稀土催化缩聚合成芳香—脂肪族共聚酯和功能化聚酯及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酯是一类用途广泛的材料,其中力学、热性能优良的芳香族聚酯作为一种结构性材料主要用于日常生活中,可降解的脂肪族聚酯则广泛用于生物医药领域。缩合聚合是合成聚酯的主要方式,而缩聚过程中的催化剂直接决定聚酯的质量。本文以合成的多种稀土化合物为单组份催化剂,通过熔融缩聚在高温下制备成可降解芳香-脂肪族共聚酯及在较低温下合成了功能化脂肪族聚酯。系统研究了稀土化合物催化缩合聚合的活性,利用1H NMR.FT-IR.GPC.DSC.TGA. DMA.XRD和堆肥降解等手段研究了聚酯的结构与性能。并通过功能基团的化学反应对功能化聚酯进行了初步的修饰。
     以稀土化合物为催化剂,按对苯二甲酸二甲酯(DMT)同二元醇(EG或BG)先经酯交换再与二元脂肪酸(SUA,AA或SEA)进行酯化然后缩聚的方式合成了多种较高分子量的芳香-脂肪族共聚酯PBTA.PETA.PETSU及PETSE.在合成PBTA时,通过酯交换、酯化反应程度及缩聚产物分子量的比较发现,稀土化合物结合的阴离子部分对反应速度有明显影响,催化活性最高的稀土化合物为硬脂酸稀土。研究硬脂酸钕的浓度([NdSt3]/[DMT]=1-10×10-4)及硬脂酸稀土种类(LaSt3,NdSt3,YSt3,DySt3)对PETA合成中酯交换和缩聚阶段的影响表明,催化剂浓度降低酯交换反应表观反应速率下降;不同稀土元素之间,催化酯交换反应活性按NdSt3>LaSt3>YSt3=DySt3排列。缩聚阶段,催化剂浓度在[NdSt3]/[DMT]=2-10×10-4范围内时聚酯产物的分子量差别较小,表明NdSt3在较低的浓度下仍具有较高的催化活性。稀土元素种类对缩聚阶段的影响不及酯交换阶段明显。
     对所合成的聚酯结构和性能的研究表明,共聚酯中芳香-脂肪组分的摩尔含量同投料比基本一致,共聚酯为无规聚合物。共聚酯的力学性能、热性能同聚酯的组成密切相关,具体表现为:相同单体组成的不同芳香-脂肪摩尔投料比的共聚酯,芳香族含量增加,玻璃化温度上升,热稳定性变好,降解性能降低。在芳香-脂肪组分按等摩尔比投料共聚时,二元脂肪酸的碳链增长,聚酯玻璃化温度降低,降解速率增加。
     以三氟甲基磺酸稀土(Ln(OTf)3)为催化剂,在较温和条件下(60-80℃)通过二元醇和(功能基取代)二羧酸的酯化,本体缩聚合成了聚丁二酸癸二酯(PSUADD)和聚酒石酸已二酯(PTAHD).对Ln(OTf)3催化活性的研究表明:PSUADD合成中,Nd(OTf)3和Dy(OTf)3活性较高,聚酯数均分子量高于1.15×104g/mol;合成PTAHD时,Dy(OTf)3、Y(OTf)3、Sc(OTf)3催化性能优异,聚酯数均分子量达到1.0x104g/mol通过链结构分析确认酒石酸中仲羟基未参与缩合聚合,表明Ln(OTf)3催化缩聚合成聚酯时对伯羟基具有较高的选择性。获得的聚合物为多羟基线型功能化聚酯。这些聚酯可通过与酰氯等活泼基团反应对聚酯修饰。
     通过调整功能单体和丁二酸的摩尔比例,在Dy(OTf)3催化下合成了功能基团含量可调控的聚(丁二酸-co-苹果酸)癸二酯(PMAADD)和聚(丁二酸-co-顺丁烯二酸)癸二酯(PMADD).在PMAADD主链上接枝mPEG获得了两亲接枝聚合物,这种聚合物在水溶液中可形成胶束。PMADD主链上的双键可通过巯基加成反应实现对聚酯的修饰改性。
Due to the environmental pollution with solid wastes of plastic materials, aromatic-aliphatic copolyesters combining biodegradability with good use properties are of great interest and could be economically important. On the other hand, special attention has also been paid to the preparation of biodegradable polyester bearing functional pendant groups. The availability of reactive groups along the chains is highly desirable for fine tuning the properties in order to carry drugs, to improve biocompatibility, to control the biodegradation rate and so on. In this dissertation, a series of rare earth compounds were synthesized and used as a single component catalyst for melt (co)polycondensation to prepare aromatic-aliphatic copolyesters and linear functional polyesters. The functional polyesters were modified through the reactivity of pendant functional groups. The resultant polymers have been characterized by GPC,1H NMR, DSC, TGA etc measurements
     Aromatic-aliphatic copolyester PBTA was synthesized via direct polycondensation from dimethyl terephthalate(DMT), adipic acid(AA) and 1,4-butanediol(BG) with feeding mole ratio of DMT:AA=50:50 in the presence of different rare earth catalysts. Among various neodymium compounds tested, neodymium stearate shows higher catalytic activity and prepared PBTA with weight-average molar mass of 6.01 x104 g/mol. The rare earth elements affect the catalytic activity and Dy[OOC(CH2)16CH3]3 has a little higher activity than other rare earth stearates. The microstructures, thermal and mechanical properties of PBTA were characterized and analyzed.
     Rare earth stearates were applied to the polycondensation of dimethyl terephthalate(DMT), adipic acid(AA) and 1,2-ethandiol(EG) to produce PETA copolyester. The apparent rate constant of transesterization decreased linearly and molecular weight of PETA increased at first and drop obviously with decreasing catalyst concentration.
     A series of PETA with various feeding mole ratio of DMT/AA (30/70 to 80/20) were synthesized in the presence of neodymium stearate. The molecular weight, microstructures such as number-average sequence lengths of ethylene adipate unit(SLEA) and ethylene terephthalate unit(SLET) and degree of randomness(R), thermal and mechanical properties, biodegradation rate in composting tests were measured, showing some relationship with the composition of the copolyester.
     Copolyester PETSU, PETA and PETSE were prepared from succinic acid(SUA), adipic acid(AA), sebacic acid (SEA) with DMT and EG respectively by neodymium stearate. The length of alkyl group of the aliphatic acid affects the properties and biodegradation rate of the resultant polymers obviously.
     Melt (co)polycondensation of succinic acid, substituent dicarboxylic acid such as tartaric acid, malic acid and unsaturated maleic acid with aliphatic diols were carried out with rare earth triflates(Ln(OTf)3) at mild condition(60-80℃) to synthesis functional polyesters having pendent hydroxyl groups or carbon-carbon double bond by one-pot. The content of functional group in the main chain of the polyester can be controlled by feeding mole ratio of succinic acid and functional monomer. Modifications of polyesters were successfully conducted via the reaction of pendent hydroxyl group with carbonyl chloride, carboxylic group or carbon-carbon double bond with mercapto group.
