9:65-67.
    [48]徐国君.对外墙乳胶涂料耐沾污性性能的因素研究.宁波化工,2007,3/4:23-26.
    [49]邱春光,原振玲,陈凯.乳胶漆耐沾污性各影响因素分析.山东化工,2007,36(9):4-5.
    [50]王伟民,李雯,陈尔凡.外墙乳胶漆耐沾污性的分析及发展状况.辽宁化工2008,37(5):298-300.
    [51]王雪松,张玲华,潘施法.外墙涂料树脂种类与涂膜耐沾污性关系研究.建筑材料学报,2007,10(3):323-330.
    [52]黄新丽,陈明凤,瞿金东等.核壳型丙烯酸酯乳液壳层性质对涂料耐沾污性的影响.化学建材,2006,22(6):1-3.
    [53]张人韬,闰金霞,温霖.建筑涂料的亲硫水性与耐沾污性问题.建材发展导向,2004,4:42-44.
    [54]张超灿,汤先文,何东铭等.纳米Si02对水性外墙涂料耐沾污性能影响研究.武汉理工大学学报,2003,25(10):12-15.
    [55]徐峰.提高合成树脂乳液外墙涂料耐沾污性能的措施.上海涂料,2003,41(4) :13-15.
    [56]苏琴.外墙乳胶漆沾污性的剖析及解决对策.上海涂料,2004,42(5,副刊):28-30.
    [57]李柏.提高外墙涂膜耐污性探究.湘潭师范学院学报(自然科学版),2007,29(4):98-100.
    [58]林宣益.建筑涂料耐久性之我见.化学建材,1999,3:5-6.
    [59]董松,张智强,饶枭宇等.浅谈外墙涂料的耐久性.现代涂料与涂装.2005,2:19-21.
    [60]王存军,陈炳强,张发爱.外墙乳胶漆耐候性.涂料工业,2006,36(1):51-53.
    [61]刘成楼,傀功祥.提高外墙乳胶漆耐久性的研究.上海涂料,2008,46(2):40-43.
    [62]梁丽芸,夏正斌,蓝仁华等.超耐候建筑外墙涂料的研究.化学建材,2002,2:19-21.
    [63]李金辉.耐沾污性建筑外墙涂料的研究.上海涂料,2009,47(8):22-25.
    [64]武利民,周树学,游波等.有机-无机纳米复合涂料的制备、结构和性能.涂料工业,2006,36(8):47-51.
    [65]王叶,肖新颜,万彩霞.自洁功能外墙涂料的研究及应用.化工新型材料,2008,36(3):12-14,46.
    [66]孙培勤,孙绍晖,刘大壮.自分层涂料的机理和研究现状.涂料工业,2005,35(2):54-57.
    [67]马伟,李树材.自分层涂料的机理和研究进展.现代涂料与涂装,2006,10:5-9.
    [68]张人韬.水性氟硅涂料及其自分层效果研究.新型建筑材料,2002,6:19-21.
    [69]刘慧.新一代外墙耐沾污纯丙乳液性能研究.中国涂料,2008,23(3):58-60.
    [70]周荣,邱平,曹勇兵等.无机纳米Si02复合涂料的制备及性能.化学建材, 2008,24(5):13-14.
    [71]徐永飞,吉静.我国有机-无机复合建筑乳液的研究进展.新型建筑材料,2009,5:36-39.
    [72]虞兆年.溶胶—凝胶与涂料.上海涂料,2002,40(1):10-12.
    [73]李为立,智锁红,高延敏.溶胶-凝胶法制备有机-无机杂化涂料及其应用研究进展.上海涂料,2009,47(4):25-27.
    [74]王娟,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状.化学工业与工程,2009,26(3):273-277.
    [75]王雨,郊绍义,丁高升.能形成疏水性自洁漆膜的涂料.科学实验,2003,1:17-20.
    [76]黄东勤,张子勇.含有机硅和丙烯酸树脂的有机-无机杂化涂料.涂料工业,2006,36(2):25-28.
    [77]周应萍,崔锦峰,杨保平等.硅溶胶-苯丙无机/有机复合乳胶建筑涂料的研制.中国建材科技,2007,3:17-20.
    [78]徐永飞,吉静.高硅溶胶含量复合型乳液的制备与性能研究.涂料工业,2009,39(3):33-36.
    [79]周海鸥,孙梅.自清洁涂料的研究思路与现状.中国涂料,2006,21(5):34-35,47.
    [80]周向东,钟明强,张纬武.纳米硅溶胶、苯丙复合乳液的合成及性能研究.化工新型材料,2005,33(7):56-58.
