北方地区7种主要绿化树种对铅镉胁迫的生理生态响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用盆栽试验研究了在土壤重金属铅镉胁迫下,2年生的栾树(koelreuteria paniculata)、连翘(Forsythia suspense)、紫叶小檗(Berberis thunbergii cv atropurpurea)、迎春(Jasminum nudiflorum)、红瑞木(Cornus alba)不同器官对铅镉的的积累与转移的影响。探讨这五种树种对铅镉的转移能力,分析他们是否是修复重金属铅镉的理想植物,为城市修复土壤重金属树种的选择提供科学依据。
     结果表明:栾树、连翘、紫叶小檗、迎春和红瑞木重金属积累量均表现为根>茎>叶的趋势,其体内铅镉重金属含量随着铅镉浓度的增加而增加。5种树种的转移系数,整体上随着浓度的增加转移系数表现为降低的趋势。铅含量表现为栾树>连翘>紫叶小檗>迎春>红瑞木的趋势,镉含量表现为栾树>紫叶小檗>连翘>迎春>红瑞木的趋势。Pb转移系数顺序表现为连翘>栾树>紫叶小檗>迎春>红瑞木;Cd转移系数顺序表现为栾树>连翘>迎春>紫叶小檗>红瑞木。栾树、连翘、紫叶小檗、迎春、红瑞木铅镉临界值分别为500 mg. kg-1和50 mg. kg-1。
     以扦插的方式盆栽垂柳(Salix babylonica)为试验材料,分析不同时间不同浓度铅镉单一胁迫和复合胁迫下,对垂柳生长、生理生化特性和光合作用的影响,旨在分析垂柳对铅镉的抗性大小,对铅镉的积累与分布特征,及其确定种植垂柳的土壤铅镉的临界值。研究结果表明:
     1.在铅镉单一胁迫和复合胁迫条件下,垂柳高生长、根系生长和生物量均受到抑制,浓度愈大抑制作用也越大。铅镉在垂柳各器官含量表现为根>茎>叶,且随着铅镉处理浓度的增加,垂柳各器官含量呈现增加的趋势,且铅镉复合胁迫大于铅镉单一胁迫的影响。与对照相比,高浓度时铅镉含量均达到显著水平。铅镉在垂柳根中的分配系数大于茎叶。铅镉的转移系数小于1,表明垂柳并不是铅镉的超积累植物。垂柳的铅镉临界值分别为500 mg. kg-1和30 mg.kg-1。
     2.垂柳叶片相对电导率呈和MDA含量随铅镉处理浓度的增加而增加。当铅镉的浓度分别为750 mg. kg-1和60 mg. kg-1时,与对照相比差异显著。随着处理浓度和处理时间的增加,垂柳叶片SOD、POD、CAT和APX酶活性和GSH、可溶性糖、可溶性蛋白表现出先增加后降低的趋势,而脯氨酸含量随着浓度的增加呈现增加的趋势。不同月份之间垂柳叶片保护酶活性和渗透调节物质含量之间表现出不一致的变化趋势,但总体上,铅镉复合影响大于镉的影响大于铅对垂柳的影响。
     3.在铅的胁迫下,垂柳的活性氧的产生速率、相对电导率与MDA关系密切,呈显著正相关。膜伤害指标与POD、APX呈负相关关系,与SOD、CAT、可溶性糖和脯氨酸呈正相关关系。在镉的胁迫下,膜伤害指标与SOD、POD、APX和可溶性蛋白呈负相关关系,与CAT、可溶性糖和脯氨酸呈正相关关系。在铅镉复合胁迫下,膜伤害指标与SOD、POD、CAT、APX和可溶性蛋白呈负相关关系,与可溶性糖呈正相关关系。保护酶与谷胱甘肽、脯氨酸和可溶性蛋白呈负相关关系,与可溶性糖呈正相关关系。
     4.垂柳在铅镉单一胁迫和复合胁迫下,垂柳叶片净光合速率、气孔导度、蒸腾速率在相同的时间内,随着浓度的增加表现出先增加后降低的趋势,而胞间CO2浓度呈现相反的变化趋势。垂柳光合日变化规律,随着时间的延长,净光合速率、气孔导度、蒸腾速率在11点作用出现单峰峰值,随后又降低,但胞间CO2浓度呈现V型的变化。从不同季节光合作用变化规律来看,垂柳净光合速率、气孔导度、胞间CO2浓度和蒸腾速率呈现不同的变化趋势。
     同时研究了保定市西郊河道公路污染区3年生、5年生和10年生毛白杨(Populus tomentosa)对Pb、Cd、Cd、Zn、Cr和Ni的吸收、积累、转移和富集能力,旨在分析不同年龄大小毛白杨对重金属的积累和转移能力。研究结果表明:
     5.整体上3年生的毛白杨吸收重金属的能力大于5年生和10年生的毛白杨。重金属含量呈现Zn>Cu>Cd>Cr>Pb>Ni的规律。毛白杨吸收的重金属均表现为叶、根部和树皮较大,枝和树干较小。Pb、Cr、Zn、Ni的转移能力随着年龄的增加而降低。六种重金属的转移系数均大于1,表明毛白杨具有较强的转运Pb、Zn、Cu、Cr、Cd、Ni的能力。Pb、Cd、Cu、Zn、Cr、Ni的富集系数随着年龄的增加而降低。
Pb and Cd accumulation and transfer in different organs of five two-year species of koelreuteria paniculata, Forsythia suspense, Berberisthunbergiicv atropurpurea, Jasminum nudiflorum, Cornus alba under heavy metal Pb and Cd stess were studied through water culture experiments. The transfer ability of the koelreuteria paniculata, Forsythia suspense, Berberisthunbergiicv atropurpurea, Jasminum nudiflorum, Cornus alba species for Pb and Cd were tested and analyzed to make sure whether they are the perfect plants in renovating heavy metal. Thus, scientific references were provided for selecting proper species in urban areas to renovating heavy metals in soil.
