回收聚对苯二甲酸乙二酯/聚乙烯共混体系的增容超韧改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用反应挤出法以回收聚对苯二甲酸乙二酯(R-PET)为基体,制备了R-PET与聚乙烯(PE)的增容超韧共混物。论文中探讨了PE的类型、PE与增容剂的相互作用以及增容剂在共混物中的分布对R-PET/PE共混物结构和性能的影响,并且通过改善加工工艺和后处理工艺等来消除共混物的内应力,对提高PET回料的使用价值、加快PET的工业化回收进程具有深远的意义。主要研究结果如下:
     (1)以甲基丙烯酸缩水甘油酯接枝乙烯-辛烯共聚物(POE-g-GMA)作增容剂,选择高密度聚乙烯(HDPE)、线性低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)和极低密度聚乙烯(VLDPE)分别与R-PET共混。首先根据粘度匹配原则确定了最佳加工温度为245℃,这低于PET的熔点(Tm),有利于抑制PET回料在加工过程中的降解反应。组分的粘度和界面张力数据证明VLDPE和POE-g-GMA的相容性最好,而HDPE与POE-g-GMA的相容性最差。刻蚀后的共混物扫描电镜(SEM)显示R-PET/HDPE共混物中HDPE与POE-g-GMA独立分散,而R-PET/VLDPE共混物的断面很粗糙,表明共混时有大量的POE-g-GMA渗透到VLDPE相中。选择与POE-g-GMA相容性适中的LLDPE或LDPE与R-PET共混有利于提高POE-g-GMA的增容效果,共混物冲击强度和断裂伸长率较大。差示扫描量热分析(DSC)表明POE-g-GMA对PET有异相成核作用,提高PET的结晶温度(Tc)。动态热机械分析(DMA)表明POE-g-GMA与PET反应生成的共聚物是影响POE-g-GMA运动的主要因素,也就是说共混物中POE-g-GMA与PET的化学作用力大于POE-g-GMA与PE的物理缠结力。
     (2)为了增强POE-g-GMA与PE的相互作用,采用过氧化二异丙苯(DCP)作引发剂引发PE与POE-g-GMA的接枝反应。与LDPE相比,LLDPE有较多的叔碳和较短的支链,LLDPE与POE-g-GMA发生接枝反应的机率较大而交联副反应较少,所以选择LLDPE与POE-g-GMA反应制备LLDPE-g-(POE-g-GMA)共聚物。红外光谱(FTIR)和固体核磁共振(13C-NMR)分析证明,加入0.2%的DCP后,POE-g-GMA成功地接枝到LLDPE分子上。广角X射线衍射(WAXD)结果显示LLDPE与POE-g-GMA接枝后晶型结构不变,但是衍射峰的相对强度降低。LLDPE分子链的支化和扩链破坏了LLDPE链段的规整性的,Tm和Tc减小。SEM结果表明,LLDPE/POE-g-GMA共混物化学接枝改性后明显减小了POE-g-GMA的粒径,两相界面模糊,力学性能提高,但是当体系中形成微交联结构后,断裂伸长率减小。
     (3)以相同的原料配比,采用一步共混法、物理两步共混法、化学接枝两步共混法和化学交联两步共混法制备了四种以R-PET为基体的共混物。共混物刻蚀后的SEM结果表明,一步共混法制得的R-PET/LLDPE/POE-g-GMA共混物的相结构呈粘附型,而采用两步法共混的样品相结构都呈包覆型,表明两步法有利于POE-g-GMA与LLDPE形成核壳粒子。化学接枝两步法制备的共混物界面处有纤维状物质,证明体系中有R-PET-g-POE-g-LLDPE共聚物生成,相容性得到了明显的改善,分子间作用力增大。化学接枝两步法制备的共混物中R-PET的Tg最小,表明分散相的支化核壳结构有利于POE-g-GMA与R-PET的增容反应,而如果分散相形成了交联核壳结构,会阻碍POE-g-GMA向R-PET相表面的运动,降低体系的相容性。力学性能测试结果表明,化学接枝法制备的共混物冲击强度和断裂伸长率明显增大,拉伸强度、弯曲强度和弯曲模量也比其他共混物的高。
     (4)采用WAXD和DSC研究了以上四种共混物中PET的晶型结构、结晶熔融行为和非等温结晶动力学。结果显示化学接枝两步法制备的共混物WAXD图谱上出现了两个新的衍射峰,表明提高共混物的增容反应程度能促进POE-g-GMA对R-PET的异相成核作用,R-PET的Tc、Tm提高,t1/2减小。由于PET在结晶后期存在球晶碰撞及二次结晶,共混物的非等温结晶动力学符合Mo方程。
     (5)通过优化注塑工艺和热处理工艺,减少PET制品内应力,进一步提高化学接枝两步法制备的共混物的韧性。结果表明熔体温度对共混物冲击强度的影响最大。随着热处理温度和时间的增加,共混物链段缠结强度增加,刚性提高,韧性先增大后降低,溶剂沉浸测试结果表明,共混物在60℃热处理25 h后,材料内应力显著减小,与热焓松弛参数拟合结果一致。根据共混物老化活化能预测材料在室温的使用寿命为12.2年。
Super-toughened recycled poly (ethylene terephthalate) (R-PET)/polyethylene (PE) compatibilized blend was prepared by reaction extrusion. The effects of the type of PE, the miscibility between PE and compatibilizer, and the dispersion of compatibilizer on the morphology and properties of the blends were discussed. Processing and post-processing techniques were also investigated to remove the internal stress and further improve the toughness of the blend, which is meaningful to the industrial recovery of PET. The main results were presented as follows:
     (1) High density polyethylene (HDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE) and very low density polyethylene (VLDPE) were chosen to blend with R-PET. Glycidyl methacrylate grafted poly(ethylene-octene) (POE-g-GMA) was used as compatibilizer. The optimum processing temperature of 245℃was confirmed by viscosity match principle, which is lower than the melting temperature (Tm) of PET, thus the degradation of R-PET was inhibited. The component viscosity and interfacial tension test showed the miscibility was best between VLDPE and POE-g-GMA and worst between HDPE and POE-g-GMA. The etched surface of the blend with VLDPE was very rough, indicating that a large amount of POE-g-GMA was migrated into VLDPE phase, while HDPE and POE-g-GMA dispersed in the matrix independently with wider distribution. It is clear that the proper miscibility