基于INS/GPS组合的XG-1自主车辆导航系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主车辆是具有人工智能和先进的传感技术、能够自主行驶和自动执行作战任务的地面无人车辆,是地面无人车辆发展的关键阶段,在民用和军用领域都发挥出了明显的优势,有着很强的应用价值。但是,自主车辆在自主导航、目标搜索与识别等关键技术领域还存在许多问题,因此,针对自主车辆存在的不同技术缺陷进行优化研究,成为了当前的研究热点,也是提高自主车辆智能性、稳定性和机动性必要举措。
     本文介绍了自主车辆的现状及发展趋势,分析了沈阳航天新光集团自制的XG-1自主车辆研制的关键技术及特点,针对其暂无导航功能的研究现状,为XG-1自主车辆设计了导航控制系统,详细阐述了XG-1导航系统的应用背景及关键技术,深入研究了其技术实现方式,提出了将惯性导航系统和全球卫星定位系统组合制导的方法,并通过仿真证明了组合导航控制系统的优势。
     惯性导航导航系统具有抗电子辐射干扰、大机动飞行、隐蔽性好等优点,但是其导航参数的误差(尤其是位置误差)随时间而积累,不适合长时间的单独导航;全球定位系统GPS明显优点是能够进行全球、全天候和实时导航,其定位误差与时间无关,且有较高的定位和测速精度,但是GPS全球定位系统的非自主、卫星信号易受干扰、卫星在有些地方受遮挡而影响定位或丢失信号,因此,单独使用惯性导航系统或GPS导航系统均不利于达到精确定位的目的,而将二者以适当的方法进行组合构成组合系统,可以取长补短,综合发挥各种导航系统特点,大大提高系统的整体导航精度及导航性能。本文通过位移、速度的组合方式组成了XG-1自主车辆导航系统,以达到了对自主车辆精确定位导航的目的。
     最后,设计了导航控制器对组合制导得到的最优定位导航信息进行了解析,通过判断偏航角与偏航距的大小及方位等来确定最终的导航控制指令,并研制了驱动控制模块对导航控制指令进行解调、放大、驱动,输出XG-1自主车辆转向角度控制量可以准确驱动XG-1执行机构,实现了导航系统对自主车辆的导航控制。
The autonomous vehicle is an unmanned ground vehicle that can steer independent and can execute campaign mission by itself,it has artificial intelligence and the advanced sensor technoloy.Atuonomous vehicle is the important stage in the development of the unmanned grouned vehicle,and plays an importment part both in the military field and in the civil field.Whereas,autonomous civil has some problems in the key technology fields,such as the auto-navigation,target acquisition and identification.Hence,optimizing research on the technology limitation of autonomous vehicles becomes the hotspot,also,it is the necessary measure that improves the intelligent and the stability.
     The paper interprets the autonomous vehicles'status quo and the trend of development, analyses the charcteristic and the key technology of the XG-1,designs the navigation controlling system,expatiates the applicate background and the technology backstopping on the navigation system of XG-l,intensivily studys the technology implementations,demonstrat-es the advantage of the XG-1 navigation system.
     Inertial navigation system has the virtue of the anti-interference electron irradiation,flying in big power-driven,good shielding,but the errors of the navigational parameter can accumulate along with the times,so it's not suitable for navigating depended for a long time.The exident virue of the global position system is that it can all-weather and globaly navigate in real time,and its positional error does not matter to time,yet,the involuntary satellite signals is easy to be interfered,and the signals can miss when it is sheltered.So,using alone INS or GPS is not benifit to locate accuracy,integrating the two naigation systems in proper ways to compose an integrated system can to make up for each other's deficiencies,exert each other's virtue suffiieney,advance the navigation system's precision and capability.The paper adopts loose coupling ways of displacement and velocity to integrate theXG-1 autonomous vehicle navigation system to achieve the target of navigate accuracy.
     Finally,the paper resolves the navigation message that is received by integrating,decides the navigation control instruction by the way of estimating the sizes and the areas of the yaw and the crosstrack error, designs the driven controlling module to demodulate,magnify and drive,and at last output the cornor controlling quantity to drive the XG-1's actuator,realize the navigation controlling for XG-1 autonomous vehicle.
引文
1. Cherkassky V, Ma Y. Practical Selection of SVM Parameters and Noise Estimation for SVM Regression [J]. IEEE Trans. Neural Networks.2004,17(1):113-126.
    2. Shang Y, Ruml W, Zhang Y, Fromherz MPJ. Localization from mere connectivity. In Proceedings of the 4th ACM International Symposium on Mobile ad hoc Networking & Computing. Annapolis, USA,2003:201-212.
    3.王占猛.GPS与单片机接口程序设计[J],汽车电子及检测技术专题,2007:32-33
    4.彭为,黄科,雷道仲.单片机典型系统设计[M],北京:电子工业出版社,2006:28-100
    5. McErlean D, Narayanan S. Distributed detection and tracking in sensor networks [J]. In Signals Systems and Computers,2002:1174-1178.