引文
[1]梁晖,卢江,高分子科学基础,化学工业出版社,(2006),9,60-62
    [2]Amass W., Amass A., Tighe B., A review of biodegradable polymers:Use, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies, Polym. Int.[J], (1998),47,89-144
    [3]Okada M., Chemical syntheses of biodegradable polymers, Prog. Polym. Sci.[J] (2002),27,87-133
    [4]Steinbuchel A., Lutke-Eversloh T., Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms, Biochem. Eng. J.[J], (2003),16,81-96
    [5]Carothers W. H., Arvin J. A., Studies on polymerization and ring formation. II. Poly-esters, J. Am. Chem. Soc.[J], (1929),51,2560-2570
    [6]Maharana T., Mohanty B., Negi Y.S., Melt-solid polycondensation of lactic acid and its biodegradability, Prog. Polym. Sci.[J], (2009),34,99-124
    [7]万马强,杨青芳,姚军燕,聚乳酸的合成研究,高分子材料科学与工程[J],(2004),20,21-24
    [8]Penczek S., Duda A., Szymanski R., Biela T., What we have learned from cyclic esters polymerization, Macromol. Symp.[J], (2000),153,1-15
    [9]Dubois P., Jacobs C, Jerome R., Teyssie P., Macromolecular engineering of polylactones and polylactides.4. Mechanism and kinetics of Lactide homopolymerization by aluminum isopropoxide, Macromolecules[J], (1991),24, 2266-2270
    [10]Nijenhuis A. J., Grijpma D. W., Pennings A. J., Lewis acid catalyzed polymerization of L-Lactide. kinetics and mechanism of the bulk polymerization, Macromolecules[J], (1992),25,6419-6424
    [11]Eguiburu J. L., Berridi M. J. F., Functionalization of poly(L-lactide) macromonomers by ring-opening polymerization of L-lactide initiated with hydroxyethyl methacrylate-aluminium alkoxides, Polymer[J], (1995),36(1),173-179
    [12]Kricheldorf H. R., Lee S. R., Polylactones:32. High-molecular-weight polylactides by ring-opening polymerization with dibutylmagnesium or butylmagnesium chloride, Polymer[J], (1995),36(15),2995-3003
    [13]Stolt M., Soldergard A., Use of monocarboxylic iron derivatives in the ring-opening polymerization of L-Lactide, Macromolecules[J], (1999),32,6412-6417
    [14]Chamberlain B. M., Jazdzewski B. A., Pink M., Hillmyer M. A., Tolman W. B., Controlled polymerization of D,L-Lactide and caprolactone by structurally well-defined alkoxo-bridged di- and triyttrium(III) complexes, Macromolecules[J], (2000),33,3970-3977
    [15]Kowalski A., Duda A., Penczek S., Kinetics and mechanism of cyclic Esters Polymerization Initiated with Tin(II) Octoate.3.Polymerization of L,L-Dilactide, Macromolecules[J], (2000),33,7359-7370
    [16]Chen G. X., Kim H. S., Kim E. S., Yoon J. S., Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerizationof L-lactic acid in bulk state, Euro. Polym. J.[J], (2006),42,468-472
    [17]Hiltunen K., Seppala J. V., Halrkolnen M., Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid polymers, Macromolecules[J], (1997),30,373-379
    [18]Konishi S., Yokoi T., Ochiai B., Endo T., Effect of metal triflates on direct polycondensation of lactic acid, Polym. Bull.[J], (2010),64,435-443
    [19]Bai Y. B., Lei Z. Q., Polycondensation of lactic acid catalyzed by organic acid anhydrides, Polym. Int.[J], (2007),56,1261-1264
    [20]Lu D. D., Yuan J. C, Lei Z. Q., High molecular weight biodegraded poly(lactic acid-glycolic acid-e-caprolactam) copolymer:direct polycondensation of lactic acid, glycolic acid and e-caprolactam using Sn(II)-organic anhydride as catalysts, Polym. Adv. Technol.[J], (2009),20,536-540
    [21]Cao H. L., Wang P., Yuan W. B., Microwave-assisted synthesis of poly(L-lactic acid) via direct melt polycondensation using solid super-acids, Macromol. Chem. Phys.[J], (2009),210,2058-2062
    [22]Fukushima K., Kimura Y., An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(Lactic Acid)s with high molecular weight, J. Polym. Sci., Part A:Polym. Chem.[J], (2008),46,3714-3722
    [23]Moon S. I., Lee C. W., Miyamoto M., Kimura Y., Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids:a direct manufacturing route to high molecular weight poly (L-lactic acid), J. Polym. Sci., Part A:Polym. Chem.[J], (2000),38,1673-1679
    [24]Essawy H. A., Helaly F. M., Shabana M. A., Synthesis of poly(lactide) blends by melt/solid polycondensation, J. Elastomer Plast.[J], (2007),39,303-316
    [25]Moon S. I., Taniguchi I., Miyamoto M., Kimura Y., Lee C. W., Synthesis and properties of high-molecular-weight poly(L-lactic acid) by melt/solid polycondensation under different reaction conditions, High Perform. Polym.[J], (2001),13,189-196
    [26]Hiltunen K., Seppala J. V., Harkonen M., Lactic acid based poly(ester-urethanes):Use of hydroxyl terminated prepolymer in urethane synthesis, J. Appl. Polym. Sci. [J], (1997),63,1091-1100
    [27]Ajioka M., Enomoto K., Suziki K., et al., The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid, J. Envirom. Polym. Degrad. [J], (1995),3(4),225-234
    [28]Ajioka M., Suizu H., Higuchi C, Kashima T., Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization, Polym. Degrad. Stab.[J], (1998),59,137-143
    [29]Moon S. I., Lee C.W., Taniguchi I., Miyamoto M., Kimura Y., Melt/solid polycondensation of l-lactic acid:an alternative route to poly(l-lactic acid) with high molecular weight, Polymer[J], (2001),42,5059-5062
    [30]Woo S. I., Kim B. O., Jun H. S., Chang H. N., Polymerization of aqueous lactic acid to prepare high molecular weight poly(lactic acid) by chain-extending with hexamethylene diisocyanate, Polym. Bull.[J], (1995),35,415-421
    [31]Cai Q., Bei J. Z., Wang S. G., Synthesis and degradation of a tri-component copolymer derived from glycolide, L-lactide, and ε-caprolactone, J. Biomater. Sci. Polym. Edn.[J], (2000),11(3),273-288
    [32]Hiemstra C, Zhou W., Zhong Z. Y., Wouters M., Feijen J., Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization, J. Am. Chem. Soc.[J], (2007),129,9918-9926