of PE with POE-g-GMA is beneficial to improve the compatibilization effect of POE-g-GMA. Therefore, the impact strength and elongation at break of the blend with LLDPE or LDPE were higher than those of other two blends. Differential scanning calorimeter (DSC) results showed that POE-g-GMA has heterogeneous nucleating effect on PET and increased the Tc of R-PET. Dynamic mechanical analysis (DMA) results showed that the formation of PET-g-POE was the major factor in hindering the POE-g-GMA movement, in other words, the intermolecular forces between PE and POE-g-GMA are weaker than the intramolecular forces of PET-g-POE.
     (2) Dicumyl peroxide (DCP) was used as initiator to initiate the grafting reaction between PE and POE-g-GMA to improve the compatibilization effect. Compared with LDPE. LLDPE contains more tertiary carbon atoms and shorter branched chains. Therefore, it shows higher grafting reaction and lower crosslinking side reaction probability than LDPE and was finally selected to prepared graft copolymer PE-g-(POE-g-GMA). Fourier transform infrared ray and nuclear magnetic resonance analysis proved POE-g-GMA was grafted onto LLDPE by the initiation of 0.2% DCP. Wide angle X-ray diffraction (WAXD) and DSC measurements showed the integrity of LLDPE chains was destroyed after grafting reaction, leading to smaller diffraction peak intensities as well as lower Tm and Tc, but the crystalline structure of LLDPE wasn't changed. LLDPE-g-(POE-g-GMA) graft copolymer displayed finer distribution of POE-g-GMA and better mechanical properties.
     (3) Four R-PET-based blends were respectively prepared by one-step blending, two-step physical blending, two-step chemical graft blending and two-step chemical crosslink blending. The etched surface showed the dispersed phase of one-step blend exhibited adhesion structure while the two-step blends all exhibited encapsulating structure, indicating two-step blending is favorable to the formation of core-shell structure of the dispersed phase in the blend. Moreover, fibrils can be seen at the interface of the two-step chemical graft blend, which improved the compatibility of the blend and increased the mechanical properties remarkably. However, the two-step chemical crosslink blend showed worse compatibility due to the crosslinked core-shell structure obstructed the movement of POE-g-GMA towards R-PET phase.
     (4) The crystal structure, crystallization and melting behavior and nonisothermal crystallization kinetics of these R-PET based blends were studied by WAXD and DSC, respectively. The WAXD patterns of the two-step chemical grafting blend showed two new diffraction peaks. It indicated that the improvement of compatibility of the blend promoted the heterogeneous nucleating effect of POE-g-GMA, consequently the Tc, Tm of PET increased and t1/2 decreased.
     (5) In order to improve the toughness of the two-step chemical grafting blend, the injection techniques were optimized. The results showed the melt temperature was the most influential factor on the impact strength of the blend. The rigidity increased and the toughness increased firstly and then decreased with the increase of annealing temperature and time. The solvent immersion test showed the internal stress decreased significantly of the blend annealed at 60℃for longer than 25 h, according with the result of enthalpy relaxation parameters fitting. The estimated service life of the blend was 12.2 year based on the annealing activation energy.