     Results showed that for koelreuteria paniculata, Forsythia suspense, Berberisthunbergiicv atropurpurea, Jasminum nudiflorum, Cornus alba species the absorption ability trend of heavy metals was root>stem>leaf. Their content of heavy metals Pb and Cd were added but transfer factor of Pb and Cd were reduced with the increase of Pb and Cd concentration. Pb content trend was koelreuteria paniculata>Forsythia suspense>Berberisthunbergiicv atropurpurea>Jasminum nudiflorum>Cornus alba, while the Cd content trend was Forsythia suspense>koelreuteria paniculata>Berberisthunbergiicv atropurpurea>Jasminum nudiflorum>Cornus alba. Transfer factor trend of Pb was koelreuteria paniculata>Forsythia suspense>Berberisthunbergiicv atropurpurea>Jasminum nudiflorum>Cornus alba, while transfer factor trend of Cd was Forsythia suspense>koelreuteria paniculata>Berberisthunbergiicv atropurpurea>Jasminum nudiflorum>Cornus alba. Critical values of Pb, Cd in koelreuteria paniculata, Forsythia suspense, Berberisthunbergiicv atropurpurea, Jasminum nudiflorum and Cornus alba were 500 mg·kg-1 and 100 mg·kg-1 respectively.
     Effects of single and combined Pb and Cd stress on the growth, Physiological biochemical characteristic and photosynthesis of Salix babylonica in different time were tested with concentration gradients of Pb and Cd added to soil. Pb and Cd resistance, accumulation and distribution of Salix babylonica were analyzed, and critical values of Pb and Cd in soil for planting Salix babylonica were defined. The results were as follows:
     1. Height growth, root growth and biomass of Salix babylonica were all rejected under single and combined Pb and Cd stress, and the inhib function was raised with increase of concentration. Content trend of heavy metals in different organs of Salix babylonica was root>stem>leaf, and the content raised with increase of concentration. The effects of Pb and Cd combined stress were more significant than those of Pb and Cd single stress. Compared with controls, the content of Pb and Cd with high concentration reached a significant level. The allocation coefficient trend of Pb and Cd in Salix babylonica was root>stem>leaf. The transfer factor was less than 1, indicating that Salix babylonica was not over-accumulation plant. The critical value of Pb and Cd for Salix babylonica were 500 mg·kg-1 and 30 mg·kg-1 respectively.
     2. Membrane permeability and content of MDA of Salix babylonica leaf were added with increase of Pb and Cd concentration. When the concentration of Pb and Cd were 750 mg·kg-1 and 60 mg·kg-1 respectively, significant differences from the controls appeared. Activity of SOD, POD, CAT, APX and content of GSH, soluble protein, soluble sugar raised at first, but then reduced with the increase of Pb and Cd concentration and time. Yet free praline content increased all the time with the increase of Pb and Cd concentration. The trends of protective enzyme activity and permeate content were different in different months, but in general the effects of Pb and Cd combined stress were stronger than those of Pb and Cd single stress.
     3. Under Pb stress, the production rate of superoxide anion radical, Membrane permeability of Salix babylonica were closely related to MDA, and showed significant positive correlation. Membrane permeability index and POD, APX were negative correlation, but it was positively correlated with SOD, POD, APX and soluble sugar. Membrane permeability index and SOD, POD, APX and soluble protein were negative correlation, but it was positively correlated with CAT, soluble sugar and free praline. Under combined Pb and Cd stress, membrane permeability index and SOD, POD, CAT, APX and soluble protein were negative correlation. Protective enzyme and GSH, free praline, soluble protein were negative correlation, but it was positively correlated with soluble sugar.
     4. Under Pb and Cd single stress and combined stress, Pn, Tr, Gs in Salix babylonica leaf increased at first and decreased later with the increase of Pb and Cd concentration, but Ci showed opposite trend. Value of Pn, Tr, Gs were highest in 11 at morning in a day, and decreased with time extend. The variation of Ci concentration showed a trend of "V" form. Variation trends of Pn, Tr, Gs and Ci in Salix babylonica leaf were different in different seasons.
     At the same time, the absorption, distribution and accumulation ability for Pb, Cd, Cu, Zn, Cr, Ni of Populus tomentosa, which were of 3 aged,5aged and 10 aged and along the polluted river road area in Xijiao of Baoding city, were studied in order to identify the ability of Populus tomentosa in accumulating and transfering heavy metals. The results were as follows:
     5. The trend of heavy metal absorption ability of Populus tomentosa was 3 years>5 years>10 years, and the trend of heavy metal content was Zn>Cu>Cd>Cr>Pb>Ni. Heavy metals content of Populus tomentosa were high in leaf, root and bark, but low in branch and stem. Transfer ability for Pb, Cr, Zn and Ni were reduced with the increase of age. Transfer factor of Populus tomentosa was greater than 1, indicating that Populus tomentosa was better in transferring Pb, Zn, Cu, Cr, Cd and Ni. Concentration coefficient of Populus tomentosa for Pb, Cu, Zn, Cr and Ni were decreased with the increase of its age.