    [33]Chen L., Xie Z. G., Hu J. L., Chen X. S., Jing X. B., Enantiomeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery, J. Nanopart. Res.[J], (2007),9,777-785
    [34]Ydens L., Degee P., Dubois P., Libiszowski J., Duda A., Penczek S., Combining ATRP of methacrylates and ROP of L,L-dilactide and epsilon-caprolactone, Macromol. Chem. Phys.[J], (2003),204,171-179
    [35]Florczak M., Libiszowski J., Mosnacek J., Duda A., Penczek S., L,L-Lactide and ε-caprolactone block copolymers by a'poly(L,L-lactide) block first'route, Macromol. Rapid. Commun.[J], (2007),28,1385-1391
    [36]Coulembier O., Mespouille L., Hedrick J. L., Waymouth R. M, Dubois P., Metal-Free catalyzed ring-opening polymerization of β-Lactones:synthesis of amphiphilic triblock copolymers based on poly(dimethylmalic acid), Macromolecules[J], (2006),39,4001-4008
    [37]赵丹,冯辉霞,陈娜丽,张苗,张建强,聚乳酸的合成工艺及应用研究进展,应用化工[J],(2009),38(1),128-130
    [38]汪朝阳,赵耀明,麦杭珍,熔融聚合法直接合成聚乳酸的研究,合成纤维[J],(2001),31(2),11-13
    [39]马海艳,滕翠青,余木火,逐步减压缩聚法制备高分子量聚乳酸的研究,材料科学与工程学报[J],(2007),25(4),554-557
    [40]高兵,孙元碧,王国利,徐军,徐永祥,郭宝华,生物可降解聚丁二酸/2,2-二甲基丁二酸丁二酯系列共聚物的合成与性能研究,中国塑料[J],(2009),23(7),90-95
    [41]孙元碧,徐军,徐永祥,燕立唐,郭宝华,生物可降解聚丁二酸/甲基丁二酸丁二酯系列共聚物的合成和表征,高等学校化学学报[J],(2006),27(2),360-364
    [42]Park S. S., JUN H. W., IM S. S., Kinetics of forming poly(butylene succinate) (PBS) oligomer in the presence of MBTO catalyst, Polym. Eng. Sci.[J], (1998),38(6), 905-913
    [43]Nikolic M. S., Djonlagic J., Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s, Polym. Degrad. Stab.[J], (2001),74, 263-270
    [44]Mochizuki M., Mukai K., Yamada K., Ichise N., Murase S., Iwaya Y., Structural effects upon enzymatic hydrolysis of poly(butylenes succinate-co-ethylene succinate)s, Macromolecules[J], (1997),30,7403-7407
    [45]Mochizuki M, Hirano M, Kanmuri Y, Kudo K., Hydrolysis of polycaprolactone fibers by lipase:Effects of draw ratio on enzymatic degradation, J. Appl. Polym. Sci.[J], (1995),55,289-296
    [46]Cho K., Lee J., Kwon K., Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies, J. Appl. Polym. Sci.[J], (2000),79, 1025-1033
    [47]Nagata M., Machida T., Sakai W., Tsutsumi N., Synthesis, characterization, and enzymatic degradation of network aliphatic copolyesters, J. Polym. Sci., Part A: Polym. Chem.[J], (1999),37,2005-2011
    [48]Tsutsumi C, Hayase N., Nakagawa K., Tanaka S., Miyahara Y., The enzymatic degradation of commercial biodegradable polymers by some Lipases and chemical degradation of them, Macromol. Symp.[J], (2003),197,431-442
    [49]Mochizuki M., Hirami M., Structural effects on the biodegradation of aliphatic polyesters, Polym. Adv. Technol.[J], (1997),8,203-209
    [50]Jiang X., Yang J. P., Wang X. H., Zhou J. J., Li L., The degradation and adsorption behaviors of enzyme on poly(butylene succinate) single crystals, Macromol. Biosci.[J], (2009),9,1281-1286
    [51]Bahari K., Mitomo H., Enjoji T., Yoshiic F., Makuuchi K., Radiation crosslinked poly(butylene succinate)foam and its biodegradation, Polym. Degrad. Stab.[J], (1998), 62,551-557
    [52]罗发亮,张秀芹,李荣波,傅东升,甘志华,季君辉,王笃金,聚丁二酸丁二酯/纳米二氧化硅共混体系的结晶和动态力学性能研究,高分子学报[J],(2009),10,1043-1049
    [53]Ray S. S., Okamoto K., Maiti P., Okamoto M., New poly(butylene succinate)/layered silicate nanocomposites. I:Preparation and mechanical properties, Journal of Nanoscience and Nanotechnology[J], (2002),2(2),171-176
    [54]Okamoto K., Ray S. S., Okamoto M., New poly(butylene succinate)/layered silicate nanocomposites. II. Effect of organically modified layered silicates on structure, properties, melt rheology, and biodegradability, J. Polym. Sci., Part B:Polym. Phys.[J], (2003),41,3160-3172
    [55]徐永祥,徐军,孙元碧,刘德华,郭宝华,谢续明,聚(丁二酸丁二酯-co-丁二酸丙二酯)的等温结晶行为研究,高分子学报[J],(2006),8,1000-1006
    [56]Gan Z., Abe H., Kurokawa H., Doi Y., Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylenes succinate)(PBS) and Its copolyesters, biomacromolecules[J], (2001),2,605-613
    [57]Ding S. D., Zheng G. C., Zeng J. B., Zhang L., Li Y. D., Wang Y. Z., Preparation, characterization and hydrolytic degradation of poly[p-dioxanone-(butylene succinate)] multiblockcopolymer, Eur. Polym. J.[J], (2009),45,3043-3057
    [58]Zeng J. B., Li Y. D., Zhu Q. Y., Yang K. K., Wang X. L., Wang Y. Z., A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks, Polymer[J], (2009),50,1178-1186
    [59]Huang C. Q., Luo S. Y., Xu S. Y., Zhao J. B, Jiang S. L., Yang W. T., Catalyzed chain extension of poly(butylene adipate)and poly(butylene succinate) with 2,2'-(1,4-Phenylene)-bis(2-oxazoline), J. Appl. Polym. Sci.[J], (2010),115, 1555-1565
    [60]Flores E. D., Funabashi M., Kunioka M., Mechanical properties and biomass carbon ratios of poly(butylene succinate) composites filled with starch and cellulose filler using furfural as plasticizer, J. Appl. Polym. Sci.[J], (2009),112,3410-3417
    [61]Liu L. F., Yu J. Y., Cheng L. D., Qu W. W., Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre, Compos. Pt. A-Appl. Sci. Manuf. [J] (2009),40,669-674
    [62]Ratto J. A., Stenhouse P. J., Auerbach M., Mitchell J., Farrell R., Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system, Polymer[J], (1999),40,6777-6788
    [63]Takiyama E., Niikura I., Hatano Y., Method for producing saturated polyester, US Patent, No.5306787, (1994)
    [64]Takiyama E, Fujimaki T, Seki S, Hokari T., Hatano Y., Method for manufacturing biodegradable high molecular aliphatic polyester, US Patent No.5310782, (1994)
    [65]Takiyama E., Hatano Y., Fujimaki T., Seki S., Hokari T., Hosagane T., Harigai N., Method of producing a high molecular weight aliphatic polyester and film thereof, US Patent No.5436056,(1995)
    [66]许红,生物降解塑料Bionolle,化工新型材料[J],(1997),12,25-27
    [67]清华大学高科技成果花开皖西南安徽安庆成功开发PBS环保新材料,安庆科技[J],(2008),1,10