引文
[1]杨始垫,陈玉君.聚酯化学、物理、工艺[M].广州:中山大学出版社.1995,1-4
    [2]冯宝荣.聚酯薄膜品种概述[J].化学世界.1995,36(10):515-517
    [3]宋学智.改性PET工程塑料的研究进展[J].工程塑料应用,1992,1(3):50-52
    [4]Jennifer L. High impact strength articals from polyester blends [P]. US:5382628,1995
    [5]王晓春.合成纤维[M].北京:北京航空航天大学出版社.2002,32-36
    [6]许健南.塑料材料[M].北京:中国轻工业出版社.1999,47-49
    [7]辛浩波.塑料合金及塑橡共混改性[M].北京:中国轻工业出版社.2000,67-72
    [8]赵均.PET工程塑料研究进展[J].河南化工.2002,5(1):32-33
    [9]Nabil Mustafa. Plastics Waste Management:Disposal, Recycling and Reuse [M]. New York:Marcel Dekker Inc.1993,92-96
    [10]Avila A F, Duarte M V. A mechanical analysis on recycled PET/LLDPE composites [J]. Polym. Degrad. Stab.2003,80(6):373-375
    [11]Paszun D, Spychaj T. Chemical recycling of poly(ethylene terephthalate) [J]. Ind. Eng. Chem. Res.1997,36:1373-80
    [12]Chen C H, Chen C Y, Lo Y, Mao C, Liao W. Studies of glycolysis of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles:Ⅱ. Factorial experimental design [J]. J. Appl. Polym. Sci.2001,80:956-962
    [13]相宏伟,杨勇,杨继礼,徐元源,李永旺.一种解聚聚对苯二甲酸乙二醇酯废料的方法[P].CN:00118576,2001
    [14]Kosmidis V A, Achilias D S, Karayannidis G P. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid, kinetics of a phase transfer catalyzed alkaline hydrolysis [J]. Macromol. Mater. Eng.2001,286:640-647
    [15]Yamaye M, Hashime T, Yamamoto K. Chemical recycling of poly(ethylene terephthalate).2:Preparation of terephthalohydroxamic acid and terephthalohydrazide [J]. Ind. Eng. Chem. Res.2002,41(16):3993-3998
    [16]典平鸽,杜玲枝.废旧塑料的综合利用[J].浙江化工.2006,37:28-31
    [17]毛建国.PET二次加工前沿技术[J].化学世界.1998,26(3):330-331
    [18]鲁华师.回收PET瓶片的再生应用[J].聚酯世界,1993,12(2):56-59
    [19]王正远.工程塑料实用手册[M].北京:中国物资出版社.1994:121-123
    [20]张贵昌.精细石油化工[M].北京:中国轻工业出版社.1992:161-164
    [21]金国珍.工程塑料[M].北京:化学工业出版社.2001:49-52
    [22]胡一丁,吴美琰.PET塑料增韧改进的进展[J].中国塑料.1991,5(1):4-8
    [23]Awaja F, Pavel D. Recycling of PET [J]. Eur. Polym. J.2005,41:1453-1477
    [24]Seo K S, Cloyd J D. Kinetics of hydrolysis and thermal degradation of polyester melts [J]. J. Appl. Polym. Sci.1991,42:845-850
    [25]黄发荣,陈涛,沈学宁.高分子材料的循环利用[M].北京:化学工业出版社.2000,27-29
    [26]Park C H, Jeon H S, Park J K. PVC removal from mixed plastics by triboelectrostatic separation [J]. J Hazard Mater.2007,144:470-476
    [27]Pracella M, Rolla L, Donatella C. Compatibilization and properties of poly(ethylene terephthalate)/polyethylene blends based on recycled materials [J]. Macromol. Chem. Phys. 2002,203(5):1473-1485
    [28]Jones R, Baumann M H. Recycling of engineering plastics [A]. Congerence Processdings. Vol.4. East Lansing, Michigan [C]. USA, ANTEC.1997,3066-3074
    [29]Valeria D, Riccardo P, Raffaella B, Alessandro G, Claudio S. Characterization of low-molecular-weight oligomers in recycled poly(ethylene terephthalate) [J]. Angew. Makromol. Chem.1995,225(1):109-122
    [30]王宁,王益龙,李莉,萧扬眉.废饮料瓶的处理利用技术新进展[J].工程塑料应用.2007,35(12):84-87
    [31]周文志,霍琼宗.废PET的挤出再生及应用[J].聚酯工业.1992(4):35-38
    [32]李华.从废PET瓶中回收PET纯料技术[J].塑料.1996,25(12):42-44
    [33]赵耀明.非纤维用热塑性聚酯工艺与应用[M].北京:化学工业出版社.2002,81-86
    [34]吴三癸.双螺杆挤出机在固相挤出工艺中的应用[J].国外塑料.1995,13(3):21-22
    [35]约翰·沙伊斯著,纪奎江,陈占勋译.聚合物回收--科学、技术与应用[M].北京:化学工业出版社.2004,29-31
    [36]王国全,王秀芬.聚合物改性[M],北京:中国轻工业出版社.2000,1-3.
