PET及其共聚酯的结晶行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过缩聚反应合成了不同分子量的聚对苯二甲酸乙二酯(PET);聚对苯二甲酸(乙二醇/丁二醇)酯(P(ET/BT))、聚(对苯二甲酸/间苯二甲酸)乙二醇酯(P(ET/EI))和聚(对苯二甲酸己二酸)乙二醇酯(P(ET/EA))等系列的无规共聚酯以及PET/PBG(聚丁二醇)和PET/PEG(聚乙二醇)等系列的嵌段共聚酯,并采用DLI(解偏振光强度法)、DSC、WAXD、IR和NMR等实验技术着重研究了它们的结晶行为与共聚酯的序列结构。在此基础上,对PET及其共聚酯的结晶机理、“成核”添加剂对聚酯的促进机理、Avrami方程相关参数的物理意义及玻璃化转变的本质作了一定的探索。
     首次发现了PET的分子量大小影响其结晶行为的规律,以及不同分子量的PET链各自形成晶区的现象。通过结晶动力学测试、DSC分析、WAXD对晶体结构的测定和FTIR对链末端氢键结构的研究,首次提出,低分子量PET(M,≤6170)与高分子量PET(M,≥12600)结晶行为的差异源于它们晶体结构的不同,而PET分子链末端的游离羟基形成氢键是其结晶时所必须经历的一个过程,故不同类型氢键的形成是导致不同晶体结构产生的主要原因。
     首次用解偏振光法(DLI)证实了玻璃态PET中一定程度有序性的存在,但它有别于晶态PET中的有序,在15~70℃之间,其有序程度随温度的升高而下降,并与温度之间有着一一对应关系(记忆效应),红外分析表明,该有序仍由含反式亚甲基的链段组成。有序程度随温度的升高而下降源于分子链段间距离的增加。在15~50℃范围内,玻璃态PET有序度随温度变化的转变为一级转变,用Arrhenius方程计算得该转变所需的活化能为22.56KJ/mol。
     非晶态PET中的有序结构可起“胚核”的作用,起始结晶前胚核的大小及活动性将导致PET结晶过程的差异,故起始状态不同(已、未结晶样品从熔融态;冰水淬火、室温无水乙醇淬火样品从玻璃态以及恒温退火样品),PET试样的半结晶时间(t_(1/2))、Avrami指数(n)值随结晶温度的变化规律也不相同。这一发现对阐明PET结晶过程的微观机理有重要作用。
     不同成核添加剂对PET结晶影响的实验结果表明,在PET的结晶过程中,不
    
     摘要
    太可能存在真正的异相成核剂,添加剂对结晶过程的影响主要源于门)与熔融的聚
    酯大分于链发生化学反应,使 ET链段构象转变的活化能降低;(2)与聚酯形成配
    键以起到固定PET分子链的作用,当形成配键的量过多时,因破坏了分子链的对称
    性使 PET的结晶能力下降;(3)当添加剂或添加剂与聚酯反应后的产物在晶体结构
    上相互匹配时,通过吸附作用可增加聚酯链段间的相互作用及链段的有序程度。
     根据实验结果和理论分析提出,导致聚合物结晶过程Avri指数n值不为整
    数的原因有:()有效胚核在晶核附近的分布并不对称,使晶核的结晶生长点不为
    偶数;(2)有效胚核向晶核的转化概率处于中间状态;(3)不同的结晶机制可同时
    存在于某一等温结晶过程中。故n值的大小代表着聚合物结晶时,晶核中生长点的
    数目,而结晶生长点与有效胚核数*)和生长核数或晶核数(M)的比值有关,即
    11。NfM。
     首次将H3IUllan的PBC周期键链理论应用于聚酯结晶过程的研究,提出聚合物
    的结晶过程应为晶片h维生长,其n值介于2~3之间,该结论符合多数实验结果。
    对于n<2的聚合物结晶过程,是由于晶核周围胚核数的减少(或转化为晶核,或
    不能发生大规模的分子链运动)所致,而-n>3的过程则是由于晶核周围过多的胚核
    数使晶核生长时,二个或多个胚核可同时进入同一生长点,即晶片的分枝生长造成
    的。聚合物结晶后期的“二次结晶”现象,即偏离AVrallll线性的结晶过程同样是由
    于结晶生长点的减少所致。这一理论的运用较好地解释了聚酯结晶过程的各种复杂
    现象,形成了一个较为统一的理论模型。
     系统地研究了共聚酯的序列结构与结晶行为之间的关系,提出PET类共聚酯的
    结晶性能除与引入链段的含量、规整性、柔顺性有关外,还取决于引入链段本身的
    结晶能力,该结论可较好地解释共聚酯的结晶行为。在 PpeTST)共聚酯中,因 BT
    链段结晶所需的活化能较小,故在整个组分变化范围内均可结晶,而ET链段在它
    的含量小于50%时,则几乎无法形成自己的晶区,当ET链段和BT链段的组成比为
    6535(序列分布:LEE。2.85;LBB。1.55)时,共聚酯的结晶能力最弱。在P(ET/E)
    共聚酯中,柔性EA链段不能形成自己的晶区,规整性和柔顺性两者的共同作用使
    EA链段在分子链中的含量约为20%时,结晶速率出现最大值。而引入刚性链段的
    P(ET/EI)共聚酯,则随EI链段含量的增加,结晶能力降低,结晶速率减小。
     且且
    