    [68]扬州2万吨级PBS生产线试车成功,化工经济技术信息[J],(2007),6,7-8
    [69]王永亮,易国斌,康正,熊富华,周平,崔亦华,聚已内酯的合成与应用研究进展,化学与生物工程[J],(2006),23(3),1-3
    [70]Flesch C, Delaite C, Dumas P., Bourgeat-Lami E., Duguet E., Grafting of Poly(s-caprolactone) onto Maghemite Nanoparticles, J. Polym. Sci., Part A:Polym. Chem.[J], (2004),42,6011-6020
    [71]Gadzinowski M., Sosnowski S., Slomkowski S., Kinetics of the dispersion ring-opening polymerization of s-Caprolactone Initiated with diethylaluminum ethoxide, Macromolecules[J], (1996),29,6404-6407
    [72]Lee H. J., Ramaraj B., Yoon K. R., Esterification on solid support by surface-initiated ring-opening polymerization of ε-Caprolactone from benzylic hydroxyl-functionalized Wang resin bead, J. Appl. Polym. Sci.[J], (2009),111, 839-844
    [73]Fiore G. L., Fraser C. L., Iron-Centered Star Polymers with pentablock bipyridine-centered PEG-PCL-PLA macroligands, Macromolecules[J], (2008),41, 7892-7897
    [74]Duda A., Kowalski A., Penczek S., Uyama H., Kobayashi S., Kinetics of the ring-opening polymerization of 6-,7-,9-,12-,13-,16-, and 17-membered Lactones: Comparison of chemical and enzymatic polymerizations, Macromolecules[J], (2002), 35,4266-4270
    [75]Wei Z. Y., Liu L., Yu F. Y., Wang P., Qi M., Synthesis and characterization of poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) triblock copolymers with dibutylmagnesium as catalyst, J. Appl. Polym. Sci.[J], (2009),111, 429-436
    [76]Piao L. H., Dai Z. L., Deng M. X., Chen X. S., Jing X. B., Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst, Polymer[J], (2003),44,2025-2031
    [77]Li P. C., Zerroukhi A., Chen J. D., Chalamet Y., Jeanmaire T., Xia Z. A., Synthesis of poly(ε-caprolactone)-block-poly(n-butyl acrylate) by combining ring-opening polymerization and atom transfer radical polymerization with Ti[OCH2CCl3]4 as difunctional initiator:Ⅰ. Kinetic study of Ti[OCH2CCl3]4 initiated ring-opening polymerization of ε-caprolactone, Polymer[J], (2009),50,1109-1117
    [78]Li P. C., Zerroukhi A., Chen J. D., Chalamet Y., Jeanmaire T., Xia Z. A., Synthesis, kinetic study, and application of Ti[O(CH2)4OCH=CH2]4 in ring-opening polymerization of ε-Caprolactone and radical polymerization, J. Polym. Sci., Part A: Polym. Chem.[J], (2008),46,7773-7784
    [79]Shen Y. Q., Shen Z. Q., Zhang Y. F., Yao K. M., Novel rare earth catalysts for the living polymerization and block copolymerization of ε-Caprolactone, Macromolecules[J], (1996),29,8289-8295
    [80]解德良,姜标,杨昌正,羟基酸引发ε-已内酯开环聚合的研究,高分子学报[J],(2000),5,532-537
    [81]Yu Z. J., Liu L. J., Zhuo R. X. J., Microwave-improved polymerization of ε-caprolactone initiated by carboxylic ccids, Polym. Sci., Part A:Polym. Chem.[J], (2003),41,13-21
    [82]Liu J. Y., Liu L. J., Ring-opening polymerization of ε-caprolactone initiated by natural amino acids, Macromolecules[J], (2004),37,2674-2676
    [83]Foresti M. L., Ferreira M. L., Synthesis of polycaprolactone using free/supported enzymatic and non-enzymatic catalysts, Macromol. Rapid. Commun.[J], (2004),25, 2025-2028
    [84]Nomura N., Taira A., Tomioka T., Okada M., A catalytic approach for cationic living polymerization: Sc(OTf)3-catalyzed ring-opening polymerization of Lactones, Macromolecules[J], (2000),33,1497-1499
    [85]朱蔚璞,童晓薇,沈之荃,三氟甲磺酸稀土催化已内酯开环聚合,高等学校化学学报[J],(2007),28,1186-1188
    [86]Storey R. F., Sherman J. W., Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone, Macromolecules[J], (2002), 35,1504-1512
    [87]Jeon O., Lee S. H., Kim S. H., Lee Y. M., Kim Y. H., Synthesis and characterization of poly(L-lactide)-poly(epsilon-caprolactone) multiblock copolymers, Macromolecules[J], (2003),36(15),5585-5592
    [88]Bogdanov B., Vidts A., Van D. B. A., Verbeeck R., Schacht E., Synthesis and thermal properties of poly(ethylene glycol)-poly(s-caprolactone) copolymers, Polymer[J], (1998),39,1631-1636
    [89]Avella M., Errico M. E., Laurienzo P., Martuscelli E., Raimo M., Rimedio R., Preparation and characterization of compatibilised polycaprolactone/starch composites, Polymer[J], (2000),41,3875-3881
    [90]范源,杨庆,沈新元,PCL/TSPMLC共混纤维的性能研究,国际纺织导报[J],(2005),2,7-11
    [91]Averous L., Fringant C., Association between plasticized starch and polyester: Processing and performances of injected biodegradable systems, Polym. Eng. Sci.[J], (2001),41(5),727-734
    [92]Averous L., Moro L., Dole P., Fringant C., Properties of thermoplastic blends: starch-polycaprolactone, Polymer [J], (2000),41,4157-4167
    [93]Kim K. J., White J. L., Relationship between interfacial adhesion and viscosity of cellulose fiber filled polypropylene and poly(epsilon-caprolactone):A review, Compos. Interfaces[J], (2009),16,583-598
    [94]张美洁,李树材,淀粉/PCL共混物的研究进展,现代塑料加工应用[J],(2002),14(6),50-52
    [95]刘俊,尚立照,程龄贺,徐慧玲,王经武,PET化学结构与热力学行为的关系, 合成纤维工业[J],(2008),5,25-28
    [96]El-Toufaili F. A., Wiegner J. P., Feix G., Reichert K. H., Optimization of simultaneous thermal analysis for fast screening of polycondensation catalysts, Thermochimica Acta[J], (2005),432,99-105
    [97]何慧,沈家瑞,原位增容HDPE/PET共混体系结构与性能的研究,高分子材料科学与工程[J],(2000),16(4),124-130
    [98]Aiji A., Chapleau N., Structure and properties of impact modified polyethylene terephthalate, J. Mater. Sci.[J], (2002),37,3893-3901
    [99]Papadopoulou C. P., Kalfoglou N. K., Comparison of compatibilizer effectiveness for PET/PP blends:their mechnical, thermal and morphology characterization, Polymer[J], (2000),41,2543-2555
    [100]Ju M. Y., Chang F. C., Compatibilization of PET/PS blends through SMA and PMPI dual compatibilizers, Polymer [J], (2000),41(5),1719-1730
    [101]席世平,冯意韧,刘翅,PC/PET/PE-g-MAH三元共混物的研究,高分子材料科学与工程[J],(1999),15(1),94-96
    [102]陈玉君,何国山,侯巩,聚烯烃接枝MAH对PET/PA6性能的影响,中国塑料[J],(2002),16,44-46