    [37]Shin H, Park E S. Mechanical and dielectric breakdown properties of PBT/TPE, PBT/PBT/PET, and PBT/antioxidant blends [J]. J. Appl. Polym. Sci.2009,114(5): 3008-3015
    [38]马敬红,梁伯润PET/PBT反应性共混纺丝初生纤维的结构性能研究合成纤维2000,29(1):6-9
    [39]Fraiissea F, Verney V, Commereuca S, Obadal M. Recycling of poly(ethylene terephthalate)/polycarbonate blends [J]. Polym. Degrad. Stab.2005,90(2):250-255
    [40]Tang X W, Guo W H, Yin G R, Li B Y, Wu C F. Morphology and properties of poly(ethylene terephthalate)/polycarbonate alloy toughened with different kinds of elastomers [J]. Polym. Bull.2007,58:479-488
    [41]Shi G, He L J, Chen C Z, Liu J F, Liu Q Z, Chen H Y. A novel nanocomposite based on recycled poly(ethylene terephthalate)/ABS blends and nano-SiO2 [J]. Adv. Mater. Res. 2011,150-151:857-860
    [42]Paul S, Kale D D. Blends of acrylonitrile-butadiene-styrene/waste poly(ethylene terephthalate) compatibilized by styrene maleic anhydride [J]. J. Appl. Polym. Sci.2001, 80(13):2593-2599
    [43]王进,祝方明,黎华明,林尚安.新型sPS/PET/SsPS-Zn工程塑料合金的研究[J].高分子学报.2002,2(2):230-234
    [44]Ju M Y, Chang F C. Compatibilization of PET/PS blends through SMA and PMPI dual compatibilizers [J]. Polymer.2000,41(5):1719-1730
    [45]Cheng Q, Hong Y, Dong L, Wen C, Qiang F. Morphology and properties of PET/PA-6/SiO2 ternary composites [J]. J. Appl. Polym. Sci.2007,104(4):2288-2296
    [46]Retolaza A, Eguiazabal J I, Nazabal J. Structure and mechanical properties of polyamide-6,6/poly(ethylene terephthalate) blends [J]. Polym. Eng. Sci. Part B:Polym. Phys.2004,44(8):1405-1413
    [47]Zhang H S, Guo W H, Yu Y B, Li B Y, Wu C F. Structure and properties of compatibilized recycled poly(ethylene terephthalate)/linear low density polyethylene blends [J]. Eur. Polym. J.2007,43:3662 3670
    [48]Fasce L, Seltzer R, Frontini P, Rodriguez V J, Pita E B, Pacheco A V, Dias M L. Mechanical and fracture characterization of 50:50 HDPE/PET blends presenting different phase morphologies [J]. Polym. Eng. Sci.2005,45:354-363
    [49]Apostolov A A, Evstatiev M, Denchev Z, Friedrich K, Fakirov S. Effect of composition on transcrystallization with reorientation of polypropylene in drawn PET/PP blend [J]. J. Mater. Sci.2007,42:1245-1250
    [50]Akbari M, Zadhoush A, Haghighat M. PET/PP blending by using PP-g-MA synthesized by solid phase [J]. J. Appl. Polym. Sci.2007,104:3986-3993
    [51]Zhang Y, Zhang H S, Ni L P, Zhou Q L, Guo W H, Wu C F. Crystallization and mechanical properties of recycled poly(ethylene terephthalate) toughened by styrene-ethylene/butylenes-styrene elastomer [J]. J. Polym. Environ.2009,18(4):647-653
    [52]刘勇军,郭卫红,苏志忠,李滨耀,吴驰飞.增容剂对回收聚对苯二甲酸乙二醇酯/乙烯-辛烯共混物结晶性能的影响[J].高分子材料科学与工程.2009,25(12):62-65
    [53]Premphet K, Horanont P. Phase structure of ternary polypropylene/elastomer/filler composites:Effect of elastomer polarity [J]. Polymer 2000,41(26):9283-9290
    [54]Gaylord N G. Role of compatibilizers in polymer utilization [J]. Chemtech.1976,6:392
    [55]Carsten Z, Ralf T, Jurgen F, Rolf M. The influence of silicate modification and compatibilizers on mechanical properties and morphology of anhydride-cured epoxy nanocomposites [J]. Macromol. Mater. Eng.2000,280/281:41-46
    [56]Preston W E, Barlow J W, Paul D R. Effect of crystallinity on mechanical properties of miscible polycarbonate-copolyester blends [J]. J. Appl. Polym. Sci.1984,29(7):2251-2260
    [57]何曼君,陈维孝,董西侠.高分子物理(修订版)[M].上海:复旦大学出版社.1990
    [58]Manson J A, Sperling L H. Polymer Blend and Composites [M]. New York:Plenum press. 1976
    [59]陈正南,李仙会,陈瑞珠CHDM改性PET共聚酯的合成及其与PC合金的研究[J].工程塑料应用.2003,31(6):8-10
    [60]Hu Y S, Prattipati V, Hiltner A, Baer E, Mehta S. Improving transparency of stretched PET/MXD6 blends by modifying PET with isophthalate [J]. Polymer.2005,46:5202-5210
    [61]向泽明强化辐射交联法PET/聚烯烃合金的制备与研究[D].中国科学技术大学.2009
    [62]Burillo G, Herrera-Franco P, Vazquez M, Adem E. Compatibilization of recycled and virgin PET with radiation-oxidized HDPE [J]. Radiat. Phys. Chem.2002,63(3-6):241-244
    [63]Zhao N, Liu S, Zhong W. Surface modification of poly(ethylene terephthalate) (PET) for effective and regenerable microbial protection [J]. Macromol. Chem. Phys.2010,211: 286-296
    [64]Rudenja S, Zhao N, Liu S. Surface interpenetrating networks of polyacrylamide in poly(ethylene terephthalate) as a means of surface modification [J]. Eur. Polym. J.2010, 46(10):2078-2084
    [65]Traugott T D, Barlow J W, Paul D R. Mechanical compatibilization of high density polyethylene-poly(ethylene terephthalate) blends [J]. J. Appl. Polym. Sci.1983,28(9): 2947-2959