    [81]王韧.Ropaque优创遮盖聚合物.上海建材,2003,6:25-26.
    [82]叶庆峰,杜金杰,吕静.遮盖聚合物在涂料中的应用.涂料工业,2003,33(12):43-45.
    [83]朱立宁,松永昌,孙家悦.超耐候型含氟水性涂料乳液.涂料工业,2008,38(5):27-29,32.
    [84]竺乐益.从天然曝晒观察硅丙乳胶漆的耐候性.上海涂料,2004,42(1):26-30.
    [85]黎治平,郭清泉,蓝仁华等.对比颜料体积浓度对乳胶漆性能的影响.化学建材,2004,1:21-24.
    [86]林宣益.仿生学在建筑涂料中的应用——荷叶效应乳胶漆.上海涂料,2005,43(1/2):7-8.
    [87]黄忠连.荷叶效果乳胶涂料配方设计及性能.中国涂料,2005,20(1):41-42.
    [88]张华洁,陈明凤,瞿金东等.氟聚合物在丙烯酸酯核壳乳液及耐沾污外墙涂料中的应用.化学建材,2007,25(2):11-12,16.
    [89]王德富.高耐候水性氟碳外墙乳胶涂料的研制.中国涂料,2005,20(1):24-25.
    [90]曾玉燕,方军,陈剑华等.高耐候性纳米复合外墙涂料.涂料工业,2003,33(10):1-4.
    [91]陈明毅,张熠,陈树云等.高性能硅丙外墙涂料的研究.上海涂料,2009,47(1):7-9.
    [92]余节德,张雪芹,朱祖良等.硅丙乳液及硅丙外墙涂料的研制.新型建筑材料,2003,2:14-16.
    [93]余节德,朱祖良,沈忠明.硅丙乳液及其硅丙外墙涂料的研制.涂料工业,2003,33(9):21-23.
    [94]余节德,田军县,赵新建等.水性氟碳外墙涂料的研制及其应用.新型建筑材料,2005,1:41-43.
    [95]孙顺杰,洪永顺,张琳.硅树脂外墙涂料的配方设计与性能研究.涂料工业,2008,38(10):4-7.
    [96]瞿金东,彭家惠,陈明凤等.核壳乳液的制备及其在耐沾污外墙涂料中的应用.东南大学学报(自然科学版),2005,35(增刊Ⅰ):163-166.
    [97]李桂林.环境友好涂料配方设计的应用技术.涂料工业,2008,38(2):69-71.
    [98]王鲲,张晟,王晓亭.建筑外墙涂料现状及应用.上海建材,2008,2:14-15.
    [99]唐辉宇.建筑物外墙涂层的劣化分析及对策.现代涂料与涂装,2005,3:22-23.
    [100]侯云芬,蔡光汀,陈家珑等.建筑物外墙涂料饰面层的劣化分析及对策.房材与应用,2004,1:16-17.
    [101]张华洁,陈明凤,瞿金东等.可聚合乳化剂在核壳乳液及耐沾污外墙涂料中的应用.化学建材,2006,22(6):13-14,17.
    [102]李运德.两种FEVE氟碳涂料的性能比较.中国涂料,2008,23(10):37-39.
    [103]姜才兴,周福根.FEVE氟碳涂料质量及其特性探讨和应用.中国涂料,2006,21(3):14-17.
    [104]谢卫红,刘胡行男,赵海涛.纳米CaCO3对建筑外墙涂料性能的影响.河南建材,2008,4:47-48.
    [105]邓前军.纳米SiO2对丙烯酸酯外墙涂料的改性.广东化工,2005,3:1-2.
    [106]邓前军,赖月腾,李明光.纳米SiO2改性外墙涂料的研究.应用化工,2005,34(3):167-168,173.
    [107]卢君,李玉平,刘付胜聪等.纳米材料改性高性能外墙涂料的研制.新型建筑材料,2003,11:15-17.
    [108]王训遒,蒋登高,赵文莲等.纳米碳酸钙在外墙涂料中的应用研究.建筑材料学报,2005,8(5):547-552.
    [109]陆亨荣,张玲华.水性聚氨酯-丙烯酸酯复合外墙涂料性能及应用研究.化学建材,2001,3:21-23.
    [110]陈红.水性聚氨酯涂料技术进展.涂料工业,2006,36(3):47-51.
    [111]林宣益.提高有机硅改性外墙乳胶漆性能的机理.中国涂料,2004,1:25-27.
    [112]闫金霞,张人韬,田红.外墙乳胶漆耐沾污性的提高措施及测试方法.上海大学学报(自然科学版),2003,9(2):177-180.