     浙江 大学博士学位论文
     无规共聚酯的熔点均随“杂质”链段引入量的增加而降低,这是由于晶粒尺寸
    减小以及结晶链段间的距离h和b轴方向的重复长度)增加,即结晶密度下降引
    起的。在晶态P爬TffiA)和PaT/EI冲,C轴明显较“纯”PET的短,该结果表明,
    完全
The crystallization behavior of polyethylene terephthalate(PET); random poiy (ethylene /tetramethylene terephthalate) (P(ET/BT)); poly(ethylene terephthalate/ isophthalate) (P(ET/EI)) and poly(ethylene terephthalate/adipate) (P(ETIEA)) copolyesters; and block polyethylene terephthalate/polyethylene glycol (PET/PEG) and polyethylene terephthalate/polytetramethylene glycol (PET/PBG) were studied by DLI (depolarized light intensity); DSC,WAXD;PLM and IR technique. Their crystallization and nucleating mechanism; the physics meaning of Avrami exponent and glass transition were investigated.
    
    The crystallization behavior of PET with lower viscosity average molecular weight (M, ~6l70) is significantly different from which with higher molecular weight(M1 i~ 12600). Their crystal structure also exists some difference. When the molecular weight of PET is about 7500, the crystallizing process in which the PET chains with different molecular weight formed their own crystallization regions taken palace. And the phenomena of double crystallization regions in DSC and WAX]) analysis appear. The formation of hydrogen bond between free hydrocarbyl at the ends of the chains and oxygen atoms is a necessary process when amorphous PET crystallizes and the double regions result from the different type of hydrogen bond.
    
    It was demonstrated that some level of order exists in glassy poly(ethylene terephthalate) by depolarized light intensity (DLI) technique, but this order is different from that in crystalline PET. The degree of order in glassy PET decrease with the increasing temperature between 1 5-~70 'C. The IIIR analysis indicated that this order relates to gauche structure of the ethyleneglycol fragments. The decrease of order with temperature comes from the increase of distance between the order segments.
    
    In term of Avrami equation, the influence of different initial state (from the melt; quenched in ice-water; quenched in alcohol at room temperature) on crystallization kinetics of PET were studied using depolarized light intensity (DLI) technique. It was
    
    iv
    
    
    
    shown that the regularities of half-crystallization time and Avrami exponent values vs. isothermal crystallization temperature are different. The various dimension and mobility of the germ nuclei, the clusters of order segments whose sizes are less than one critical value, result in this difference.
    
    The results of the influence of various nucleating additive on the PET crystallization process indicated that there may not be a really heterogeneous nucleating agent for PET and its copolyesters crystallization. The influences of the additive on the crystallization arise from (I) the reaction with the molten macromolecular chains of PET; (2) the formation of coordination bonds with PET chains and fixation them when PET crystallizing. The crystallization ability would decrease when too many these bonds formed for the regularity and symmetry were destroyed; (3) the increasing in the degree of order and the interaction between the order ET segments when the crystal structure of PET and additive or its reaction products is matching. And one additive can possess the different acceleration mechanisms.
    