    [66]Zhang Y, Zhang H S, Yu Y B, Guo W H, Wu C F. Recycled poly(ethylene terephthalate)/linear low-density polyethylene blends through physical processing [J]. J. Appl. Polym. Sci.2009,114:1187-1194
    [67]Coltelli M B, Maggiore I D, Savi S, Aglietto M, Ciardelli F. Modified styrene-butadiene-styrene block copolymeras compatibiliser precursor in polyethylene/poly(ethylene terephthalate) blends [J]. Polym. Degrad. Stab.2005,90: 211-223
    [68]Sanchez-Solis A, Calderas F, Manero O. Influence of maleic anhydride grafting on the rheological properties polyethylene terephthalate-styrene butadiene blends [J]. Polymer. 2001,42:7335-7342
    [69]Arostegui A, Nazabal J. New super-tough poly(butylenes terephthalate) materials based on compatibilized blends with metallocenic poly(ethylene-octene) copolymer [J]. Polym. Adv. Technol.2003,14:400-408
    [70]Kalfoglou N K, Kafidas D S, Kallitsis J K. Comparison of compatibilizer effectiveness for PET/HDPE blends [J]. Polymer.1995,36(23):4453-4462
    [71]Ma D Z, Zhang G Y, He Y Y, Ma J W, Luo X L. Compatibilizing effect of transesterification product between components in bisphenol-A polycarbonate/poly(ethylene terephthalate) blend [J]. J. Polym. Sci. Part B:Polym. Phys. 1999,37(21):2960-2972
    [72]郭林峰,刘术佳,骆唐文,王依民PP/PET合金纤维的形态和热性能研究[J].合成技术及应用.2006,221(3):12-14
    [73]何慧,沈家瑞.原位增容HDPE.PET共混体系热稳定性能及其动力学的研究[J].中国科技论文在线.2000,4:6-9
    [74]Retolaza A, Eguiazabal J I, Nazabal J. Poly(ethylene-co-methacrylic acid)-lithium ionomer as a compatibilizer for poly(ethylene terephthalate)/linear low-density polyethylene blends [J]. J. Appl. Polym. Sci.2003,87:1322-1328
    [75]Ma X G, Guo X Y, Gu L X. Rheological behavior in blends of PET with ionomeric polyester [J]. Eur. Polym. J.2007,43:3613-3620
    [76]Zhou C F, Ma J H, Yang S L, Liang B R. Chain structure and thermal behavior of reactive blends of PET/LCP with bis(2-oxazoline). Colloid Polym. Sci.2003,281:887-891
    [77]陈玉君,何国山,陈仕国,侯巩.双恶唑啉化合物增容PET/PA66共混体系的研究[J].塑料工业.2002,30(5):13-15
    [78]European Economic Community. Packaging Waste EEC Directive 04/12/EC of 11 February 2004 (Official Journal No. L47,18.2.2004, p 26)
    [79]European Economic Community. Packaging Waste EEC Directive 05/20/EC of 9 March 2005 (Official Journal No. L70,16.3.2005, p 17)
    [80]Pietrasanta Y, Robin J J, Torres N, Boutevin B. Reactive compatibilization of HDPE/PET blends by glycidyl methacrylate functionalized polyolefins [J]. Macromol. Chem. Phys. 1999,200(1):142-149
    [81]Wilfong D L, Hiltner A, Baer E. Toughening of polyester resins through blending with polyolefins [J]. J. Mater. Sci.1986,21:2014-2026
    [82]Pracella M, Rolla L, Chionna D, Galeski A. Compatibilization and properties of poly(ethylene therephthalate)/polyethylene blends based on recycled materials [J]. Macromol. Chem. Phys.2002,203:1473-1485
    [83]Park S H, Park K Y, Suh K D, Compatibilizing effect of isocyanate functional group on polyethylene terephthalate/low density polyethylene blends [J]. J. Polym. Sci. Part B: Polym. Phys.1998,36:447-453
    [84]Iniguez C G, Michel E, Gonzalez-Romero V M, Gonzalez-Nunez R, Morphological stability of postconsumer PET/HDPE blends [J]. Polym. Bull.2000,45:295-302
    [85]Dimitrova T L, Mantia L, Pilati F, Toselli M, Valentza A, Visco A. On the compatibilization of PET/HDPE blends through a new class of copolyesters [J]. Polymer, 2000,41:4817-4824
    [86]Zhang H S, Zhang Y, Guo W H, Xu D D, Wu C F. Thermal Properties and Morphology of Recycled Poly(ethylene terephthalate)/Maleic Anhydride Grafted Linear Low-Density Polyethylene Blends [J]. J. Appl. Polym. Sci.2008,109:3546-3553
    [87]Kalfoglou N K, Skafidas D S. Compatibilization of blends of poly(ethylene terephthalate) and linear low density polyethylene with the ionomer of poly(ethylene-co-methacrylic acid) [J]. Eur. Polym. J.1994,30:933-939
    [88]Londono J D, Narten A H, Wignall G D, Honnell K G, Hsieh E T, Johnson T W, Bates F S. Composition dependence of the interaction parameter in isotopic polymer blends [J]. Macromolecules.1994,27(10):2864-2871
    [89]王建国,刘宇,黄葆同.极低密度聚乙烯与其它聚乙烯的共混[J].高分子学报.1998,4:471-476
    [90]Barlow J W, Paul D R. Polymer blends and alloys-a review of selected considerations [J]. Polym. Eng. Sci.1981,21(15):985-996
    [91]Taylor G I. The formation of emulsions in definable field of flow [J]. Proc. Roy. Soc. 1934, A146:501
    [92]Giles H F, Wagner J R, Mount E M. Extrusion:the definitive processing guide and handbook. New York:William Andrew Publishing.2005.