    [103]Cook W. D., Zhang T., Moad G., Van D. G., Cser F., Fox B., Oshea M., Morphology-property relationships in ABS/PET blends.1. Compositional effects, J. Appl. Polym. Sci.[J], (1996),62,1699-1708
    [104]Cook W. D., Moad G., Fox B., Van D. G., Zhang T., Cser F, McCarthy L Morphology-property relationships in ABS/PET blends.2. Influence of processing conditions on structure and properties, J. Appl. Polym. Sci.[J], (1996),62,1709-1714
    [105]Tao Y. J., Mai K. C., Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly(ethylene terephthalate) blends, Euro. Polym. J.[J], (2007),43(8),3538-3549
    [106]李建勋,彭少贤,郦华兴,反应性增韧性和增容技术在PET回收料及其共混物PET/PC中的应用,塑料[J],(1998),27(2),33-36
    [107]Ke Y. C., Long C. F., Qi Z. N., Crystallization properties and crystal and nanoscale morphthology of PET-clay nanocomposites, J. Appl. Polym. Sci.[J], (1999),71, 1139-1146
    [108]Wang Y. M., Gao J. P., Ma Y. Q., Agarwal U. S., Study on mechanical properties, thermal stability and crystallization behavior of PET/MTT nanocomposites, Compos. Pt. B-Eng.[J], (2006),37,399-407
    [109]Ke Y. C, Wu T. B., Xia Y. F., The nucleation crystallization and dispersion behavior of PET-monodisperse SiO2 composites, Polymer[J], (2007),48,3324-3336
    [110]Dilorenzo M. L., Errico M. E., Avella M., Thermal and morphology characterization of polyethylene terephthalate/calcium carbonate nanocomposites, J. Mater. Sci.[J], (2002),37,2351-2358
    [111]郭仁义,危大福,卢红,郑安呐,结晶促进剂和成核剂对PET结晶性能的影响,高分子材料科学与工程[J],(2003),4,121-124
    [112]张广成,史学涛,项士新,刘铁民,陈挺,顾军渭,成核剂对聚对苯二甲酸乙二醇酯的结晶行为影响,机械科学与技术[J],(2006),6,641-646
    [113]Xanthos M., Dhavalikar R., Tan V., Dey S. K., Yilmazer U., Properties and applications of sandwich panels based on PET foams, J. Reinf. Plast. Compos.[J], (2001),20(9),786-793
    [114]陆嘉,王兴仁,凌泽济,兰新,PET-PEG共聚酯性能的研究,合成技术及应用[J],(1999),14(1),21-24
    [115]宋厚春,PET与PEG嵌段共聚物合成及应用的研究,合成纤维工业,(1999),6,9-11
    [116]魏雪梅,王锐,张大省,共聚改性阻燃PET的制备,合成纤维工业[J],(2008),3,42-45
    [117]刘柏林,何文社,PTT树脂及其开发进展,合成树脂工业[J],(2000),17(3),57-59
    [118]Jain P., Misra A., Ghosh A. K., Compatibilization of polypropylene and polybutylene terephthalate blends using reactive extrusion:mechanical properties, morphological and Theological studies, J. Polym. Mater.[J], (2001),18(4),341-353
    [119]Yang J. H., Shi D., Gao Y., Song Y. X., Yin J. H., Rheological properties and morphology of compatibilized poly (butylenes terephthalate)/linear low-density polyethylene alloy, J. Appl. Polym. Sci.[J], (2003),88(1),206-213
    [120]Pesneau I., Cassagnau P., Michel A., Morphology monitoring of PE/PBT blends by reactive processing, J. Appl. Polym. Sci.[J], (2001),82(14),3568-3577
    [121]Yang J. H., Shi D., Yao Z. H., Xin Z. R., Yin J. H., Effect of the compatibilization of linear low-density polyethylene-g-acrylic acid on the morphology and mechanical properities of poly(butylenes terephthalate)/linear low-density polyethylene blends, J. Appl. Polym. Sci.[J], (2002),84(5),1059-1066
    [122]Lee S.S., Kim J., Park M., Lim S., Choe C. R. M., Transesterification reaction of the BaSO4-filled PBT/poly(ethylene terephthalate) blend, J. Polym. Sci., Part B:Polym Phys.[J], (2001),39(21),2589-2597
    [123]Stocco A., La C. V., Piccarolo S., Brucato V., The solidification behavior of a PBT/PET blend over a wide range of cooling rate, J. Polym. Sci., Part B:Polym Phys.[J], (2009),47(8),799-810
    [124]黄永青,刘佑习,聚酯含量对PBT/PET/PA-6三元共混物性能影响,高分子材料科学与工程[J],(1999),15(1),155-157
    [125]Hage E., Ferreira L. A. S., Manrrich S., Pessan L. A., Crystallization behavior of PBT/ABS polymer blends, J. Appl. Polym. Sci.[J], (1999),71(3),423-430
    [126]Hale W., Pesssan H., Paul D. R., Fracture behavior of PBT-ABS blends compatibilized by methyl methoxyl terpolymers, Polymer[J], (1999),40,3353-3365
    [127]Palanivelu K., Sivaraman P., Reddy M. D., Studies on thermoplastic polyurethane toughened poly(butylenes terephthalate) blends, Polym. Test[J], (2002),21,345-351
    [128]张从容,新型PTT聚酯材料开发进展,化工商品科技[J],(1999),2,17-19
    [129]陈克权,上海石化PTT产业链研发和产业化进展,合成纤维[J],(2005),2,8-12
    [130]Witt U., Yamamoto M., Seeliger U., Muller R. J., Warzelhan V., Biodegradable polymeric materials-not the origin but the chemical structure determines biodegradability, Angew. Chem. Int. Ed.[J], (1999),38(10),1438-1442
    [131]Vert M., Aliphatic polyesters: Great degradable polymers that cannot do everything, Biomacromolecules[J], (2005),6(2),538-546
    [132]Marten E., Muller R. J., Deckwer W. D., Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters, Polym. Degrad. Stab.[J], (2005),88(3), 371-381
    [133]Chen Y. W., Jia Z. H., Schaper A., Kristiansen M., Smith P., Wombacher R., Wendorff J. H., Greiner A., Hydrolytic and enzymatic degradation of liquid-crystalline aromatic/aliphatic copolyesters, Biomacromolecules[J], (2004),5(1), 11-16
    [134]Shi F. F., Economy J., Moisture transport studies on newly developed aromatic and aromatic/aliphatic copolyester thin films, J. Polym. Sci., Part B:Polym Phys.[J], (1998),36(6),1025-1035
    [135]Jaisankar V., Nanthini R., Ravi A., Karunanidhi M., A study on biodegradation of aliphatic-aromatic random copolyesters, J. Polym. Mater.[J], (2009),26(2),157-166
    [136]Kint D., Munoz-Guerra S., A review on the potential biodegradability of poly(ethylene terephthalate), Polym. Int.[J], (1999),48,346-352
    [137]Witt U., Muller R. J., Deckwer W. D., Evaluation of the biodegradability of copolyesters containing aromatic compounds by investigations of model oligomers, J. Environ. Polym. Degrad.[J], (1996),4,9-20
    [138]Grzebieniak K., Wesolowski J., Glycolysis of PET waste and the use of glycolysis products in the synthesis of degradable co-polyesters, Fibres Text. East. Eur.[J], (2004),12,21-24