    6.何克忠.,李伟.计算机控制系统[M],北京:清华大学出版社,2000:147-170
    7. Spec:Smartdust chip with integrated RF communications (EB/OL). http://www.ilhlabs.com/jhill_cs/spec/,2001.
    8. 吴绍斌,陈慧岩.军用地面无人车辆的发展[J],军用地面无人车辆的发展,2002:49-53
    9. Lujia W, Jinkuan W, Yun W. Location Estimation of Mobile User in Wireless Sensor Network Based on Unscented Kalman Filter [C]. ICMMT 2008, Nanjing, China,2008, 92-95.
    10. Adam S, Hari B, Michel G, Nissanka P. Tracking Moving Devices with the Cricket Location System [C]. In Proceedings of the 2nd USENIX/ACM Conference on MOBISYS, Boston, Massachusetts, USA,2004.
    11.王忠,游志胜,翟晓莉,任苏萍.基于GPRS的GPS定位数据传输[J],导航,2005:56-61
    12. Vijay K, Samir R D. Performance of dead reckoning-based location service for mobile ad-hoc networks [J]. Wireless Communications and Mobile Computing Journal,2003, 4(2):189-202.
    13. Bulusu N, Estrin D, Heidemann J. Tradeoffs in location support systems:The case of quality-expressive location models for applications [C]. In Proceedings Of the Ubicomp 2001 Workshop on Location Modeling for Applications. Atlanta,2001:7-12.
    14.刘瑞华.MCS-51单片机与GPS-OEM板的串行通讯,电讯技术[J],2004,(5):93-96
    15.肖远亮.NMEA-0183数据标准在GPS技术中的应用[J1,物探设备,2003,13(2):127-133
    16.孙同景,陈桂友.Freescale 9S12十六位单片机原理及嵌入式开发技术[M],北京:机 械工业出版社,2008:409-431
    17.胡寿松.自动控制原理[M],北京:科学出版社,2005:398-501
    18.于海生.微型计算机控制技术[M],北京:清华大学出版社,1999:81-133
    19. Shang Y, Ruml W, Zhang Y, Fromherz MPJ. Localization from mere connectivity. In Proceedings of the 4th ACM International Symposium on Mobile ad hoc Networking & Computing. Annapolis, USA,2003:201-212.
    20. Fougeron C, Guidee P H, N'Guyen K C. RF system of saturne [J]. IEEE Trans. Nuclear Science.1977,24(3):1713-1715.
    21. Yang H, Sikdar B. A protocol for tracking mobile targets using sensor network [C]. Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications.2003:71-81.
    22. Konrad L, Matt W. Mote Track:A Robust, Decentralized Approach to RF-Based Location Tracking [J]. Personal and Ubiquitous Computing.2007,11(6):489-503.
    23.陈石磊,刘贵喜,向国华.FPGA与GPS-OEM板的串行通讯系统设计[J],新特软件应用,2008,10(5):11-16
    24.张怡,蔡毅,唐成凯.基于联邦卡尔曼滤波器的信息分配因子的研究.计算机仿真,2006,26(1):358-361.
    25. Xue-bin S, Zheng Z. A Tracking-Based Target Locating Algorithm in Wireless Sensor Networks[J]. The Journal of China Universities of Posts and Telecommunications.2004, 11(1):17-23.
    26.张迎新,雷文,姚静波.C8051F系列SOC单片机原理及应用[M],北京:国防工业出版社,2005:211-232
    27.董作民,姜木霖,陈晓青,段润雪.MCS-51单片机与GPS-OEM板数据通讯的研究与应用[J],湖北汽车工业学院学报,2000,14(3):37-41
    28.童长飞.C8051F系列单片机开发与C语言编程[M],北京:航空航天大学出版社,2006:316-427
    29. Sameer T, Vinay K, Nael B. Dynamic Localization Protocols for Mobile Sensor Networks. Technical Report CS-TR-04-NA02, Department of Computer Science, State University of New York, Binghanmton,2004.
    30.曹婷婷,高玉.GPS中NMEA-0183协议的应用[J],电子工程师,2006,32(10):8-11
    31.王宇飞,黄显林,胡恒章.组合导航系统中一种基于特征值分解的自适应信息滤波融合算法[J].航空学报,2000,21(3).
    32. Fishler E, Haimovich A, Blum R S, Cimini L J, Chizhik D, Valenzuela R A. Spatial diversity in radars-models and detection performance [J]. IEEE Transactions on Signal Processing.2006,54(3):823-838.
    33.卢虎,廉保旺,谢岩.GPS/INS/TAN组合导航系统建模与仿真[J].空军工程大学学报(自然科学版),2009,10(1):60-65.
    34. Ji Y, Biaz S, Pandey S, Agrawal P. ARIADNE:A dynamic indoor signal map construction and localization system [C]. In Proceedings of the 4th international conference on Mobile Systems, applications and services. Uppsala, Sweden,2006:151-164.