    [113]郑公劭.外墙乳胶漆耐沾污性及其人工加速测试方法的探讨.上海涂料,2005,43(3):36-39.
    [114]黄忠连.外墙涂料的三个重要国际标准介绍.上海涂料,2004,42(3):38-40.
    [115]林宣益.我国外墙乳胶涂料测试结果和使用性能之间的相关性.中国涂料,2005,20(4):8-11,13.
    [116]徐进.有机-无机(硅溶胶)复合涂料的制备.上海涂料,2003,41(6):7-9.
    [117]王国建,王凤芳.硅溶胶-苯丙乳液复合涂料的稳定性研究.化学建材,1992,1:9-13.
    [118]黎治平,张心亚,蓝仁华.酸改性钠水玻璃与苯丙乳液复合内墙涂料的研制.新型建筑材料,2003,12:29-32.
    [119]董松.硅溶胶-丙烯酸酯乳液外墙涂料的配制.现代涂料与涂装,2001,6:15-16,24.
    [120]郭斌,银鹏,陈钧志.无机-有机复合型外墙涂料的制备.应用化工,2001,30(3):46-47.
    [121]刘连弟.高稳定性硅溶胶-丙烯酸乳液复合涂料及其制备工艺.上海涂料,2006,44(9):24-25.
    [122](a)徐峰.高性能外墙涂料在我国的应用与发展.现代涂料与涂装,2007,10(5):20-22,26.(b)徐峰.我国水性建筑涂料的应用与发展.现代涂料与涂装,2008,11(4):21-26.(c)徐峰.我国水性建筑涂料的应用与发展.现代涂料与涂装,2009,12(7):27-28,38.
    [123]Wagner G. Inorganic-organic hybrid coatings. Metalloberflaeche,2002,56 (11-12):36-40.
    [124]Parkin IP, Palgrave RG. Self-cleaning coatings. Journal of Materials Chemistry,2005,15:1689-1695.
    [125]Nun E, Oles M, Schleich B. Lotus-Effect-Surfaces. Macromol. Symp.,2002, 187:677-682.
    [126]Wulf M, Wehling A, Reis O. Coatings with self-cleaning properties. Macromol. Symp.,2002,187:459-467.
    [127]Brus J, Spirkova M. NMR spectroscopy and atomic force microscopy characterization of hybrid organic-inorganic coatings. Macromol. Symp.,2005, 220:155-164.
    [128]Cameron C. Chemistry and physics of coatings (2nd Edition). Cambridge, UK: Royal Society of Chemistry,2004.
    [129]Chu L, Daniels MW, Francis LF. Use of (glycidoxypropyl)trimethoxysilane as a binder in colloidal silica coatings. Chem.Mater.,1997,9:2577-2582.
    [130]Mestach D, Twene D. Inorganic nanoparticles as functional additives in water-borne coatings. Surface Coatings International Part A,2005,8:323-328.
    [131]Wada T, Uragami T. Preparation and characteristics of a waterborne preventive stain coating material with organic-inorganic composites. JCT Research,2006, 3 (4):267-274.
    [132]Wada T, Inui K, Uragami T. Preparation of organic-inorganic composite materials prepared from acrylic resin emulsions and colloidal silicas. Journal of Applied Polymer Science,2006,101:2051-2056.
    [133]Soucek MD, Zohg Z, Johnson AJ. Inorganic/organic nanocomposite coatings: the next step in coating performance. JCT Research,2006,3 (2):133-140.
    [134]Wang Y, Li Y, Zhang R, et al. Synthesis and characterization of nanosilica/polyacrylate composite latex. Polymer Composites,2006,27 (3): 282-288.
    [135]赵金榜.无机涂料——涂料工业发展不可忽视的品种.上海涂料,2004,42(3):23-25.
    [136]徐峰,邹侯招,储健.环保型无机涂料.北京:化学工业出版社,2004.
    [137]徐峰,侯忠祖.应重视无机建筑涂料的发展与应用.中国涂料,2002,3: 22-24,40.
    [138]张雪芹,徐峰.无机建筑涂料的研究与发展.新型建筑材料,2004,7:33-37.
    [139]张雪芹,徐峰.无机建筑涂料.上海建材,2005,2:15-17.
    [140]郑娟荣,覃维祖.水玻璃基涂料的研究.涂料工业,2002,1:23-24.
    [141]郑娟荣,覃维祖.地聚物材料的研究进展.新型建筑材料,2002,4:11-12.
    [142]郑娟荣.地聚物基涂料的实验研究.新型建筑材料,2004,5:54-55.
    [143]Davidovits J. Geopolymers:inorganic polymeric new materials. Journal of Thermal Analysis,1991,37:1633-1656.