引文
[1]万永吉,郑文教,方煜.重金属铬(Ⅲ)胁迫对红树植物秋茄幼苗SOD、POD活性及其同工酶的影响[J].厦门大学学报,2008,47(4):571-574.
    [2]李庆亭,杨锋杰,张兵,等.重金属污染胁迫下盐肤木的生化效应及波谱特征[J].遥感学报,2008,12(2):284-290.
    [3]孔祥瑞,曲东,周莉娜,等.硫营养对重金属胁迫下玉米和小麦根系导水率的影响[J].西北植物学报,2007,27(11):2257-2262.
    [4]周守标,王春景,杨海军,等.菰和菖蒲对重金属的胁迫反应及其富集能力[J].生态学报,2007,27(1):281-287.
    [5]Markus JA, Mcbrathry A B. An urban soil study heavy metals in glebe[J]. Australian Journal of soil research,1996,34:453-465.
    [6]Pouyat R V,Mcdonnel.L L M J.heavy metal accumulations in forest soils along an urban-rural gradient in southeastern New-York,USA[J]. Water Air and soil pollution,1991,57(8):77-807.
    [7]Lotter moser Bot. Natural enrichment of topsoils with chromium and other heavy metal. Port Macquaria New south wales, Austrilia[J].Australian Journal of soil Research,1997,35:1165-1176.
    [8]国家环境保护局.中国土壤背景[M].北京:中国环境科学出版社,1990,2-3
    [9]王慧忠,何翠屏.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,06,73-75.
    [10]张震,徐丽,杨洁,等.重金属胁迫对高羊茅种子萌发的影响[J].农业资源与环境科学,2008,24(4):386-389.
    [11]李永杰,李吉跃,蔡囊,等.铅胁迫对大叶黄杨铅积累量及叶片生理特性的影响[J].水土保持学报,2009,23(5):257-260.
    [12]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [13]Prasad MNV. Cadmium toxicity and tolerance in vascular plants[J]. Environmental and Experimental Botany,1995,35(4):525-545.
    [14]葛成军,陈秋波,俞花美,等.Cd胁迫对2种热带牧草种子发芽与根伸长的抑制效应[J].热带作物学报,2009,29(5):567-571.
    [15]陈新红,叶玉秀,庞闰瑾.镉、铅对黄瓜种子发芽及幼苗生长的影响[J].中国蔬菜,2009(8):18-22.
    [16]Zhang J B, Huang W N. Advances on physiological and ecological effects of cadmium on plants[J]. Acta Ecological Sinica,2000,20(3):514-523.
    [17]金明红,冯宗炜,张福珠.臭氧对水稻叶片膜脂过氧化和抗氧化系统的影响[J].环境科学.2000,21(3):2-5.
    [18]孔祥生,郭秀璞,张妙俊.镉胁迫对玉米幼苗生长及生理生化的影响[J].华中农业大学学报,1999,18(2):111-113.
    [19]汪洪,赵士诚,夏文建,等.不同浓度镉胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响[J].植物营养与肥料学报,2008,14(1):36-42.
    [20]王小鸽,张文辉,何景峰.3个瑞典能源柳无性系对铅污染耐受性研究[J].西北植物学
    报,2009,29(7):1400-1407.
    [21]郑世英,王丽燕.铅、镉及其复合污染对小麦生理生化特性的影响[J].信阳师范学院学报(自然科学版),2009,22(1):60-62.
    [22]王林,史衍玺.镉、铅及其复合污染对萝卜生理生化特性的影响[J].中国农业生态学报,2008,16(2):411-414.
    [23]庞 欣,王东红,彭安.铅胁迫对小麦幼苗抗氧化酶活性的影响[J].环境科学学报,2001,22(5):108-111.
    [24]田如男,薛建辉,潘良,等.铅胁迫对4种常绿阔叶行道树幼苗细胞膜透性的影响[J].南京林业大学学报(自然科学版),2004,28(4):42-45.
    [25]曹莹,韩豫,蒋文春,等.铅胁迫对花生生长与铅积累特性的研究[J].中国油料作物学报,2008(2):1 98-200.
    [26]郭艳丽,台培东,韩艳萍,等.镉胁迫对向日葵幼苗生长和生理特性的影响[J].环境工程学报,2009,3(12):2291-2296.
    [27]秦天才,阮捷,王腊娇.镉对植物光合作用的影响[J].环境科学与技术,2000,(90):33-35.
    [28]姚广,高辉远,王未未,等.铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响[J].生态学报,1162-1169.
    [29]李德明,朱祝军,刘永华,等.镉对小白菜光合作用特性影响的研究[J].浙江大学学报(农业与生命科学版),2005,31(4):459-464.
    [30]赵素达,付成秋,朱松龄.镉对石莼光合作用和呼吸作用及叶绿素含量的影响[J].青岛海洋大学学报,2000,30(3):519-523.
    [3 1]谷绪环,金春文,王永章,等.重金属Pb与Cd对苹果幼苗叶绿素含量和光合特性的影响[J].安徽农业科学,2008,36(24):10328-10331.
