航空燃油柱塞泵运动学与动力学特性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柱塞泵主要用作航空发动机燃油供给与控制单元,是发动机控制系统的重要组成部分,被誉为是发动机的心脏,其性能直接影响发动机控制系统的性能、寿命、可靠性,进而影响飞机的飞行安全。
     本文针对柱塞泵现有设计计算方法存在的问题与不足,对其运动学、动力学、滑靴静压润滑特性、滑靴运动轨迹等泵设计的基础理论与关键技术进行分析研究。
     关于运动学参数计算方法,分析了航空燃油柱塞泵运动学参数现有计算方法及其存在的不足,证明目前采用的方法是一种将非线性位移计算线性化近似计算方法,使得加速度误差在典型工作点约为3%。根据柱塞泵运动学原理,对现有运动学参数计算方法进行详细推导,修正原来的计算公式,同时提出并推导了一种基于坐标方法的运动学参数新计算方法。理论推导与仿真对比验证说明本文修订方法与所提出的新计算方法在理论上是一种准确算法。
     结合运动学计算分析结论,完成了柱塞泵动力学参数计算方法分析,侧重研究了柱塞所受的柱塞腔油压力、转子腔内油压力、柱塞弹簧和返回盘弹簧的弹簧力、柱塞腔壁的摩擦力、柱塞牵连运动的哥氏惯性力与相对运动引起的惯性力的计算方法。同时作为与柱塞的连接元件,分析了滑靴所受的综合力与力矩计算方法。在动力学分析计算中,对其中柱塞与柱塞腔之间的摩擦力而引起与其它力的相互作用结果,通过非线性动态方程建模与遗传算法求解确定。
     滑靴与斜盘之间的良好润滑是柱塞泵设计的关键技术。在柱塞泵运动学、动力学分析的基础上,首先对滑靴静压润滑原理、油膜的形成与自适应调节机理进行分析,根据滑靴力平衡与流量连续原理,分析推导了油膜厚度计算方法,并进行了油膜厚度随滑靴结构参数与泵工作参数变化的仿真。
     滑靴静压润滑设计的核心是如何理论上确定功率损失小、容积效率损失少、油膜承载刚度大对应的最佳油膜厚度。针对此,从滑靴油膜内速度分布、滑靴节流器效能计算、滑靴与斜盘之间静压润滑油膜引起的摩擦功率损失与泄漏功率损失计算、油膜引起的容积效率变化计算、油膜厚度对交变载荷承载的刚度计算五个方面进行静压润滑油膜的特性理论分析与仿真,并综合给出最佳油膜厚度确定的依据与具体路线。
     柱塞泵的滑靴固定在返回盘,并随转子同步旋转,由于柱塞倾斜安装、斜盘呈球面,使得滑靴运动随斜盘转角变化呈一族空间曲线,其中返回盘上滑靴安装孔位置与形状确定是柱塞泵设计的另一个关键技术。开孔太大容易使滑靴从滑靴孔脱落,太小可能出现滑靴卡死,理想的形状是按滑靴颈运动包络线来确定。本文首先分析了柱塞泵返回盘滑靴安装孔现有设计方法的局限性,然后根据柱塞泵几何关系与运动学原理,采用与目前完全不同的方法,提出按柱塞和斜盘共同作用的坐标计算方法来推导滑靴运动轨迹,并进行二维与三维轨迹仿真,同时从理论上与现有结果对比,验证所提出方法的正确性。
     在上述研究的基础上,为满足工程需要,设计开发了集柱塞泵性能参数计算、运动学参数计算、动力学参数计算、滑靴静压润滑与油膜厚度计算、滑靴运动轨迹分析与仿真等五个功能模块的面向对象通用计算软件
     上述研究方法与研究结果可为航空燃油柱塞泵的设计提供理论依据。
Spherical swashplate axial piston pump mainly used as the fuel supply and control unit for the aeroengine, which is the important component of the engine control system, considered to be the heart of the engine and its performance influences the performance, service life and reliability of the aeroengine control system directly and then affects the flight safety of aircraft.