    [144]Davidovits J. Geopolymers and geopolymeric materials. Journal of Thermal Analysis,1989,35:429-441.
    [145]Xu H, van Deventer JSJ, Lukey GC. Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures. Ind.Eng.Chem.Res.,2001, 40:3749-3756.
    [146]Hussain M, Varely R, Cheng YB, et al. Synthesis and thermal behavior of inorganic-organic hybrid geopolymer composites. Journal of applied polymer science,2005,96:112-121.
    [147]Provis JL, Lukey GC, van Deventer JSJ. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem.Mater., 2005,17:3075-3085.
    [148]Duxson P, Fernandez-Jimenez A, Provis JL, et al. Geopolymer technology:the current state of the art. J. Mater.Sci.,2007,42:2917-2933.
    [149]Khale D, Chaudhary R. Mechanism of geopolymerization and factors influencing its development:a review. J. Mater.Sci.,2007,42:729-746.
    [150]沈浩.从涂料角度看待敦煌壁画色标及变色问题.中国涂料,2009,1:13-16.
    [151]Sanchez C, Julian B, Belleville P, et al. Applications of hybrid organic-inorganic nanocomposites. J. Mater.Chem.,2005,15:3559-3592.
    [152]陈平,纳鹏君,毛学峰等.反相高效液相色谱测定敦煌壁画胶结材料中氨基酸.分析测试技术与仪器,2002,8(2):99-102.
    [153]陈广德,张丽,李最雄等.分光光度法测定敦煌壁画颜料胶结材料中的蛋白质.西北师范大学学报(自然科学版),2005,41(1):47-50.
    [154]Parashar G, Bajpayee M, Kamani PK. Water-borne non-toxic high-performance inorganic silicate coatings. Surface Coatings International Part B:Coatings Transactions,2003,86 (3):209-216.
    [155]Veinot DE, Langille KB, Nguyen DT, et al. Efflorescence of soluble silicate coatings. Journal of Non-Crystalline Solids,1991,127:221-226.
    [156]Schneider RH, Schutt JB. Two-pot silicate coatings compositions:U.S.Patent, 3,615,781.1971-10-26.
    [157]Shoup RD. Colloid and interface science. New York:Academic Press,1976, Vol.3, pp 63-69.
    [158]Her RK. The chemistry of silica. New York:John Wiley & Sons,1979.
    [159]Heiberger F, Schlaffer H. Silicatic coating mass with improved stability. WIPO Patent WO 2001/053419.2001-07-26.
    [160]于良民,董磊,姜晓辉等.高模数硅酸钾及其富锌涂料的制备.涂料工业,2004,34(3):9-12.
    [161]裴嵩峰,张婷,桑玮玮等.模数对无机富锌涂料和涂层性能的影响.涂料工业,2006,36(12):14-16,20.
    [162]Barton TJ, Bull LM, Klemperer WG, et al. Tailored porous materials. Chem.Mater.,1999,11:2633-2656.
    [163]Shoup RD, Weing WJ. Low temperature production of high purity fused silica. U.S.Patent,4,059,658.1977-11-22.
    [164]Cao WQ, Gerhardt R, Jr.Wachtman JB. Preparation and sintering of colloidal silica-potassium silicate gels. J.Am.Ceram.Soc.,1988,71 (12):1108-1113.
    [165]Ashkin D, Haber RA, Wachtman JB. Elastic properties of porous silica derived from colloidal gels. J.Am.Ceram.Soc.,1990,73 (11):3376-3381.
    [166]Kerch HM, Long GG, Krueger S, et al. Characterization of porosity over many length scales:application to colloidal gels. J.Mater.Res.1999,14 (4):1444-1454.
    [167]Airapetyan SS, Khachatryan AG. Effects of potassium polysilicates on formation of hydrogels from stabilized silica sols. Russ.J.Appl.Chem.,2004,77 (5):721-724.
    [168]Hayrapetyan SS, Khachatryan HG. Problems with the gelling of emulsified colloidal silica. Acta Chromatographica,2004,14:49-59.
    [169]Einarsrud MA, Nilsen E. Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J.Non-Cryst.Solids,1998,226:122-128.
    [170]Einarsrud MA, Kirkedelen MB, Nilsen E, et al. Structural development of silica gels aged in TEOS. J.Non-Cryst.Solids,1998,231:10-16.
    [171]H?reid S, Anderson J, Einarsrud MA, et al. Thermal and temporal aging of TMOS-based aerogel precursors in water. J. Non-Cryst.Solids,1995, 185:221-226.