    The reason why Avrami exponents in the crystallization processes of polymer are not integer caused by (I) the distribution of effective germ nuclei around the growth nuclei are not symmetric and thus result in the odd growth points in the crystal nuclei; (2) the probability of the formation from germ nuclei to growth nuclei is in the intermediate state; (3) the difference mechanism which can exit in the same isothermal crystallization process. So Avrami exponent indicate the number of growth points in one crystal nucleus and it is a function of the ratio of the effective number of the germ nuclei (N) to the number of growth nuclei (M) namely nocNlM.
    
    In term of the PBC (periodic bond chain vector) theory of P. Hartman, the crystallization morphology of polymer was predicted should be crystal lamellar (disk-like or two dimension's growth), and the values o
引文
1 冯新德,张鸿志,林其棱.饱和聚酯与缩聚反应.北京:科学出版社,1986,41
    2 Chemiefaser U. Textilindustrie. 1981, 2, 82; 1982, 3, 142
    3 依田贤太郎.工业化学杂志.1971,74(7),1476
    4 富田耕右.Polymer.1975,16,185
    5 Zimmermaun H, A.1973, 15 (2), 145
    6 镰榖博善,小长榖重次.高分子论文集.1978,35(12),783
    7 TomitaK. Polymer. 1973, 14, 50
    8 朱永群.合成纤维工业.1979,(4),24
    9 卜海山,金毅敏,胡家伦,于同隐.Chinese J. Polym. Sci..1992, 10, 242
    10 Daubeny R P, Brown C W, Burn C W .Proc. Roy. Soc. Londer (A).1954, 226, 533
    11 Suzie P D, Serge P, Jean-Francois R, Francois B. Polymer. 1979, 20, 419
    12 Mitsuru Yckouchi, Yoshio Sakakibara, Yazo Chatani. et.al. Macromolecules. 1976, 9, 266
    13 Tse John S, Mak Thomas C W. J. Cryst. Mol. Stuct.. 1975, 5, 75
    14 叶胜荣 边界 封麟先.纺织学报.2000,12,
    15 Kim Jun Ho, Hanguk Somyu. Koughakhoechi. 1986, 23 (2), 167
    
    
    16 Moisy G E. Vysokomol Soedin ser B. 1982, 24 (6),
    17 Astbury W T. Nature. 1946, 158, 871
    18 Kinoshita Yukio, Nakamura Ryoko. Polym. Prepr. 1979, 20 (1), 454
    19 Fakirov S. Die Makromol. Chem. 1975, 176, 2459
    20 Liu J, Geil P H. J. Macromol. Sci. Phys. 1997, B, 36 (1), 61
    21 Bornschlegl E. Bonare R. Collid Polym. Sci.. 1980, 258 (3), 319
    22 Hall I H. Acs. Symp. Ser.. 1980, 141, 335
    23 杨始坤,龙桂霞.合成纤维工业.1992,15(3),20
    24 Tomashpolskii Yu Ya, Markova A S. Polym. Sci. (USSR, Engitransi).1964, 6, 216
    25 施良和 胡汉杰.高分子科学的今天和明天.北京:化学工业出版社,1994,122
    26 Spell S J, Keller A, Sadler D M. Polymer. 1984, 25, 749
    27 Palys I H, Philips P J. J. Polym. Sci., Polym. Phys. Ed..1978, 16, 1559
    28 何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1998,58
    29 Flory P J, Yoon Do Y, Dill K A.. Macromolecules. 1984, 17, 862
    30 Yoon Do Y, Flory P J. Macromolecules. 1984, 17, 868
    31 潘道皑,赵成大,郑载兴.物质结构.高等教育出版社,1992,第五章
    32 Hartman P, Perdok W G. Acta Cryst.. 1955, 8, 49
    33 何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1998,38
    34 Wunderlich B. Macromolecular Physics. New York: Academic Press, 1973, Charter 3
    35 Norton B R, Keller A. Polymer. 1985, 26, 704
    36 Yuhiko Yamashite. J Polym. Sci.. 1965, A3, 81
    37 Suzie P D, Serge P, Jean-Francois R, Francois B. Polymer. 1979, 20, 419
    38 Keller A. J Polym. Sci.. 1955, 17, 291
    39 马瑞申,李小放.应用化学.1986,3(3),79
    40 Groeninckx G, Reynaers H, Volkov T L. J Polym. Sci., Polym. Phys. Ed.. 1980, 18, 1311: 1325
    