    [139]Grzebieniak K., Ratajska M., Strobin G., Estimation of hydrolysis and biodegradation processes in ethylene terephthalate and lactic acid copolymers, Fibres Text. East. Eur.[J], (2001),9,61-65
    [140]Olewnik E., Czerwinski W., Nowaczyk J., Sepulchre M. O., Tessier M., Salhi S., Fradet A., Synthesis and structural study of copolymers of L-lactic acid and bis(2-hydroxyethyl terephthalate), Euro. Polym. J.[J], (2007),43,1009-1019
    [141]Zhu X. J., Chen Y. W., Su J. Y., He X. H., Tan L. C, Wang Y., Synthesis of Aliphatic-aromatic copolyesters by a melting bulk reaction between poly(butylene terephthalate) and DL-Oligo(lactic acid), High Perform. Polym.[J], (2008),20, 166-184
    [142]Zhang Y., Wang B. T., Guo Z. H., Chen J., Fang Z. P., Preparation and characterization of biodegradable aliphatic-aromatic copolyesters/nano-SiO2 hybrids via in situ melt polycondensation, Chin. Chem. Lett.[J], (2009),20,1348-1352
    [143]Li W. D., Zeng J. B., Li Y. D., Wang X. L., Wang Y. Z., Synthesis of high-molecular-weight aliphatic-aromatic copolyesters from poly(ethylene-co-1,6-hexene terephthalate) and poly(L-lactic acid) by chain extension, J. Polym. Sci., Part A:Polym. Chem.[J], (2009),47,5898-5907
    [144]Lee S. H., Lim S. W., Lee K. H., Properties of potentially biodegradable copolyesters of (succinic acid-1,4-butanediol)/(dimethyl terephthalate-1,4-butanediol), Polym. Int.[J], (1999),48,861-867
    [145]Zhang P. N., Huang F. R., Wang B. F., Characterization of biodegradable aliphatic/aromatic copolyesters and their starch blends, Polym.-Plast. Technol. Eng.[J], (2002),41(2),273-283
    [146]Honda N., Taniguchi I., Miyamoto M., Kimura Y., Reaction mechanism of enzymatic degradation of poly(butylene succinate-co-terephthalate) (PBST) with a Lipase originated from Pseudomonas cepacia, Macromol. Biosci.[J], (2003),3,189-197
    [147]Kondratowicz F. L., Ukielski R., Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephthalate) copolymers, Polym. Degrad. Stab.[J], (2009),94,375-382
    [148]Deng L. M., Wang Y. Z., Yang K. K., Wang X. L., Zhou Q., Ding S. D., A new biodegradable copolyester poly(butylene succinate-co-ethylene succinate-co-ethylene terephthalate), Acta Mater.[J], (2004),52,5871-5878
    [149]Witt U., Muller R. J., Deckwer W. D., New biodegradable polyester-copolymers from commodity chemicals with favorable use properties, J. Environ. Polym. Degrad.[J], (1995),3(4),215-223
    [150]Witt U., Einig T., Yamamoto M., Kleeberg I., Deckwer W. D., Muller R. J., Biodegradation of aliphatic-aromatic copolyesters- evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates, Chemosphere[J], (2001),44,289-299
    [151]Rantze E., Kleeberg I., Witt U., Muller R. J., Deckwer W. D., Aromatic components in copolyesters:Model structures help to understand biodegradability, Macromol. Symp.[J], (1998),130,319-326
    [152]Muller R. J., Witt U., Rantze E., Deckwer W. D., Architecture of containing biodegradable copolyesters aromatic constituents, Polym. Degrad. Stab.[J], (1998),59, 203-208
    [153]Witt U., Muller R. J., Deckwer W. D., Studies on sequence distribution of aliphatic-aromatic copolyesters by high-resolution 13C nuclear magnetic resonance spectroscopy for evaluation of biodegradability, Macromol. Chem. Phys.[J], (1996), 197,1525-1535
    [154]Kuwabara K., Gan Z. H., Nakamura T., Abe H., Doi Y., Crystalline/amorphous phase structure and molecular mobility of biodegradable poly(butylene adipate-co-butylene terephthalate) and related polyesters, Biomacromolecules[J], (2002),3,390-396
    [155]Gan Z. H., Kuwabara K., Yamamoto M., Abe H., Doi Y., Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters, Polym. Degrad. Stab.[J], (2004),83,289-300
    [156]Kijchavengkul T., Auras R., Rubino M., Ngouajio M., Fernandez R. T., Assessment of aliphatic-aromatic copolyester biodegradable mulch films. Part Ⅱ:Laboratory simulated conditions, Chemosphere[J], (2008),71,1607-1616
    [157]Kijchavengkul T., Auras R., Rubino M., Alvarado E., Montero J. R. C., Rosales J. M., Atmospheric and soil degradation of aliphatic-aromatic polyester films, Polym. Degrad. Stab.[J], (2010),95,99-107
    [158]Han L., Zhu G. X., Zhang W., Chen W., Composition, thermal properties, and biodegradability of a new biodegradable aliphatic/aromatic copolyester, J. Appl. Polym. Sci.[J], (2009),113,1298-1306
    [159]Albertsson A. C, Varma I. K., Recent developments in ring opening polymerization of Lactones for biomedical applications, Biomacromolecules[J], (2003),4,1466-1486
    [160]Billiet L., Fournier D., Prez F. D., Combining "click" chemistry and step-growth polymerization for the generation of highly functionalized polyesters, J. Polym. Sci., Part A:Polym. Chem.[J], (2008),46,6552-6564
    [161]Lim Y. B., Choi Y. H., Park J. S., A self-destroying polycationic polymer: Biodegradable poly(4-hydroxy-L-proline ester), J. Am. Chem. Soc.[J], (1999),121, 5633-5639
    [162]Wang S. F., Yaszemski M. J., Gruetzmacher J. A., Lu L. C, Photo-crosslinked poly(3-caprolactone fumarate) networks:Roles of crystallinity and crosslinking density in determining mechanical properties, Polymer[J], (2008),49,5692-5699
    [163]Jabbari E., Wang S. F., Lu L. C., Gruetzmacher J. A., Ameenuddin S., Hefferan T. E., Synthesis, material properties and biocompatibility of a novel self-crosslinkable poly(s-caprolactone fumarate) as an injectable tissue engineering scaffold, Biomacromolecules[J], (2005),6,2503-2511
    [164]Wang S., Lu L., Gruetzmacher J. A., Currier B. L., Yaszemski M. J., A biodegradable and cross-linkable multiblock copolymer consisting of poly(propylene fumarate) and poly(ε-caprolactone):synthesis, characterization, and physical properties, Macromolecules[J], (2005),38,7358-7370