    [172]Smith DM, Scherer GW, Anderson JM. Shrinkage during drying of silica gel. J. Non-Cryst.Solids,1995,188:191-206.
    [173]Scherer GW. Influence of viscoelasticity and permeability on the stress response of silica gel.Langmuir,1996,12 (5):1109-1116.
    [174]Wyss HM, Tervoort E, Meier LP, et al. Relation between microstructure and mechanical behavior of concentrated silica gels. J.Colloid Interface Sci.,2004, 273:455-462.
    [175]Wu H, Morbidelli M. A model relating structure of colloidal gels to their elastic properties. Langmuir,2001,17:1030-1036.
    [176]Pelmenschikov A, Strandh H, Pettersson LGM, et al. Lattice resistance to hydrolysis of Si-O-Si bonds of silicate minerals:ab initio calculations of a single water attack onto the (001) and (111) β-cristobalite surfaces. J. Phys. Chem B.,2000,104:5779-83.
    [177]Coradin T, Livage J. Aqueous silicates in biological sol-gel applications:new perspectives for old precursors. Acc. Chem. Res.,2007,40:819-826.
    [178]Coiffier A, Coradin T, Roux C, et al. Sol-gel encapsulation of bacteria:a comparison between alkoxide and aqueous routes. J. Mater. Chem.,2001, 11:2039-2044.
    [179]Provis JL, Duxson P, Lukey GC, et al. Modeling speciation in highly concentrated alkaline silicate solutions. Ind.Eng.Chem.Res.,2005, 44:8899-8908.
    [180]Kinrade SD. Oxygen-17 NMR study of aqueous potassium silicates. J.Phys.Chem.,1996,100:4760-4764.
    [181]Kinrade SD, Pole DL. Effect of alkali-metal cations on the chemistry of aqueous silicate solutions. Inorg.Chem.,1992,31:4558-4563.
    [182]Otterstedt JEA, Ghuzel M, Sterte JP. Colloidal components in solutions of alkali silicates. Journal of Colloid and Interface Science,1987,115 (1):95-103.
    [183]Harris RK, Knight CTG. Nature of species present in an aqueous solution of potassium silicate. J.Am.Chem.Soc.,1981,103:1577-1578.
    [184]Kinrade SD, Swaddle TW. Mechanisms of longitudinal29 Si nuclear magnetic relaxation in aqueous alkali-metal silicate solutions. J.Am.Chem.Soc.,1986, 108:7159-7162.
    [185]Kinrade SD, Swaddle TW. Silicon-29 NMR studies of aqueous silicate solutions.1. Chemical shifts and equilibria. Inorg.Chem.,1988,27:4253-4259.
    [186]Kinrade SD, Swaddle TW. Silicon-29 NMR studies of aqueous silicate solutions.2. Transverse 29Si relaxation and the kinetics and mechanism of silicate polymerization. Inorg.Chem.,1988,27:4259-4264.
    [187]McCormick AV, Bell AT, Radke CJ. Evidence from alkali-metal NMR spectroscopy for ion pairing in alkaline silicate. J.Phys.Chem.,1989, 93:1733-1737.
    [188]McCormick AV, Bell AT, Radke CJ. Influence of alkali-metal cations on silicon exchange and silicon-29 spin relaxation in alkaline silicate solutions. J.Phys.Chem.,1989,93:1737-1741.
    [189]Gaboriaud F, Nonat A, Chaumont D, et al.29Si NMR and small-angle X-ray scattering studies of the effect of alkaline ions (Li+, Na+, and K+) in silico-alkaline sols. J. Phys. Chem. B,1999,103:2091-2099.
    [190]田华,陈连喜,刘全文.硅溶胶的性质、制备和应用.国外建材科技,2007,28(2):8-11,17.
    [191]于长江,廖永亮,路英杭等.硅溶胶粒径和分散性的影响因素.济南大学学报(自然科学版),2009,23(3):233-236.
    [192]黄福明,袁荞龙,胡春圃等.纳米二氧化硅水分散体的制备及复配.华东理工大学学报,2003,29(6):583-586,607.
    [193]Huang FM, Zhang GW, Hu CP, et al. Preparation and characterization of hybrid aqueous dispersions composed of silica sol and poly (styrene-co-acrylate) Chinese J. Chem. Eng.,2005,13 (6):816-823.
    [194]季晓玲,陈楠,翟莉莉等.硅溶胶为独立成膜物的水分散无机建筑涂料.上海涂料,2009,47(6):41-43.
    [195]许云祥,鲁蕊,李磊.硅溶胶的胶团结构和干燥胶凝过程—对硅溶胶型壳的几点认识之一.特种铸造及有色合金,2004,2:52-54.