    
    41 HinrichsenG, KrebsH, Springer H. Colloid Polym. Sci.. 1983, 260, 502
    42 YuT, Bu H S, Chen J et al. Makromole Chem.. 1986, 187, 2697
    43 金毅敏,于同隐,卜同隐,卜海山,复旦学报(自然科学版).1990, 29 (3) , 8
    44 杨始坤,陈学信,林少强,高分子通讯,1983,2 (4) , 132
    45 Wunderlich B. Macromolecular Physics, Vol 2. New York and Lender: Academic Press, 1973
    46 Garg S N. Proc. IUPAC, Macromol. Symp. 28th. 1982, 602
    47 BaranovVG, ReynaersH, Berghmans, Smets G. J Polym. Sci.. 1970, C30, 271
    48 Przygocki Wladyslaw. Przegl Wolk. 1973, 27, 138
    49 Przygocki Wladyslaw. J Appl. Polym. Sci.. 1975, 19, 2683
    50 Jabarin S A. Polym. Eng. Sci. 1989, 29 (18) , 1259
    51 Jabar Ronald J, Stein Richard S. Polym. Prepr. 1983, 24, 390
    52 Lee Chung Hyang. Macromolecules. 1993, 26, 6566
    53 Przygocki Wladyslaw. Polymer. 1972, 17, 197
    54 PrivalkoVP, Sint Fiz-Khim. Polim. 1977, 20, 27
    55 Gehrke Rainer, Zachmann Haus Gerhand. Macromol. Chem. Phys.. 1981, 182(2) , 627
    56 Miller, Gerald W. J Polym. Sci., Polym. Phys. Ed.. 1975, 13, 1831
    57 Misra A, Stein R S. J Polym. Sci., Polym. Phys. Ed.. 1980, 18, 327
    58 Misra A, Stein R S. J Polym. Sci. B 1972, 10, 473
    59 Roche EJ,Stein R S.J Polym. Sci., Polym. Phys. Ed.. 1980, 18, 1145
    60 Gonzalez, Lesar C. Br. Polym. J. 1990, 23, 111
    61 何曼君,陈维考,董西侠,高分子物理,上海:复旦大学出版社, 1998, 77
    62 Yagfarov M S. Vysokomol Soedin Ser. A. 1981, 23 (11) , 2607
    63 Yagfarov MS.J Therm. Anal. 1982, 23 (1) , 111
    64 Pommerenke K. Calorim Anal. Therm. 1993, 24, 551
    65 Rao M V S, Dweltz N E. J Appl. Polym. Sci.. 1986, 31 (5) , 1239
    66 Kaminska, Alina. Polimery. 1973, 18 (10) , 522
    
    
    67 Ali M S, Sheldon R P, Bangladesh. J Sci. Ind. Res.. 1979, 14, 267
    68 FontaineF, Ledent J. Polymer. 1982, 23 (2), 185
    69 张卫东,沈德言.高分子学报.1999,4(8),444
    70 徐瑞夫,曹必松,郁伟中.高分子学报.1988,(5),321
    71 Groeninckx G, Reynaers H, Volkov T L. J Polym. Sci., Polym. Phys. Ed..1980, 18, 1311
    72 沈德言,扬小霞,朱善农.高分子通讯.1980,(4),209
    73 Hideyuki Itagaki, Sanami Kato. Polymer. 1999, 40, 3501
    74 Kamiyz Y, Hirose T, Naito Y, Mizoguchi K J. J Polym. Sci., Polym. Phys. Ed.. 1988, 25, 159
    75 Shi Bai, Jian Zhi Hu, Ronald J et.al. Macromolecules. 1998, 31, 9238
    76 Chang Eng Pi, Kirsten Rudolf O, Eugene L et. al. Polym. Eng. Sci.. 1978, 18 (2), 932
    77 何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1998,71
    78 Jabarin S A. J Appl. Polym. Sci.. 1987, 34, 85
    79 李力庆,周卫华,汤心颐.高等学校化学学报.1992,13,867
    80 朱平平,马德柱.高分子材料科学与工程.1989,11,36
    81 Morgan, L. B, Philos. Trans. Roy. Soc. (London) . 1954, A247, 13
    82 李思滔,李德芬.高分子材料科学与工程,1989,11,43
    83 Medelin Rodriguze F J, Lopez Guillen R. Av. Ing. Quim 1996, 6, 46
    84 Smith F S, Steward R D. Polymer. 1974, 15, 283
    85 阮文红,沈经炜,李白千.高等学校化学学报.1998,19,469
    86 王铁军,戴庆平,扬昌正.高等学校化学学报.1989,10,511
    87 Avrami M. J Chem. Phys. 1939, 7, 1103
    88 Avrami M. J Chem. Phys. 1940, 8, 212
    89 Avrami M. J Chem. Phys. 1941, 9, 291.
    90 Pratt C F, Hobbs S Y. Polymer. 1976, 17, 12
    91 华幼卿,金日光.高分子材料科学与工程.1986,3,33
    