    [93]Guo W H, Zhang H S, Yin G R, Tang X W, Li B Y, Wu C F. Properties and morphology of recycled poly(ethylene terephthalate)/bisphenol a polycarbonate/poly(styrene-b-(ethylene-co-butylene)-b-styrene) blends by low-temperature solid-state extrusion [J]. Polym. Advan. Technol.2007,18:549-555
    [94]吴守恒著,潘强余,吴敦汉译.高聚物的界面与粘合[M].北京:纺织工业出版社.1987
    [95]Wu S H. Polymer interlace and adhesion [M]. New York:Marcel Dekker Press.1982.
    [96]Majumdar B, Paul D R. Polymer blends:formulation and performance [M]. New York: Weily.2000
    [97]Bhattacharyya A R, Ghosh A K, Misra A. Reactively compatibilised polymer blends:a case study on PA6/EVA blend system [J].Polymer.2001,42:9143-9154
    [98]Groeninckx G, harrats C, Thomas S, Reactive polymer blending [M]. Munich:Hanser Publishers.2001
    [99]Boutevin B, Lusinchi J M, Pistrasanta Y, Robin J J. Improving poly(ethylene terephthalate)/high-density polyethylene blends by using graft copolymers [J]. Polym. Eng. Sci.1996,36(6):879-884
    [100]Japanese Patent Unexamined Publ.5232045 and 53117049
    [101]Pracella M, Pazzagli F, Galeski A. Reactive compatibilization and properties of recycled poly(ethylene terephthalate)/polyethylene blends [J]. Polym. Bull.2002,48:67-74
    [102]Champagne, M F, Huneault M A, Roux C, Peyrel W. Reactive compatibilization of polypropylene/polyethylene terephthalate blends [J]. Polym. Eng. Sci.1999,39(6):976-984
    [103]Matonis V A, Small N C. A macroscopic analysis of composites containing layered spherical inclusions [J]. Polym. Eng. Sci.1969,9(2):90-99
    [104]Martin P, Maquet C, Legras R. Particle-in-particle morphology in reactively compatibilized poly(butylene terephthalate)/epoxide-containing rubber blends [J]. Polymer, 2004,45(10):3277-3284
    [105]Reignier J, Favis B D. Core-shell structure and segregation effects in composite droplet polymer blends [J]. AiChE J.2003,49(4):1014-1023
    [106]韩哲文.高分子科学教程[M].上海:华东理工大学出版社.2001
    [107]王培铭,赵乾慰.材料研究方法[M].北京:科学出版社.2005
    [108]苏克曼,潘铁英,张玉兰.波普解析法[M].上海:华东理工大学出版社.2002
    [109]周恩贵.聚合物X射线衍射[M].合肥:中国科学技术大学出版社.1989
    [110]Alexander L E. X-Ray Diffraction Methods in Polymer Science [M]. New York: Wiley.1969, Chapter 7.