    [196]Tarutani T. Polymerization of silicic acid. Anal. Sci.,1989,5:245-252.
    [197]Vogelsberger W, Opfermann J, Wank U, et al. On the determination of kinetic parameters of sol formation by rheological measurements. Colloids Surfaces A: Physicochem. Eng. Aspects,1993,78:99-108.
    [198]Perry CC, Keeling-Tucker T. Biosilicification:the role of the organic matrix in structure control. J. Biol. Inorg. Chem.,2000,5:537-550.
    [199]Amornthammarong N, Zhang JZ. Liquid-waveguide spectrophotometric measurement of low silicate in natural waters. Talanta,2009,79:621-626.
    [200]Icopini GA, Brantley SL, Heaney PJ. Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25℃. Geochim. Cosmochim. Acta,2005,69:293-303.
    [201]Icenhower JP, Dove PM. The dissolution kinetics of amorphous silica into sodium chloride solutions:Effects of temperature and ionic strength. Geochim. Cosmochim. Acta,2000,64:4193-4203.
    [202]Conrad CF, Icopini GA, Yasuhara H, et al. Modeling the kinetics of silica nanocolloid formation and precipitation in geologically relevant aqueous solutions. Geochim. Cosmochim.Acta,2007,71:531-542.
    [203]Yang LN, Qiu SJ, Xu F, et al. Microcalorimetric investigation of the growth of the Escherichia coli DH5a in different antibiotics. J. Therm. Anal. Cal.,2007, 89:875-879.
    [204]Chen JR, Wu SH, Lin SY, et al. Utilization of microcalorimetry for an assessment of the potential for a runaway decomposition of cumene hydroperoxide at low temperatures. J. Therm. Anal. Cal.,2008,93:127-133.
    [205]Chen XJ, Feng WS, Miao W, et al. A microcalorimetric assay of Tetrahymena thermophila for assessing tributyltin acute toxicity. J. Therm. Anal. Cal.,2008, 94:779-784.
    [206]Hansen LD. Calorimetric measurement of the kinetics of slow reactions. Ind. Eng. Chem. Res.,2000,39:3541-3549.
    [207]Wadso I. Isothermal microcalorimetry:current problems and prospects. J. Therm. Anal. Cal.,2001,64:75-84.
    [208]Wadso I, Wadso L. Systematic errors in isothermal micro-and nanocalorimetry. J. Therm. Anal. Cal.,2005,82:553-558.
    [209]O'Neill MAA, Gaisford S, Beezer AE, et al. A comparison of the performance of calorimeters:application of a test and reference reaction. J. Therm. Anal. Cal.,2006,84:301-306.
    [210]Alig I, Lellinger D, Oehler H, et al. Microcalorimetry for characterization of film formation and cure of coatings and adhesives. Prog. Org. Coat.,2008, 61:166-175.
    [211]Rodriguez-Anon J, Proupin-Castineiras J, Villanueva-Lopez M, et al. Development of an experimental procedure to analyse the'soil health state'by microcalorimetry. J. Therm. Anal. Cal.,2007,87:15-19.
    [212]Wadso I. Characterization of microbial activity in soil by use of isothermal microcalorimetry. J. Therm. Anal. Cal.,2009,95:843-850.
    [213]代春美,肖小河,胡艳军等.微量热法对不同产地黄连品质的评价.中成药,2008,30(8):1179-1182.
    [214]何笃贵,李强国,杨德俊等.RE (C7H5O3) 2 (C9H6NO)配合物抗真菌作用的热动力学研究.中国稀土学报,2007,25(1):107-110.
    [215]Instruction manual for Thermometric AB, Sweden,2003.
    [216]Goto K. Effect of pH on polymerization of silicic acid. J. Phys. Chem.,1956; 60:1007-1008.
    [217]Holmes AK, Challis RE. Ultrasonic wave propagation in silica sols and gels. Langmuir,1999,15:3045-3049.
    [218]李勇,郭晓玲,秦姹芳.超声波技术在纳米TiO2制备和光催化中的应用.印染助剂,2009,26(9):9-12.
    [219]邓仕燕,邢卫红,徐南平.超声场对锆溶胶的影响研究.南京工业大学学报,2003,25(1):80-83.
    [220]Witucki, GL. A silane primer:chemistry and applications of alkoxy silanes. Journal of Coatings Technology,1993,65 (822):57-60
    [221]曹坚林,梁照明.硅烷在油漆与涂料中的应用.有机硅材料,2006,20(4):199-204.
    [222]张丽,李涛,杨华永等.影响乳胶漆分层的因素.化学建材,2004,4:5-7,43.