    
    92 Kim S P, Kim S C. Polym. Eng. Sci.. 1991, 31, 110
    93 Lin C. Polym. Eng. Sci.. 1983, 23, 113
    94 Bonkined M. Calorim Anal. Therm.. 1990, 20-21, 269
    95 Jackson J B, Longman G W. Polymer. 1969, 10, 873
    96 Van Antwerpen F, Van Krevelen D W. J Polym. Sci., Polym. Phys. Ed.. 1972, 10, 2423
    97 Gunther B, Zachmann H G. Polymer. 1983, 24, 1008
    98 Aharoni S M. J Appl. Polym. Sci.. 1984, 29, 853
    99 Lawton E L. Polym. Eng. Sci.. 1985, 25, 348
    100 关家玉,孙春荣,崔士俊,徐懋.高分子通讯.1981,6,449
    101 Weigel P. Acta. Polym. 1979, 30, 297
    102 Asano T, Dzeick-Pickuth A, Zachmann H G. J Mater. Sci.. 1993, 24, 1967
    103 Di Fiore C, Leone B, De Rosa C. et.al. J Appl. Polym. Sci.. 1993, 48, 1997
    104 Jabarin S A. J Appl. Polym. Sci.. 1987, 34, 97
    105 Pilati F, Toselli M, Messori M. et.al. Polymer. 1997, 38, 4469
    106 Marianne Gilbert, Hybart F J. Polymer. 1972, 13, 327
    107 Przygocki W. Acta. Polym. 1982, 33, 729
    108 Przygocki W, Wlochomict A. J Appl. Polym. Sci.. 1975, 19, 2683
    109 Chen Leo Wang, Chin Wen Yen. J Chin. Chem. Soc.. 1985, 32 (2), 135
    110 EP 295654
    111 EP 331086
    112 FR 2498613
    113 Dekoninck J M, Legras R, Mercier J P. Polymer, 1989, 30, 910
    114 EP 351732
    115 EP 376666
    116 Ger Often 2111605
    117 Balta Calleja F J, Santa Crue C. J Polym. Sci. Part B, Polym. Phys.. 1993, 31, 557
    118 Danneels D F. J Plast. Film Sheeting. 1988, 4 (4), 750
    
    
    119 US 4223125
    120 Ger (East) 141426
    121 Miera D, Misra A. J Appl. Polym. Sci.. 1988, 36, 387
    122 日本公开特许公报 JP 昭 60-233148
    123 日本公开特许公报 JP 昭 57-131243
    124 Makaruk L, Dauiewska Z. Polimery. 1975, 20 (4), 175
    125 王晓华,朱张新.Acta. Polym. 1995, 46(2), 163
    126 卜海山,庞燕婉,胡文兵.复旦学报(自然科学版).1991,30(1),1
    127 Wittmann J C, Lotz B. J Polym. Sci. Polym. Phys. Ed.. 1981, 19, 1837
    128 Wittmann J C, Lotz B. J Polym. Sci. Polym. Phys. Ed.. 1981, 19, 1853
    129 Valent B. Macromolecules. 1976, 19, 117
    130 Aharoni S M. J Appl. Polym. Sci.. 1984, 29, 853, 865
    131 US 4425470
    132 Garcia D. Polym. Prepr. 1984, 25, 197
    133 Garcia D. J Polym. Sci. Polym.Phys. Ed.. 1984, 22, 2063
    134 Legras R, Mercier J P, Nield E. Nature. 1983, 304, 432
    135 Legras R, Bailly C, Daumerie M, Dekoninck J M, Mercier J P, Zichy V, Nield E. Polymer. 1984, 25, 835
    136 Legras R, Dekoninck J M, Vanzieleghem A, Mercier J P, Nield E. Polymer. 1986, 27, 109
    137 金毅敏,于同隐,卜海山,庞燕婉.复旦学报(自然科学版).1990,30(1),1
    138 日本公开特许公报 JP 昭63-248846
    139 日本公开特许公报 JP 昭82-08242
    140 日本公开特许公报 JP 昭78-90360
    141 日本公开特许公报 JP 昭60-170661
    142 US 4438233
    143 US 4405741
    