    [32]Geehev T,Willeken H,Montagu M V,et al. Different responses of tobacco antioxidant eneymes to light and chilling stress[J]. Journal of plant Physiology,2003,160:509-515.
    [33]Baryla A, Carrier P, Franck F,et al. Leaf chlorosis in oil seed rape plant (Brassica napus) grown on cadmium-polluted soil:caused and consequences for photosynthesis and growth [J]. Planta, 2001,212:696-709.
    [34]Dr ziewicz M,Baszynski T. Growth parameters and photosynthetic pigments in leaf segments of Zea maysexposed to cadmium, as related to protecton mechanisms[J]. Journal of Plant Physiology, 2005,162:1013-1021.
    [35]万雪琴,张帆,夏新莉,等.镉处理对杨树光合作用及叶绿素荧光参数的影响[J].2008,44(6):73-78.
    [36]郭智,原海燕,奥岩松.镉胁迫对龙葵幼苗光合特性和营养元素吸收的影响[J].生态环境学报,2009,18(3):824-829.
    [37]Baszynsk I T,Wasda L.Photosynthetic activities of cadmium treated tomato Plants[J].Physiol Plant, 1980,48:365-370.
    [38]杨丹慧,许春辉.镉离子对菠菜叶绿体光系统Ⅱ的影响[J].植物学报,1989,31(9):702-707.
    [39]周青,黄晓华,施国新,等.镉对5种常绿树木若干生理生化特性的影响[J].环境科学研究,2001,14(3):9-11.
    [40]Chris B,Marec V H,Dirk I. Superoxide dimmtase and stress tolerance[J].Annual of Review plant Physiol Molecular Biology.1992,43:83-116.
    [41]丁海东,朱为民,杨少军,等.镉、锌胁迫对番茄幼苗生长及脯氨酸和谷胱甘肽含量的影响[J].江苏农业学报,2005,21(3):191-196
    [42]燕平梅,章艮山.水分胁迫下脯氨酸的累积及其可能的意义[J].太原师范专科学校学报,2000(4):27-28.
    [43]卢志强,罗红艳.五种木本园林植物叶片对镉污染胁迫的反应[J].广东林业科技,2008,24(4):56-59.
    [44]Kavi Kishor PB,Hong Z L,Miao GH,et al.Overexpression of 7-pyrroline-5-carboxylate synthesis increases praline production and confers tolerance in transgenic plants[J].Plant Physiol,1995, 108:1387-1394.
    [45]Metha S K,Gaur J P. Heavy-metal-induced Proline accumulation and its role in a meliorating metaltoxicity in Chlorella Vulgaris[J].New Phytol,1999,143:253-259.
    [46]陈朝明,龚惠群,王凯荣.Cd对桑叶品质生理生化特性的影响极其机理研究[J].应用生态学报,1 996,7(4):417-423
    [47]曾祥玲,曹成有,高菲菲,等.镉、铅对沙打旺种子萌发及早期生长发育的毒性效应[J].草业学报,2008,17(4):71-77.
    [48]张杰,梁永超,娄运生,等.镉胁迫对两个水稻品种幼苗光合参数、可溶性糖和植株生长的影响[J].植物营养与肥料学报,2005,11(6):774-780.
    [49]薛艳,王超,王沛芳.镉和铅对芦蒿和黄花水龙根系可溶性糖含量和叶片中叶绿素含量的影响[J].安徽农业科学,2009,37(25):11933-11934,11954.
    [50]孙永林,铅对黄瓜叶片丙二醛、脯氨酸和可溶性总糖含量的影响[J].长江蔬菜(学术版),2008,12b:28-30.
    [51]Mishra S, Srivastava S,Tripathi R D,et al. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieril [J]. Plant Physiology and Biochemistry,2006, 44:25-37.
    [52]Fadzilla N M, Finch R P, Burdon R H. Salinity, oxidative stress and antioxidant responses in shoot culture of rice[J]. Journal of Experimental Botany,1997,48:325-331.
    [53]朱红霞,杨小勇,葛才林,等.重金属对水稻过氧化物同工酶的影响[J].核农学报,2004,18(3):233-236.
    [54]Liang Y C, Chen Q, Liu Q,et al. Exogenous silicon (Si) increases antio xidantenzyme activity and reduces lipid peroxidation in roots of salt stressed barley (Hordeum vulgare L.)[J].Plant Physiology,2003,160:1157-1164.
    [55]Zhou Q, Huang X, Cao Y et al. Mitigative effect of La on Glycine max seedlings under Pb-Cd compound pollution [J]. Jouenal of Rare Earths.1999,17:303-307.
    [56]殷恒霞,李霞,米琴,等.镉、锌、铜胁迫对向日葵早期幼苗生长的影响[J].植物遗传资源学报,2009,1 0(2):290-294.
    [57]宋瑜,金樑,曹宗英,等.植物对重金属镉的响应及其耐受机理[J].草业学报,2008,17(5):84-91.
    [58]Burzynski M. Activity of Some Enzymes Involved in NO3-Assimilation in Cucumber Seedlings Treated with Lead or Cadmium[J]. Acta Physioloyiae Plnatuarm,2003,12(2):105-116.
    [59]严重玲,洪业汤,付瞬珍,等.Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1 997,17(5):488-492.
    [60]叶亚新,金琎,陈佳佳,等.镉胁迫下萝卜幼苗根、茎、叶保护酶活性的比较[J].江苏农业科学,2008,3:131-135.