    [165]Wang S., Lu L., Gruetzmacher J. A., Currier B. L., Yaszemski M. J., Synthesis and characterizations of biodegradable and crosslinkable poly(s-caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer, Biomaterials[J], (2006),27(6),832-841
    [166]Metzke M., Bai J. Z., Guan Z. B., A novel carbohydrate-derived side-chain polyether with excellent protein resistance, J. Am. Chem. Soc.[J], (2003),125,7760-7761
    [167]Kumar A., Kulshrestha A. S., Gao W., Gross R. A., Versatile route to polyol polyesters by Lipase catalysis, Macromolecules[J], (2003),36,8219-8221
    [168]Fu H. Y., Kulshrestha A. S., Gao W., Gross R. A., Baiardo M., Scandola M., Physical characterization of sorbitol or glycerol containing aliphatic copolyesters synthesized by Lipase-catalyzed polymerization, Macromolecules[J], (2003),36,9804-9808
    [169]Hu J., Gao W., Kulshrestha A., Gross R. A., "Sweet polyesters":Lipase-catalyzed condensation-polymerizations of alditols, Macromolecules[J], (2006),39,6789-6792
    [170]Uyama H., Klegraf E., Wada S., Kobayashi S., Regioselective polymerization of sorbitol and divinyl sebacate using lipase catalyst, Chem. Lett.[J], (2000),7,800-801
    [171]Horn B. A. V., Wooley K. L., Toward cross-linked degradable polyester materials: Investigations into the compatibility and use of reductive amination chemistry for cross-linking, Macromolecules[J], (2007),40,1480-1488
    [172]Dwanisa J. P. L., Lecomte P., Dubois P., Jerome R., Synthesis and characterization of random copolyesters of ε-caprolactone and 2-Oxepane-1,5-dione, Macromolecules[J], (2003),36,2609-2615
    [173]Tian D., Halleux O., Dubois P., Jerome R., Sobry R., Bossche G. V. D., Poly(2-oxepane-1,5-dione):a highly crystalline modified poly(ε-caprolactone) of a high melting temperature, Macromolecules[J], (1998),31,924-927
    [174]Taniguchi I., Mayes A. M., Chan E. W. L., Griffith L. G., A chemoselective approach to grafting biodegradable polyesters, Macromolecules[J], (2005),38,216-219
    [175]Horn B. A. V., Iha R. K., Wooley K. L., Sequential and single-step, one-pot strategies for the transformation of hydrolytically degradable polyesters into multifunctional systems, Macromolecules[J], (2008),41,1618-1626
    [176]Horn B. A. V., Wooley K. L., Cross-linked and functionalized polyester materials constructed using ketoxime ether linkages, Soft Matter[J], (2007),3,1032-1040
    [177]Tian D., Dubois P., Grandfils C., Jerome R., Ring-opening polymerization of 1,4,8-Trioxaspiro[4.6]-9-undecanone:A new route to aliphatic polyesters bearing functional pendent groups, Macromolecules[J], (1997),30,406-409
    [178]Riva R., Schmeits P., Stoffelbach F., Jerome C., Jerome R., Lecomte P., Combination of ring-opening polymerization and "click" chemistry towards functionalization of aliphatic polyesters, Chem. Commun.[J], (2005),42,5334-5336
    [179]Parrish B., Breitenhkamp R. B., Emrick T., PEG- and peptide-grafted aliphatic polyesters by click chemistry, J. Am. Chem. Soc.[J], (2005),127,7404-7410
    [180]Liu M. J., Vladimirov N., Frechet J. M. J., A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer 4-(2-hydroxyethyl)-s-caprolactone, Macromolecules[J], (1999),32,6881-6884
    [181]Tasaka F., Ohya Y., Ouchi T., One-pot synthesis of novel branched polylactide through the copolymerization of Lactide with Mevalonolactone, Macromol. Rapid. Commun.[J], (2001),22,820-824
    [182]Xie Z. G., Lu C. H., Chen X. S., Chen L., Wang Y., Hu X. L., Shi Q., Jing X. B, Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol, J. Polym. Sci., Part A:Polym. Chem.[J], (2007),45,1737-1745
    [183]Hu X. L., Liu S., Chen X. S., Mo G. J., Xie Z. G., Jing X. B., Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups:synthesis and characterization, Biomacromolecules[J], (2008),9,553-560
    [184]Miao S. D., Zhang S. P., Su Z. G., Wang P., Chemoenzymatic synthesis of oleic acid-based polyesters for use as highly stable biomaterials, J. Polym. Sci.:Part A: Polym. Chem.[J], (2008),46,4243-4248
    [185]Parrish B., Emrick T., Aliphatic polyesters with pendant cyclopentene groups: Controlled synthesis and conversion to polyester-graft-PEG copolymers, Macromolecules[J], (2004),37(16),5863-5865
    [186]Jiang X. W., Vogel E. B., Smith M. R, Baker G. L., "Clickable" polyglycolides: Tunable synthons for thermoresponsive, degradable polymers, Macromolecules[J], (2008),41,1937-1944
    [187]Cooper B. M., Seng C. D., Samanta D., Zhang X. F., Parelkar S., Emrick T. Polyester-graft-phosphorylcholine prepared by ring-opening polymerization and click chemistry, Chem. Commun.[J], (2009),7,815-817
    [188]沈之荃,稀土催化剂在高分子合成中的开拓应用,高分子通报[J],(2005),4,1-12
    [189]黎俊,顾群,蒋志强,王静,刘吉,江盛鸿,芳香族-脂肪族共聚醋的合成与应用,合成技术及应用[J],(2009),24(4),20-25
    [190]朱孝恒,陈伟,祝桂香,吕静兰,张艳霞,张伟,稀土-钛催化剂上制备的聚(对苯二甲酸丁二醇酯-co-丁二酸丁二醇酯)的结构与性能,石油化工[J],(2007),36(3),293-297
    [191]Zhao H, Pendri A, Greenwald R. B., General Procedure for Acylation of 3°Alcohols: Scandium Triflate/DMAP Reagent, J. Org. Chem.[J], (1998),63,7559-7562
    [192]Chen X. R., Chen W, Zhu G. X., Huang F. X., Zhang J. C., Synthesis,1H-NMR Characterization, and Biodegradation Behavior of Aliphatic-Aromatic Random Copolyester, J. Appl. Polym. Sci.[J], (2007),104,2643-2649
    [193]Gan Z. H., Kuwabara K., Yamamoto M., Abe H., Doi Y., Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters, Polym. Degrad. Stab.[J], (2004),83,289-300
    [194]Kuwabara K, Gan Z. H., Nakamura T., Abe H., Doi Y., Crystalline/Amorphous Phase Structure and Molecular Mobility of Biodegradable Poly(butylene adipate-co-butylene terephthalate) and Related Polyesters, Biomacromolecules[J], (2002),3,390-396