    
    144 US 4349503
    145 US 4365036
    146 Yishan Y, Kyung-Ju C. Polym. Eng. Sci.. 1997, 37, 91
    147 Reinsch Veronika E. Mater. Res. Syrup. Proc.. 1994, 321
    148 刘佑习,武利民,谢伟军,孙全永.高分子材料科学与工程.1994,(1),49
    149 Cheng-Fang Ou, Chen-Chong Lin. J Appl. Polym. Sci.. 1995, 56, 1107
    150 Cheng-Fang Ou, Chen-Chong Lin. J Appl. Polym. Sci.. 1994, 54, 1223
    151 To Won Ho. Proc.-Pac. Chem. Eng. Congr. 3rd. 1983, 2, 93
    152 Liang Borun.中国纺织大学学报.1995,21,1
    153 Bourland L. Plast. Eng.. 1987, (7), 39
    154 Wadkarni V M, Jog J P. Polym. Eng. Sci..1987, 27, 451
    155 Yie Chunmin, Jiang Zhenhua.吉林大学自然科学学报.1993,(3),116
    156 刘佑习,武利民.高分子学报.1995,1,18
    157 刘佑习,武利民,童玉华.高分子材料科学与工程.1993,(4),46
    158 Apostolov A A. Polymer. 1994, 35, 5247
    159 Michzlski A. Fibres. Text. East Eur. 1996, 4 (1), 38
    160 刘佑习,武利民,童玉华.高分子材料科学与工程.1996,12,68
    161 刘佑习,武利民,黄永青,李桌美.高分子材料科学与工程.1996,12(5),102
    162 冯新德,张鸿志,林其棱.饱和聚酯与缩聚反应.北京:科学出版社,1986,115
    163 武荣瑞,黄关葆,解冰艳,邓元,张云龙.高分子学报.1993,(2),252
    164 王晓松,叶胜荣,涂克华,封麟先.高分子材料科学与工程.1998,14,38
    165 Ponnsamy E, Vijayakumar C J, Balakrishnan T, Kothandaraman H. Polymer. 1982, 23, 1391
    166 Ponnsamy E, Balakrishnan T. J Macromal. Sci. Chem. 1985, A22 (3), 373
    167 Ueda N, Nukushinay Y, Yokauchi R. Polym. Chem. Japan. 1964, 21, 729
    168 Berghmans H, Govaerts F, Overbergh N. J Polym. Sci. Polym. Phys. Ed.. 1979, 17, 1251
    
    
    169 杨始坤,陈玉君,林燕宜.中山大学学报.1985,(1),73
    170 Mark H F, Arias S M, Cernia E. Man-Made fikers, Science and technology (vol 3), New York: Interscience Publishers, 1968, 43
    171 Fischer E W. Progr. Colloid and Polym. Sci.. 1975, 57, 146
    172 张宜红,阳亚男,顾利霞.高分子材料科学与工程.2000,16,90
    173 张宜红,阳亚男,顾利霞.中国纺织大学学报.1999,25,1
    174 王希岳,冯青仪.合成纤维.1988,(4),25
    175 邓建元,武荣瑞,黄关葆.高分子材料科学与工程.1996,12,127
    176 刘佑习,安军,孙全永,陈立新.高分子材料科学与工程.1994,4,79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700