    [61]Shah K,Kumar RG,Verma S,Dubey RS. Effect of cadmium on lipid peroxidation,superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science,2001, 161(6):1135-1144.
    [62]Shuvasish C, Sanjib K P. Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots[J].Plant Physiology,2004,30(3-4):95-110.
    [63]Dixit V,Pandey V,Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L.cv.Azad) [J]. Journal of Experimental Botany,2001,52(358):1101-1109
    [64]陈红辉,柯世省,马必利,等。紫茉莉光合特性和矿质吸收对镉胁迫的响应[J].北方园艺,2009,(5):175-175.
    [65]程旺大,姚海根,张国平,等.镉胁迫对水稻生长和营养代谢的影响[J].中国农业科学2005,38(3):528-537.
    [66]杨卫东,陈益泰,王树凤.镉胁迫对旱柳矿质营养吸收的影响[J].林业科学研究,2009,22(3):618-622.
    [67]杨敏文,柯世省.土壤铅污染对苋菜生长和矿质元素含量的影响[J].北方园艺2009(1):10-12.
    [68]黄凯丰,马红,陈庆富,等.镉铅复合胁迫对茭白生理生化指标及产量的影响[J].北方园艺,2009(8):89-91.
    [69]张义贤,李晓科.镉、铅及其复合污染对大麦幼苗部分生理指标的影响[J].植物研究,2008,28(1):43-46.
    [70]贾玉华,朱建雯,钱翌.铅-镉复合污染对天竺葵生长的影响[J].安徽农业科学,2008,36(7):2649-2650,2767.
    [71]曹莹,刘洋,王国骄,等.铅-镉复合胁迫下玉米品种间积累铅、镉的差异[J].玉米科学,2009,17(1):80-85.
    [72]王启明.铅、镉及其复合胁迫对大豆幼苗生理生化特性的影响[J].河南农业科学,2006,(7):34-37.
    [73]赵云香.铅和镉复合胁迫对小麦保护酶系统的影响[J].山西农业大学学报,2005,25(3):261-263.
    [74]曹莹,黄瑞冬,李建东,等.铅和镉复合胁迫下玉米对镉吸收特性[J].生态学杂志,2006,25(11):1425-1427.
    [75]杨金凤,卜玉山,邓红艳,等.镉、铅及其复合污染对油菜部分生理指标的影响[J].生态学杂志,2009,28(2):1284-1287.
    [76]Baker A J M. Metal tolerance[J].New Phytol.1987,106(Suppl.):93-111.
    [77]杨刚,伍钧,唐亚.铅胁迫下植物抗性机制的研究进展[J].生态学杂志,2005,24(12):1507-1512.
    [78]Ma,J.F; Hiradate,s; Matsumoto H. High aluminum resistance in buckwheat oxalic acid detoxifies aluminum internally [J].Plant physiol,1998,117:753-759.
    [79]林海涛,史衍玺.铅、镉胁迫对茶树根系分泌有机酸的影响[J].山东农业科学,2005,2:32-34.
    [80]Nishizono H. The role of the root cell wall in the heavy metal tolerance ofAthyrium yokoscense[J]. Plant Soil,1987,101:15-20.
    [81]Rause W E,Acker C A.Localization of Cadmium in granules with in differentiating and mature root cell[J]. Canadian Journal of Botany,1987,65:643-646.
    [82]荆红梅,郑海雷,赵中秋,等.植物对镉胁迫响应的研究进展[J].生态学报,2001,21(12):2125-2130.
    [83]刘小梅,吴启堂,李秉滔.超富集植物治理重金属污染土壤研究进展[J].农业环境科学学报,2003,22(5):636-640.
    [84]龙新宪,杨肖娥,叶正钱.超积累植物的金属配位体及其在植物修复中的应用[J].植物生理学通讯,2003,39(1):7 1-77.
    [85]Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis[J]. Planta,2001, 212:475-486.
    [86]Pawlik,Ronska. Relationship between acid-soluble thiol peptidesand accumulated Pb in the green alga Stichococcus bacillaris[J].Aquatic Toxicol,2000,50(1):221-230.
    [87]Kneer R, Zenk M H. Phytochelatins protect plant enzymes from heavy metal poisoning[J]. Phytochem.1992,31 (8):2663-2667
    [88]Rauser W E. Phytochelatins and related peptides[J]..Plant Physiol.1995,109:1141-1149。
    [89]张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报,2006,32(1):1-8
    [90]Cosio C,Martinoia E,Keller C. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level[J]. Plant Physiol,2004,134(2):716-725.
    [91]刘周莉,何兴元,陈玮.镉胁迫对金银花生理生态特征的影响[J].应用生态学报,2009,20(1):40-44.
    [92]李永杰,李吉跃,蔡囊,等.铅胁迫对大叶黄杨铅积累量及叶片生理特性的影响[J].水土保持学报,2009,23(5):257-260.
    [93]刘建国,李坤全,张祖健,等.水稻不同品种对铅吸收、分配的差异及机理[J].应用生态学报,2004,15(2):29 1-294.
    [94]杨卫东,陈益泰.垂柳对镉吸收、积累与耐性的特点分析[J].南京林业大学学报(自然科学版),2009,33(5):17-20.
    [95]David E S, Roger C P, Ingrid J P, Iya R. Mechanism of cadmium mobility and accumulation in India mustard[J]. Plant Physiology,1995,109:1427-1433.