    35. Lim H, Kung L, Hou J, Luo H. Zero-configuration, robust indoor localization:Theory and experimentation [C]. In Proceedings of IEEE International Conference on Computer Communications.2006:1-12.
    36. Madigan D, Elnabrawy E, Martin R P, Ju W-H, Krishnan P, Krishnakumar A S. Bayesian indoor positioning systems [C]. In Proceedings of IEEE INFOCOM,2005.
    37. Lorincz K, Welsh M. Motetrack:a robust, decentralized approach to RF-based location tracking [C]. In Proceedings of the International Workshop on Location and Context-Awareness (LNCS 3479),2005:63-82.
    38. Kizan Y, Bhaskar K, Sharmila R, Bhaskar S. Ecolocanon:A sequence based technique for RF localization in wireless sensor networks [C]. In Proceedings of the 4th international symposium on information processing in sensor networks.2005,38.
    39. Lee Y W, Stuntebeck E, Miller S C. Miller. MERIT:Mesh of RF sensors for indoor tracking[C]. In Proc. of the Third Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks(SECON 2006),2006:32-43.
    40. Sun Shuli, Deng Zili.Multi-sensor optimal information fusion Kalman filters [J]. Automatic,2004:40(6).
    41. Want R, Hopper A, Falcao V, Gibbons J. The active badge location system [J]. ACM Transaction on Information Systems,1992,1(10):91-102.
    42. Harter, A., Hopper, A., Steggles, P., and Webster, P. The Anatomy of a Context-Aware Application[C]. In Proceedings of the Fifth Annual ACM/IEEE International Conference on Mobile Computing and Networking,1999.
    43. Paolo B, Prashant P, Vince W C, Stefano C, Alberto G, Hu Y F. Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards [J]. Computer Communications.2007(30):1655-1695.
    44. Patwari N, Hero A O, Perkins M, Correal N S, O'Dea R J. Relative location estimation in wireless sensor networks [J]. IEEE Trans. Signal Processing,2003(51):2137-2148.
    45. Demiras, M, Youngwhan S. An RSSI-based scheme for sybil attack detection in wireless sensor networks [C]. World of Wireless, Mobile and Multimedia Networks,2006: 1109-1113.
    46. Sawarese C, Rabay J, Langendoen K. Robust Positioning Algorithms for Distributed Ad-doc Wireless Sensor Networks [C]. The USEN IX Technical Annual Conference. Monterey, CA, USA:USEN IX Press,2002:317-327.
    47. Lee C H, Yu C J. An intelligent handoff algorithm for wireless communication systems using grey prediction and fuzzy decision system [C]. In Proceedings of International Conference on Networking Sensing and Control. IEEE,2004(1):541-546.
    48. Sorenson H W. Kalman filtering:Theory and application [J]. New York:IEEE Trans, 1985.
    49. Kushner H J. Dynamical equations for optimum nonlinear filtering [J]. J of Differential Equations.1967,26(3):179-190.
    50.阎石.数字电子技术基础[M],北京:高等教育出版社,1997:93-122
    51. Chatterjee A, Matsuno F. A Neuro-Fuzzy Assisted Extended Kalman Filter-Based Approach for Simultaneous Localization and Mapping (SLAM) Problems. [J]. IEEE Trans. Fuzzy Systems,2007,15(5):984-997.
    52. Julier S J, Uhlmann J K, Durrant-Whyte H F. A new approach for the nonlinear transformation of means and covariances in filters and estimators [J]. IEEE Trans. Automatic Control,2000,45(3):477-482.
    53. Lefebvre T, Bruyninckx H, De Schutter J. Comment on:a new method for the nonlinear t ransformation of means and covariances in filters and estimators [J]. IEEE Trans. Automatic Control,2002,47(8):1406-1408.
    54. Liqiang Z, Qiang C, Yingge W, Sherali Z. A novel distributed sensor positioning system using the dual of target tracking [J]. IEEE Trans. On Computers,2008,57(2):246-260.
    55. Julier S J, Uhlmann J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations [C]. American Control Conf. Jefferson City,2002:887-892.
    56. Chen Y Q, Huang T, Yong R. Parametric contour tracking using unscented Kalman filter [C]. Conf. on Image Proc. New York,2002:613-616.
    57. James R, Van Z. Boost phase tracking with an unscented filter [C]. Signal and Data Proc. of Small Targets. Orlando,2002,4728:263-274.
    58. Romanenko R, Castro J. The unscented filter as an alternative to the EKF for nonlinear state estimation:A simulation case study [J]. Computers and Chemical Engineering,2004, 28(3):347-355.
    59. Camps O, Lim H, Mazzaro C. A caratheodory-fejer approach to robust multiframe tracking [C]. IEEE:Conf. on Computer Vision. Nice,2003:1048-1055.
    60. Caffery J, Stuber G L. Nonlinear multiuser parameter estimation and tracking in CDMA systems [J]. IEEE Trans. Communications,2000,48(12):2053-2063.
    61.付梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700