    [195]Herrera R., Franco L., Rodriguez-Galan A., Puiggali J., Characterization and Degradation Behavior of Poly(butylene adipate-co-terephthalate)s, J. Polym. Sci.:Part A:Polym. Chem.[J], (2002),40,4141-4157
    [196]常振勇,酯交换法聚酯生产中添加剂用量的研究,合成纤维工业[J],(2002),25(6),41-43
    [197]曹善文,李朝晖,付乐军,PET缩聚催化剂的发展及展望,聚酯工业[J],(2004),17(5),5-9
    [198]张天骄,新型催化剂合成聚酯和共聚酯的研究,四川大学博士学位论文,(1999),8
    [199]Monvisade P., Loungvanidprapa P., Synthesis of poly(ethylene adipate) and poly(ethylene adipateco-terephthalate) via ring-opening polymerization, Euro. Polym. J.[J], (2007),43,3408-3414
    [200]公茂明,郑帼,徐进云,孙玉,PET/BaSO4聚酯纤维的动态力学行为,天津工业大学学报[J],(2009),28(6),22-25
    [201]韩翎,祝桂香,张伟,陈伟,不同二元醇制备的4种脂肪/芳香共聚酯的性能研究,北京化工大学学报[J],(2009),36(4),44-48
    [202]Williams C. K., Synthesis of functionalized biodegradable polyesters, Chem. Soc. Rev.[J], (2007),36,1573-1580
    [203]Lyooa W. S., Leeb S. G., Hab W. S., Leec J., Kim J. H., A high performance liquid chromatography method to determine monomer reactivity ratios in copolycondensation of bis(4-hydroxybutyl) terephthalate and bis(2-hydroxyethyl) terephthalate, Polym. Test[J], (2000),19,299-309
    [204]Krentsel L. B., Markova G. D., Kudryavtsev Y. V., Filatova M. P., Vasnev V. A., Litmanovich A. D., Plate N. A., Transesterification of poly(4,4'-isopropylidene-2,2'-dimethyldiphenylene terephthalate) and poly(ethylene adipate) blend in solution, Macromol. Chem. Phys.[J], (2005),206,2206-2211
    [205]Carothers W. H., Hill J. W., Studies of polymerization and ring formation. Ⅻ. linear superpolyesters., J. Am. Chem. Soc.[J], (1932),54,1559-1566
    [206]Saam J. C, Low-temperature polycondensation of carboxylic acids and carbinols in heterogeneous media, J. Polym. Sci., Part A:Polym. Chem.[J], (1998),36,341-356
    [207]Wan Y. Q., Feng G., Shen F. H., Balian G., Laurencin C. T., Li X. D., Novel biodegradable poly(1,8-octanediol malate) for annulus fibrosus regeneration, Macromol. Biosci.[J], (2007),7,1217-1224
    [208]Nagata M., Kono Y., Sakai W., Tsutsumi N., Preparation and characterization of novel biodegradable optically active network polyesters from malic acid, Macromolecules[J], (1999),32,7762-7767
    [209]Zhang, S. P., Yang, J., Liu, X. Y., Chang, J. H., Cao, A. M., Synthesis and characterization of poly(butylene succinate-co-butylene malate):A new biodegradable copolyester bearing hydroxyl pendant groups, Biomacromolecules[J], (2003),4,437-445
    [210]Hao, Q. H., Yang, J., Li, Q. B., Li, Y., Jia, L., Fang, Q., Cao, A. M., New facile approach to novel water-soluble aliphatic poly(butylene tartarate)s bearing reactive hydroxyl pendant groups, Biomacromolecules[J], (2005),6,3474-3480
    [211]Ishihara K., Kubota M., Kurihara H., Yamamoto H., Scandium trifluoromethanesulfonate as an extremely active acylation catalyst, J. Am. Chem. Soc.[J], (1995),117,4413-4414
    [212]Barrett A. G. M, Braddock D. C, Scandium(III) or lanthanide(III) triflates as recyclable catalysts for the direct acetylation of alcohols with acetic acid, Chem. Commun.[J], (1997),4,351-352
    [213]Takasu A., Narukawa Y., Hirabayashi T., Direct dehydration polycondensation of lactic acid catalyzed by water-stable Lewis acids. J. Polym. Sci., Part A:Polym. Chem.[J], (2006),44,5247-5253
    [214]Takasu A., Oishi Y., Iio Y., Inai Y., Hirabayashi T., Synthesis of aliphatic polyesters by direct polyesterification of dicarboxylic acids with diols under mild conditions catalyzed by reusable rare-earth triflate, Macromolecules[J], (2003),36,1772-1774
    [215]Takasu A., Iio Y., Oishi Y., Narukawa Y., Hirabayashi T., Environmentally benign polyester synthesis by room temperature direct polycondensation of dicarboxylic acid and diol, Macromolecules[J], (2005),38,1048-1050
    [216]Takasu A., Shibata Y., Narukawa Y., Hirabayashi T., Chemoselective dehydration polycondensations of dicarboxylic acids and diols having pendant hydroxyl groups using the room temperature polycondensation technique, Macromolecules[J], (2007), 40,151-153
    [217]Ishii M., Okazaki M., Shibasaki Y., Ueda M., Convenient synthesis of aliphatic polyesters by distannoxane-catalyzed polycondensation, Biomacromolecules[J], (2001),2,1267-1270
    [218]Ishihara K., Ohara S., Yamamoto H., Direct condensation of carboxylic acids with alcohols catalyzed by Hafnium(IV) salts, Science[J], (2000),290,1140-1142
    [219]Patrizi M. L., Diociaiuti M., Capitani D., Masci G., Synthesis and association properties of thermoresponsive and permanently cationic charged block copolymers, Polymer[J], (2009),50,467-474
    [220]Liu R., Leonardis P. D., Cellesi F., Tirelli N., Saunders B. R., Cationic temperature-responsive poly(N-isopropyl acrylamide) graft copolymers:from triggered association to gelation, Langmuir[J], (2008),24,7099-7106
    [221]Riva R., Schmeits S., Jerome C., Jerome R., Lecomte P., Combination of ring-opening polymerization and "Click Chemistry":Toward functionalization and grafting of poly(ε-caprolactone), Macromolecules[J], (2007),40,796-803
    [222]Yuan W. Z., Yuan J. Y., Zhang F. B., Xie X. M, Pan C. Y., Synthesis, characterization, crystalline morphologies, and hydrophilicity of brush copolymers with double crystallizable side chains, Macromolecules[J], (2007),40,9094-9102
    [223]Billiet L., David F., Prez F. D., Combining "click" chemistry and step-growth polymerization for the generation of highly functionalized polyesters, J. Polym. Sci., Part A:Polym. Chem.[J], (2008),46,6552-6564
    [224]Justynska J., Hordyjewicz Z., Schlaad H., Toward a toolbox of functional block copolymers via free-radical addition of mercaptans, Polymer[J], (2005),46, 12057-12064
    [225]Justynska J., Schlaad H., Modular synthesis of functional block copolymers, Macromol. Rapid Commun.[J], (2004),25,1478-1481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700