    [223]吕少华,唐黎明,朱元斌.乳胶漆稳定性理论及影响因素.化学建材,2002,3: 4-7.
    [224]唐黎明,吕少华,朱元斌.钛白粉与分散剂水性体系的沉降过程研究.化学建材,2004,2:1-2,9.
    [225]於宁.乳胶漆常见问题及对策.上海涂料,2002,40(1):28-29.
    [226]涂料工艺编委会.涂料工艺(第三版).北京:化学工业出版社,2001.
    [227]殷海源,丁祥伟,陈贵山等.R-215二氧化钛性能介绍.涂料工业,2005,35(1):59-61.
    [228]杜国华,龚家竹,韩小刚.金红石型二氧化钛在涂料中遮盖力的影响因素.涂料工业,2005,35(1):15-19.
    [229]吕化奇,王新春.湿法绢云母在涂料中的功能机理及应用.上海涂料,2005,43(01/02):47-49.
    [230]王新春,胡焕兵,吴振.乳胶漆用填料的选择与应用.涂料工业,2004,34(10):23-25.
    [231]郑廷秀,李玉平,王亚强等.海泡石原矿的处理及其对乳胶涂料稳定性的影响.涂料工业,2004,34(12):5-7.
    [232]贾堤,武梦笔,林文桐.海泡石用作建筑涂料增稠剂流变剂的研究.新型建筑材料,2003,3:30-
    [233]Tsai MS, Huang PY, Wu WC. The study of formation process of colloidal silica. Mater. Res.Bull.,2005,40:1609-1616.
    [234]Tsai MS, Huang PY, Yang CH. Formation mechanisms of colloidal silica via sodium silicate. J. Nanopart. Res.,2006,8:943-949.
    [235]於宁.乳胶漆的PVC.上海涂料,2002,40(4):23-24.
    [236]吴跃焕,王金红,杨卓如.苯乙烯-丙烯酸酯类乳液在涂料中的应用与发展.化学建材,2002,5:22-25.
    [237]石岩,王小妹.微乳液聚合及其影响因素.中国涂料,2006,21(2):41-43.
    [238]秦振平,黄如金,郭红霞.PBA/MMA-MAA核-壳型乳液聚合研究.上海涂料,2002,40(1):5-7.
    [239]甘孟瑜,刘娟,杨治国.核壳结构丙烯酸酯乳液的合成及性能研究.涂料工业,2005,35(6):5-8.
    [240]范圣强,曹瑞军.高耐水性自交联丙烯酸酯弹性乳液的研究.上海涂料,2002,40(6):24-26.
    [241]张梅,尹廷柏,文生雷等.聚合工艺对室温交联丙烯酸乳胶漆性能的影响.涂料工业,2005,35(7):21-24.
    [242]孟兆瑞.弹性乳液-弹性腻子-弹性涂料.新型建筑材料,2001,9:6-9.
    [243]朱再盛,吕广镛.丙烯酸酯无皂乳液的研究.涂料工业,2004,34(6):4-6.
    [244]曹玉廷.无皂乳液聚合丙烯酸酯涂料的合成研究.化学建材,2002,5:26-28.
    [245]林宣益.成膜助剂的助成膜机理、性能和发展趋势.化学建材,2004,4:14-19.
    [246]孟晶,李效玉.成膜温度对漆膜表面形态的影响.涂料工业,2005,35(4):1-4.
    [247]梁丽芸,蓝仁华,陈焕钦.Texanol和丙二醇对乳胶漆性能影响的研究.涂料工业,2003,33(8):27-29.
    [248]於宁.乳胶漆颜料分散剂的使用.上海涂料,2004,42(1):22-23.
    [249]武志民.润湿分散剂的分类特性与应用.现代涂料与涂装,2004,2:48-50.
    [250]隋振恩,张淑英,辛宪忠等.乳胶涂料中填料粒径测定与分散剂的选择.涂料工业,2005,35(8):53-58.
    [251]丁奋.水性涂料用非离子型聚氨酯分散剂.上海涂料,2005,43(4):1-5.
    [252]李金华,何唯平,许钧强等.缔合型增稠剂的合成及其应用性能研究.现代涂料与涂装,2006,12:1-3,6.
    [253]张朝平.乳胶漆中缔合型增稠剂与分散剂的合理搭配.现代涂料与涂装,2005,3:46-47,50.
    [254]李若慧,胡泊,程伊前.增稠剂对乳胶漆的粘度和光泽的影响.涂料工业,2003,33(1):6-9.
    [255]郭茜,唐军.增稠剂的搭配对高PVC乳胶涂料性能的影响.中国涂料,2006,21(2):35-36,40.