    [111]Carte T L, Moet Abdelsamie. Morphology origin of super toughness in poly(ethylene terephthalate)/polyethylene blends [J]. J. Appl. Polym. Sci.48(4):611-624
    [112]Dimitrova T L, La Mantia F P, Pilati F, Toselli M, Valenza A, Visco A. On the compatibilization of PET/HDPE blends through a new class of copolyesters [J]. Polymer, 2000,41(13):4817-4824
    [113]Lei Y, Wu Q L. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate) [J]. Bioresource Technol.2010, 101(10):3665-3671
    [114]Zhang Y, Guo W H, Zhang H S, Wu C F. Influence of chain extension on the compatibilization and properties of recycled poly(ethylene terephthalate)/linear low density polyethylene blends [J]. Polym. Degrad. Stab.2009,94(7):1135-1141
    [115]Coltelli M B, Aglietto M, Ciardelli F. Influence of the transesterification catalyst structure on the reactive compatibilization and properties of poly(ethylene terephthalate) (PET)/dibutyl succinate functionalized poly(ethylene) blends [J]. Eur. Polym. J.2008, 44(5):1512-1524
    [116]Hofiuchi S, Matchariyakul N, Yase K, Kitano T, Choi K H, Lee Y M. Compatibilizing effect of a maleic anhydride functionalized SEBS triblock elastomer through a reaction induced phase formation in the blends of polyamide 6 and polycarbonate: 1. Morphology and interfacial situation [J]. Polymer.1996,37(14):3065-3078
    [117]Tomova D, Raduseh H J. Morphology and properties of ternary polyamide 6/polyamide 66/elastomer blends [J]. Polym. Advan. Technol.2003,14(1):19-26
    [118]Tchomakov K P, Favis B D, Huneauh M A, Chanpagne M F, Tofan F. Composite droplets with core/shell morphologies prepared from HDPE/PS/PMMA ternary blends by twin-screw extrusion [J]. Polym. Eng. Sci.2004,44:749-759
    [119]余威.核壳橡胶粒子增韧尼龙6体系及其受限结晶行为研究[D].湖北大学.2008
    [120]Paugnoulle C, Jerome R. Particle-in-particle morphology for the dispersed phase formed in reactive compatibilization of SAN/EPDM blends [J]. Polymer,2001,42(5): 1893-1906
    [121]Yeung C, Desai R C, Noolandi J. Internal wetting in three-component polymer blends [J]. Macromolecules,1994,27(1):55-62
    [122]Nakamura H, Maruta J, Ohnaga T, Inoue T. Phase separation in a mixture of poly(ether sulphone) and poly(ethyl oxazoline):observation in real and reciprocal spaces [J]. Polymer,1990,31(2):303-307
    [123]Kim G M, Michler G H, Gahleitner M, Mulhaupt R. Influence of morphology on the toughening mechanisms of polypropylene modified with core-shell particles derived from thermoplastic elastomers [J]. Polym. Advan. Technol.1998,9(10-11):709-715.
    [124]Ke Z, Shi D, Yin J H, Li R K, Mai Y W. Facile Method of Preparing Supertough Polyamide 6 with Low Rubber Content [J]. Macromolecules.2008,41(20):7264-7267
    [125]Paul D R. Polymer blends [M]. New York:Academic Press.1978.
    [126]陈俊,陈剑玲,刘正英,殷茜,黄锐.PET结晶行为研究进展[J].高分子通报,2005,1:20-24
    [127]尹华,张师军.热塑性聚酯工程塑料的进展[J].合成树脂及塑料,2002,19(5):65-69
    [128]Xue M L, Yu Y L, Chuan H. Reactive Compatibilization of Poly(trimethylene terephthalate)/Polypropylene Blends by Polypropylene-graft-Maleic Anhydride. Part 2. Crystallization Behavior [J]. J. Macromol. Sci.2007,46:603-615
    [129]Pang Y Y, Dong X, Zhang X Q, Liu K P, Chen E Q, Han C C, Wang D J. Interplay between crystallization behaviors and extensional deformation of isotactic polypropylene and its blend with poly(ethylene-co-octene) [J]. Polymer.2008,49:2568-2577
    [130]Addonizio M L, Martuscelli E, Silvestre C. Study of the non-isothermal crystallization of poly(ethylene oxide)/poly(methyl methacrylate) blends [J]. Polymer.1987, 28(2):183-188
    [131]Minkova L I, Magagnini P L. Non-isothermal crystallization kinetics of poly(phenylene sulfide)/Vectra-B blends [J]. Polymer.1995,36(10):2059-2063
    [132]Supaphol P, Dangseeyun N, Srimoaon P. Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylene terephthalate) blends [J]. Polym. Test. 2004,23(2):175-185
    [133]布拉格W L著,杨润殷译.X射线分析的发展[M].北京:科学出版社.1988
    [134]Hay J N, Fitzgerald P A, Wiles M. Use of differential scanning calorimetry to study polymer crystallization kinetics [J]. Polymer,1976,17(11):10-15
    [135]Balamurugan G P, Maiti S N. Nonisothermal crystallization kinetics of polyamide 6 and ethylene-co-butyl acrylate blends [J]. J. Appl. Polym. Sci.2008,107:2414-2435
    [136]Ozawa T. Kinetics of non2isothermal crystallization [J]. Polymer.1971,12(3): 150-156
    [137]Eder M, Wlochowicz A. Kineties of non-isothermal crystallization of polyethylene and polypropylene [J]. Polymer.1983,24:1593-1595
    [138]Mandelken L. Crystallization of polymer [M]. New York:Mc-Graw Hill.1964