    [96]王有年,关伟,邢彦峰.镉胁迫对‘丽春’桃幼苗镉积累及其根系生长的影响[J].园艺学报,2008,35(6):787-79.
    [97]黄凯丰,江解增.茭白对镉、铅吸收分配的差异研究[J].长江蔬菜(学术版),2009(14):45-48.
    [98]刘磊,肖艳波.土壤重金属污染治理与修复方法研究进展[J].2009,10(1):73-78.
    [99]周启星,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应[J]应用生态学报,1994,5(4):438441.
    [100]Cunningham S D. Remediation of contaminated soil with green plants:an overview. In Vitro Cell Dev [J].Biology,1993,29:207-212.
    [101]叶孟杰,土壤中重金属污染的修复技术[J].黑龙江环境通报,2006,30(3):83-84.
    [102]顾继光,林秋奇,胡韧,等.土壤-植物系统中重金属污染的冶理途径及其研究展望[J].土壤通报,2005,36(1):128-133.
    [103]俄胜哲,杨思存,崔云玲,等.我国土壤重金属污染现状及生物修复技术研究进展[J].安徽农业科学,2009,37(19):9104-9106.
    [104]Meagher R B. Phytoremediation of toxic element sand organic pollu-tants[J].Current Opinion in Plant Biology,2000,3(2):153-162.
    [105]沈振国,陈怀满.土壤重金属污染生物修复的研究进展[J].农村生态环境,2000,16(2):39--44.
    [106]王学锋,曹静.蚯蚓在植物修复重金属污染土壤中的应用前景[J].安徽农业科学,2008,36(17):7415-7416。
    [107]Lasat M M. Phytoextraction of toxic metals:A review of biological mechanisms[J]. Journal of Environmental Quality,2002,31(01):109-120.
    [108]徐旭,孙振元,潘远智,等.园林植物对重金属胁迫的响应研究现状[J].世界林业研究,2007,20(1):36--41.
    [109]王学礼,马祥庆.重金属污染植物修复技术的研究进展[J].亚热带农业研究,2008,4(1):44-49.
    [110]刘维涛,张银龙,陈喆敏,等.矿区绿化树木对镉和锌的吸收与分布[J].应用生态学报,2008,19(4):752-756.
    [111]王有年,关伟,邢彦峰,等.镉胁迫对‘丽春’桃幼苗镉积累及其根系生长的影响[J].园艺学报,2008,35(6):787-792.
    [112]Fayiga A, Ma L. Arsenic uptake by two hyper accumulator ferns from four arsenic contaminated soils[J].Water,Air and Soil Pollution,2005,168(1/4):71-89.
    [113]Singh R P, Tripathi R D, Singa S K, et al. Response of higher plants to lead contaminated environment [J]. Chemosphere,1997,34:2467-2493.
    [114]黄铮,徐力刚,徐南军,等.土壤作物系统中重金属污染的植物修复技术研究现状与前景[J].农业环境科学学报,2007,26(增刊):58-62.
    [115]张炜鹏,陈金林,黄全能,等.南方主要绿化树种对重金属的积累特性[J].南京林业大学学报:自然科学版,2007,31(5):125-128.
    [116]石汝杰,陆引罡.4种草本植物对酸性黄壤中铅的吸收特性研究[J].水土保持学报,2007,21(3):73-76.
    [117]西北农业大学植物生理生化教研组编.植物生理学实验指导[M].西安:陕西科学技术出版社,1987.
    [118]王爱国,罗广华.植物的超氧物自由基与经胺反应的定量关系闭[J].植物生理学通讯,1990,16(6):55-57.
    [119]李合生,孙群,赵世杰.植物生理生化实验原理和技术[J]1.北京:高等教育出版社,2003.
    [120]陈建勋,王晓峰.植物生理学实验指导[M].华南理工大学出版社,2002.
    [121]邹琦.植物生理学实验指导[M].中国农业出版社,2000.
    [122]郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [123]西北农业大学植物生理生化教研组.植物生理学实验指导[M].西安:陕西科学技术出版社,1987.92-93.
    [124]孙国荣,彭永臻,阎秀峰,等.干旱胁迫对白桦实生苗保护酶活性及膜质过氧化作用的影响[J]林业科学,2003,39(1):165-167.
    [125]于振群,孙明高,魏海霞,等.盐早交叉胁迫对皂角幼苗保护酶活性的影响[J].中南林业科技大学学报,2007,27(3):29-33.
    [126]庞士铨.植物逆境生理学基础[M].哈尔滨:东北林业大学出版社,1990.
    [127]潘瑞炽,董愚得.植物生理学(第3版)[M].北京:高等教育出版社,1995.
    [128]王启明.重金属Cr6+胁迫对玉米幼苗生理生化特性的影响[J].河南农业科学,2006,8:17-21.
    [129]郑世英,张秀玲,王丽燕,等.Pb2+,Cd2+胁迫对棉花保护酶及丙二醛含量的影响[J].河南农业科学,2007,8:43-45.
    [130]彭建云,丁同楼,陈敏,等.同盐处理对玉米幼苗根系质子分泌及细胞膜透性的影响[J].西北植物学报,2007,27(12):2496-2501.
    [131]刘素纯,萧浪涛,廖柏寒,等.Pb胁迫对黄瓜幼苗抗氧化酶活性及同功酶的影响[J].应用生态学报,2006,17(2):300-304.