    [256]王武生,陈修宁,刘斌等.聚氨酯缔合型增稠剂分水现象的理论.涂料工业,2006,36(4):1-4.
    [257]林涛,黄新辉.分散剂与缔合型增稠剂之间的相容性.涂料工业,2004,34(6):56-59.
    [258]徐玲,刘宏萍,胡志滨等.乳胶漆中缔合型增稠剂与乳液作用关系.现代涂料与涂装,2001,5:32-34.
    [259]刘会元,牛广轶.乳胶漆生产工艺的控制及助剂的应用.涂料工业,2003,33(8):29-31.
    [260]Amornthammarong N, Zhang JZ. Liquid-waveguide spectrophotometric measurement of low silicate in natural waters. Talanta,2009,79:621-626.
    [261]Bishop AD, Bear JL. The thermodynamics and kinetics of the polymerization of silicic acid in dilute aqueous solution. Thermochim. Acta,1972,3:399-409.
    [262]Lobbus M, Vogelsberger W, Sonnefeld J, et al. Current considerations for the dissolution kinetics of solid oxides with silica. Langmuir,1998,14:4386-4396.
    [263]Vogelsberger W, Seidel A, Breyer T. Kinetics of sol particle formation as a function of pH studied by viscosity measurements in silica solutions. Langmuir, 2002,18:3027-3033.
    [264]Willson RJ, Beezer AE, Mitchell JC, et al. Determination of thermodynamic and kinetic parameters from isothermal heat conduction microcalorimetry: applications to long-term-reaction studies. J. Phys. Chem.,1995,99:7108-7113.
    [265]Beezer AE, Morris AC, O'Neill MAA, et al. Direct determination of equilibrium thermodynamic and kinetic parameters from isothermal heat conduction microcalorimetry. J. Phys. Chem. B,2001,105:1212-1215.
    [266]Willson RJ, Beezer AE. A mathematical approach for the calculation of reaction order for common solution phase reactions. Thermochim. Acta,2003, 402:75-80.
    [267]O'Neill MAA, Beezer AE, Morris AC, et al. Solid-state reactions from isothermal heat conduction microcalorimetry:Theoretical approach and evaluation via simulated data. J. Therm. Anal. Cal.,2003,73:709-714.
    [268]Beezer AE, Willson RJ, Mitchell JC, et al. Thermodynamic and kinetic parameters from isothermal heat conduction microcalorimetry. Pure & Appl. Chem.,1998,70:633-638.
    [269]Willson RJ, Beezer AE, Hills AK, et al. The imidazole catalysed hydrolysis of triacetin:a medium term chemical calibrant for isothermal microcalorimeters. Thermochim. Acta,1999,325:125-132.
    [270]Gaisford S, Hills AK, Beezer AE, et al. Thermodynamic and kinetic analysis of isothermal microcalorimetric data:applications to consecutive reaction schemes. Thermochim. Acta,1999,328:39-45.
    [271]Hills AK, Beezer AE, Mitchell JC, et al. Sources of error, and their correction, in the analysis of isothermal heat conduction microcalorimetric data: applications of a newly developed test reaction. Thermochim. Acta,2001, 380:19-26.
    [272]Beezer AE. An outline of new calculation methods for the determination of both thermodynamic and kinetic parameters from isothermal heat conduction microcalorimetry. Thermochim. Acta,2001,380:205-208.
    [273]O'Neill MAA, Beezer AE, Deal RM, et al. Survey of the effect of fill volume on the values for the enthalpy and rate constant derived from isothermal microcalorimetry:applications of a newly developed test reaction. Thermochim. Acta,2003,397:163-169.
    [274]Harrison CC, Loton N. Novel routes to designer silicas:studies of the decomposition of (M+) 2[Si (C6H4O2) 3·xH2O. J. Chem. Soc. Faraday Trans., 1995,91. (23):4287-4297.
    [275]O'Neill MAA, Beezer AE, Tetteh J, et al. Application of chemometric analysis to complexity in isothermal calorimetric data. J. Phys. Chem. B,2007, 111:8145-8149.
    [276]Trinh TT, Jansen APJ, van Santen RA. Mechanism of oligomerization reactions of silica. J. Phys. Chem. B,2006,110:23099-23106.
    [277]Tossell JA. Theoretical study on the dimerization of Si (OH)4 in aqueous solution and its dependence on temperature and dielectric constant. Geochim. Cosmochim. Acta,2005,69:283-291.
    [278]Mora-Fonz MJ, Catlow CRA, Lewis DW. Oligomerization and cyclization processes in the nucleation of microporous silicas. Angew.Chem. Int. Ed.,2005, 44:3082-3086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700