    [139]Avrami M. Kinetic of phase change. Ⅱ Transformation-time Relations for Random Distribution of Nuclei [J]. J. Chem. Phys.1940,8(2):212-217
    [140]Jeziorny A. Parameters Characterizing the Kinetics of the Non-isothermal Crystallization of Poly (ethylene terephthalate) Determined by DSC [J]. Polymer.1978, 19(10):1142-1144
    [141]Liu T, Mo Z, Wang S. Zhang H. Nonisothermal Melt and Cold Crystallization Kinetics of Poly(aryl ether ether ketone ketone) [J]. Polym. Eng. Sci.1997,37(3):568-575
    [142]刘圣涛,蔡明池.PET容器应力开裂的科学探讨[J].塑料包装.2007,17(5):59-60
    [143]Gupta V B, Radhakrishnan J, Sett S K. Effect of processing history on shrinkage stress in axially oriented poly(ethylene terephthalate) fibres and films [J]. Polymer,1994, 35(12):2560-2567
    [144]Kim S Y, Kim C H, Kim S H, Oh H J, Youn J R. Measurement of residual stresses in film insert molded parts with complex geometry [J]. Polym. Test.2009,28(5):500-507
    [145]Loyens W, Groeninckx G. Deformation mechanisms in rubber toughened semicrystalline polyethylene terephthalate [J]. Polymer.2003,44(17):4929-4941
    [146]Aref-Azar A, Biddlestone F, Hay J N, Haward R N. The effect of physical ageing on the properties of poly(ethylene terephthalate) [J]. Polymer.1983,24(10):1245-1251
    [147]周坤鲁.聚砜等工程塑料注射件应力开裂的研究[J].工程塑料应用.1998,26(10):18-21
    [148]Shen D Y. The Study of Some Basic Physical Problems in the Macromolecular Condensed State [J]. Chinese Polym. Bull.2005,4:193-196
    [149]Wang Y, Shen D Y, Qian R Y. Subglass-transition-temperature annealing of poly(ethylene terephthalate) studied by FTIR [J]. J. Polym. Sci. Part B:Polym. Phys.1998, 36(5):783-788
    [150]Struik L C E. Physical Aging in Amorphous Polymers and Other Materials [M]. Amsterdam:Elsevier.1978
    [151]Cowie J M, Ferguson R. Physical aging studies in polymer blends.2. Enthalpy relaxation as a function of aging temperature in a poly(vinyl methyl ether)/polystyrene blend [J]. Macromolecules.1989,22:2312-2317
    [152]Cowie J M, Ferguson R. Physical aging studies in poly(vinyl methyl ether).1. Enthalpy relaxation as a function of aging temperature [J]. Macromolecules 1989,22: 2307-2312
    [153]Hodge I M, O'Relly J M. Nonlinear kinetic and thermodynamic properties of monomeric organic glasses [J]. J. Phys. Chem. Part B:Polym. Phys.1999,103:4171-4176
    [154]Hodge I M. Strong and fragile liquids-a brief critique [J]. J. Non-Cryst Solids 1996, 202:164-172
    [155]McCrum N G, Read B E, Williams G. Anelastic and dielectric effects in polymer solids [M]. New York:Dover.1991
    [156]Boyd R H. Relaxation processes in crystalline polymers:molecular interpretation-a review [J]. Polymer.1985,26(8):1123-1133
    [157]Ferry J D. Viscoelastic Properties of Polymer,2nd Ed [M]. New York:John Wiley& Sons, inc.1970
    [158]Aklonis J J, McKnight W J. Inreoduction to polymer Viscoelasticity,2nd Ed [M]. New York:John Wiley & Sons, inc.1983
    [159]Goldman Y M. Prediction of the deformation properties of polymeric and composite materials [M]. Washington DC:American Chemical Society.1994
    [160]蒋永涛,李大纲,吴正元,丁建生.温度对稻壳/HDPE复合材料弯曲蠕变性能的影响[J].建筑材料学报.2009,11(6):695-698
    [161]Colby R H. Breakdown of time-temperature superposition in miscible polymer blends [J]. Polymer.1989,30(1):275-278
    [162]杜淼,王利群,杨碧波,宋栩冰,郑强.聚甲基丙烯酸甲酯/聚(苯乙烯-丙烯腈)共混体系相分离的特征动态流变响应[J].高等学校化学学报.2001,23:961-964
    [163]Wisniewski C, Marin G, Monge P. Viscoelastic behaviour of non-compatible polymer blends:Polystyrene-polycarbonate [J]. Eur. Polym. J.1984,21(5):479-484
    [164]Wu S H Chain entanglement and melt viscosity of compatible polymer blends: poly(methyl methacrylate) and poly(styrene-acrylonitrile) [J]. Polymer.1987,28(7): 1144-1148
    [165]Mendieta-Taboada O, A. Sobral P J, A. Carvalho R. Thermomechanicai properties of biodegradable films based on blends of gelatin and poly(vinyl alcohol) [J]. Food Hydrocolloids.2008,22 (8):1485-1492
    [166]Bates E S, Rosedale J H, Fredrickson C H. Fluctuation effects in a symmetric diblock copolymer near the order-disorder transition [J]. J. Chem. Phys. Part B:Polym. Phys.1990, 92(10):6255-6270
    [167]王进,郑学晶,刘琛阳,程兴国,何嘉松.轻度磺化聚苯乙烯与聚苯乙烯共混物的流变性能表征[J].高等学校化学学报.2002,23(7):1437-1443
    [168]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社.2003
    [169]Williams M L, Ferry J D. Dynamic mechanical properties of polymethyl acrylate [J]. J. Colloid. Sci.1955,10(5):474-481
    [170]William W F. On the viscoelastic and aging characteristic of polymer [R]. California: Lawrence Livermore National Laboratory.1985
    [171]Rushton A, Ward A S, Holdich R G. Solid Liquid Filtration and Separation Technology [M]. New York:John Wiley & Sons, inc.1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700