    [132]胡宗达,杨远祥,朱雪梅.Pb,Zn对超富集植物(小鳞苔草)抗氧化酶活性的影响[J].水土保持学报,2007,21(6):86-91.
    [133]Macfarlane G R, Burchett M D. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove,avicenna marina (Fork) [J].Marine Pollution,2001, 42(3):233-240.
    [134]杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263-268.
    [135]Mishra S, Srivastava S, Tripathi R D, et al. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L[J]. Plant Physiology and Biochemistry,2006, 44:25-37.
    [136]FadzillaNM, Finch R P, Burdon R H. Salinity, oxidative stress and antioxidant responses in shoot culture of rice[J]. Journal of Experimental Botany,1997,48:325-331.
    [137]Mishra NP,Fatlna F,Singhal G S.Development of antioxidative defense systems of wheatSeeding in response to highlight[J].Physiologia Plantarum,1995,95:77-82.
    [138]Abdul K. Hiroshi F,Tetsushi H. Photosynthetic Performance of Vigna radiate L.leaves developed at Different temperature and irradiance levels[J].Plant Seienee,2003,164:2451-2458.
    [139]Tibor J,Gabriella S,Krisztina R Qott V,Email P.ComParative study of frost tolerance and antioxidant activity in cereals[J].Plant Seienee,2003,164:301-306.
    [140]Ann C,Jaeo V,Hennan C.The redoxs tatus of Plat cells(AsA and GSH)is sensitive to zine imposed Oxidative stress in root sand Pnmary leaves of Phascolus vulgaris[J].Plant Physiology and Biochemistry,2001,39:657-664.
    [141]江雪飞,乔飞,邹志荣.不同生育期咸水灌溉对甜瓜叶片膜脂过氧化及保护酶活性的影响[J].西北植物学报,2007,27(6):1197-1201.
    [142]杨立飞,朱月林,胡春梅,等.NaCI胁迫对嫁接黄瓜膜脂过氧化、渗透调节物质含量及光合特性的影响[J].西北植物学报,2006,26(6):1195-1200.
    [143]刘世鹏,刘济明,陈宗礼,等.模拟干旱胁迫对枣树幼苗的抗氧化系统和渗透调节的影响[J].西北植物学报,2006,26(9):1781-1787.
    [144]丁海东,齐乃敏,朱为民,等.镉、锌胁迫对番茄幼苗生长及其脯氨酸与谷胱甘肽含量的影响[J].中国农业生态学报,2006,14(2):53-55.
    [145]覃光球,严重玲,韦莉莉.秋茄幼苗叶片单宁、可溶性糖和脯氨酸含量对Cd胁迫的响应[J].生态学报,2006,26(10):3366-3371.
    [146]王燕燕,徐镜波,盛连喜.不同作物种苗对水中重金属镉去除的比较研究[J].环境科学,2007,28(5):987-992.
    [147]江枝和,翁伯琦,王义祥,等.利用灰色系统分析姬松茸子实体中氨基酸含量与镉含量的关系[J].农业环境科学学报,2005,24(6):1259-1261.
    [148]Foy C D,White M C. The physiology of metal toxicology in plants[J].Annual Review of Plant Physiol,1978,29:511-566.
    [149]薛艳,王超,王沛芳,等.镉和铅对芦蒿和黄花水龙根系可溶性糖含量和叶片中叶绿素含量的影响[J].安徽农业科学,2009,37(25):11933-11934,11954.
    [150]丁晓辉,任丽萍,张春荣,等.Cd2+胁迫对紫花苜蓿叶绿素和可溶性糖含量的影响[J].华北农学报,2007,22(增刊):64-66.
    [151]李春荣.Pb、Cd及其复合污染对烤烟叶片生理生化及细胞显微结构的影响[J].植物生态学报,2000,22(4):238-242.
    [152]任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116.
    [153]Moya J I, RosR, Picazo I. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants[J].Photosynthesis Research,1992,36:75-80.
    [154]仇硕,张敏,孙延东,等.植物重金属镉吸收、运输、积累及耐性机理研究进展[J].西北植物学报,2006,26(12):2615-2621.
    [155]李德明,朱祝军,刘永华,等.镉对小白菜光合作用特性影响的研究[J].浙江大学学报(农业与生命科学版),2005,3 1(4):459-464.
    [156]秦天才,吴玉树,王焕校.Cd、Pb及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50.
    [157]王邦锡,何军贤,黄久常.水分胁迫导致小麦叶片光合作用下降的非气孔因素[J].植物生理学报,1992,18(1):77-84.
    [158]张治安.植物生理学实验指导[M].中国农业科学技术出版社.2004
    [159]许大全,张玉忠.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243
    [160]骆永明,范士香,阿拉木萨,等.科尔沁沙地4种植物抗旱性的比较研究[J].植物生态学报,2002,13(1):1385-1388.
    [161]刘慧英,朱祝军,史庆华.低温胁迫下嫁接对西瓜光合特性及叶绿素荧光参数影响的研究[J].石河子大学学报(自然科学版),2007,25(2):163-167.
    [162]寇伟锋,刘兆普,陈铭达,等.不同浓度海水对油葵幼苗光合作用和叶绿素荧光特性的影响[J].西北植物学报,2006,26(1):73-77.
    [163]刘全吉,孙学成,胡承孝,等.砷对小麦生长和光合作用特性的影响[J].生态学报,2009,29(2):854-859.
    [164]QuartacciM F, Pinzino C, Cristina L M. Growth in excess copper induces changes in the lipid composition and fluidity pf PS Ⅱ-enriched membranes in wheat[J]. Physiologia Plantarum,2000, 108:87-93.
    [165]Basak M,Shama M, Chakraborty U. Biochemical responses of Camellia sinensis(L.) O. Kuntze to heavymetal stress[J]. Journal Environment Biology,2001,22(1):37-41.
    [166]Anderson J M, Park Y I, Chow WS. Photoinaction and photoprotec-tion of photosystem Ⅱ in nature[J]. Physiol Plant,1997,100(2):214-223.
    [167]严重玲,洪业汤,付瞬珍,等.Cd、Pb胁迫烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5):488-492.
    [168]苏玲,章永松,林咸永,等.维管植物的镉毒和耐性机制[J].植物营养与肥料学报,2000,6(1):106-112.
    [169]Nirupama M, Mohn F H. Use of chlorophyll fluorescence in metal-stress research:a case study with the green microalga Scenedesmus[J]. Ecotoxicology and Environmental Safety,2003,55:64-69.
    [170]周朝彬,胡庭兴,胥晓刚,等.铅胁迫对草木樨叶中叶绿素含量和几种光合特性的影响[J].四川农业大学学报,2005,23(4):432-435.
    [171]王艳,辛士刚,马莲菊,等.翦股颖和高羊茅对铜、铅吸收及耐受性[J].应用生态学报,2007,18(3):625-630.
    [172]Farquar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual. Review of Plant Physiol,1982,33:317-345.
    [173]Mobin M, Khan N A. Photosynthetic activity, pigment compositionand antioxidatvie response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress[J]. Plant Physiol,2007,164:601-610.
    [174]Burzynski M,Zurek A. Effects of copper and cadmium on photosynthe-sis in cucumber cotyledons[J].Photosynthetica,2007,45:239-244.
    [175]邱永祥,蔡南通,吴秋云,等.铅对叶菜用甘薯根系生长及植株光合作用的影响[J].浙江农业学报,2006,18(6):429-432.
    [176]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003.
    [177]袁祖丽,李春明,熊淑萍,等.Cd、Pb污染对烟草叶片叶绿素含量、保护酶活性及膜脂过氧化的影响[J].河南农业大学学报,2005,39(1):15-19.
    [178]彭鸣,王焕校,吴玉树.镉、铅诱导的玉米幼苗细胞超微结构的改变[J].中国环境科学,1991,11(6):426-431.
    [179]周朝彬,胡庭兴,胥晓刚,等.刘铅胁迫对草木樨叶中叶绿素含量和几种光合特性的影响[J].四川农业大学学报,2005,23(4):432-435.
    [180]郭平,刘畅,张海博,等.向日葵幼苗对Pb、Cu富集能力与耐受性研[J].水土保持学报,2007,21(6):91-95.
    [181]Much D.Soil contamination beneath asphalt roads by polynuclear aromatic hydrocarbons, zinc,load and cadinium[J]. Science of the Total Environment,1992,12(2):49-60.
    [182]Volker R. Influence of heavy metals on the microbial degradation of diesel fuel[J].Chemosphere, 2002,49(6):559-568.
    [183]殷云龙,宋静,骆永明,等.南京市城乡公路绿地土壤重金属变化及其评价[J].土壤学报,2005,42(2):206-209.
    [184]朱建军,崔保山,杨志峰,等.纵向岭谷区公路沿线土壤表层重金属空间分异特征[J].生态学报,2006,26(2):146-153.
    [185]蔡志全,阮宏华,叶镜中.栓皮栎林对城郊重金属元素的吸收和积累[J].南京林业大学学报(自然科学版),2001,25(1):18-22.
    [186]刘维涛,张银龙,陈喆敏,等.矿区绿化树木对镉和锌的吸收与分布[J].应用生态学报,2008,19(4):752-756.
    [187]李国栋,王志刚,袁玉欣,等.保定市城市森林结构特征分析[J].河北农业大学学报,2007,30(5):51-56.
    [188]魏复盛.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.
    [189]Pulford ID,Watson C. Phytoremedmiation of heavy metal contaminated land by tress-a review[J]. Environment Interinational,2003,29:529-540.
    [190]Pulgford ID, Riddell-Black D, Stewart C. Heavy metal uptake by willow clones from sewage sludge treated soil the potential for phytoremediation[J]. International Journal of Phytoremediation,2002,4(1):59-71.
    [191]杨学军,唐东芹,许东新,等.上海地区绿化树种重金属污染防护特性的研究[J].应用生态学报,2004,15(4):687-690.
    [192]董艺婷,崔岩山,王庆仁.单一与复合污染条件下两种敏感植物对的吸收效应[J].生态学报,2003,23(5):1018-1024.
    [193]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002.
    [194]Fayiga A, Ma L. Arsenic uptake by two hyper accumulator fems from four arsenis contaminated soil[J]. Water Air and Soil pollution,2005,168(1/4):71-89.
    [195]周启星,宋玉芳.污染土壤修复的原理与方法[M].北京:科学出版社,2004.
    [196]Felix H. Field trials of the in situ decontamination of heavy metal polluted soils using crops of metals accumulating plants[J]. Zeitschrift fur Pflanzenernahrung and Bodenkunde,1997, 160:525-529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700