     Specific to the current problems and limitations existing in the design calculation method, this thesis takes the spherical swashplate axial piston pump as the research object, focus on the kinematics and dynamics, the features for the slipping shoe hydrostatic lubrication, movement locus of the slipping shoe ect in the pump R&D of the fundamental theories and key technologies.
     Regarding to the kinematics parameter calculation method, current calculation methods and its weakness are analyzed, proved that the current methods deal with non-linear displacement calculation approximately, so lead to the acceleration error around3%in typical working point. According to the piston pump kinematic theory, with detailed deduce of the current kinematics parameter calculation methods, the paper modifies and corrects the original formula, then puts forward and derives a new kinematics calculation formula based on the coordinates methods. The theoretical derivation and the simulation comparison proved that the revised methods and the new calculation method is a kind of accurate algorithm in theory.
     Combining the kinematics calculation analysis conclusion, this article completes the analysis of the dynamic parameters calculation for piston pump, focused on the calculation method for the cavity fuel pressure in the plunger piston, the cavity fuel pressure in the rotor, the spring force for the plunger spring and the returning plate spring, the friction on the piston cavity wall, and the inertial force caused by plunger piston involvement movement and relative motion.At the same time, as the connection component of the plunger piston, the calculation methods for the comprehensive force and the moment on the slipping shoe are analyzed. In the dynamic analysis and calculation, the result for the friction between the piston and piston cavity is determined through the nonlinear dynamic model and calculated by Genetic Algorithm.
     Well lubrication between the slipping shoe and the swashplate is the key technology for the piston pump design. Based on the the piston kinematics dynamics analysis, the hydrostatic lubrication principle of the slipping shoe and the self-adaptive film formation mechanism are analyzed firstly, then for the slipping shoe lubrication structure, according to the slipping shoe force balance and flow continuous theory, the calculation method for the film thickness is deduced, and last the simulation for the film thickness changing with the slipping shoe parameters and the pump working parameters is simulated.
     The core for the slipping shoe hydrostatic lubrication design is that how to determine the best film thickness with the corresponding less power losses and volume efficiency losses and more bearing stiffness in theory. According to this, the property theoretical for the hydrostatic lubrication film is discussed from following5parts: velocity distribution in slipping shoe film, efficiency calculation for slipping shoe throttling, the calculation for friction power losses and leakage losses caused by the hydrostatic lubrication film between the slipping shoe and the swashplate, the volume efficiency change caused by the film, the stiffness calculation for the film thickness with alternative load bearing. At the end the certain basis and specific route to determine the best film thickness is recommended.
     Slipping shoe is located on the return plate, and spins synchronously with the rotor. Because of the inclined piston and spherical swashplate, the slipping shoe movement locus is a gens space curve. To determine the mounting hole position and the size on the return plate is another key technology in piston pump design. Bigger hole will make the slipping shoe fall off and smaller one may jammed, the ideal shape is determined by the slipping shoe neck movement envelope curve. This article firstly analyzes the limitation for the current design methods in piston pump return plate slipping shoe mounting hole design, then according to the piston pump geometry relationship and kinematic theory, using a totally different approach, puts forward that according to plunger piston and swashplate concurrent coordinate calculation method to deduce the slipping shoe movement locus, and goes ahead to2-D and3-D trajectory simulation, and theoretically contrasts the current results, verifies the correctness of the proposed method.
     With the above research, in order to meet the needs of the engineering, an object-oriented universal software including piston pump performance parameter calculation, kinematics parameter calculation, dynamic parameter calculation, slipping shoe hydrostatic lubrication and film thickness calculation, slipping shoe movement analysis and simulation ect5parts is developed.
     The research method and the result of this thesis can be used as the basis theory for the design of the aero fuel piston pump.
引文
[1]《航空喷气发动机自动控制设计手册》编写组编.航空喷气发动机自动控制设计手册[M].北京:国防工业出版社,1984.
    [2]航空工业标准(HB/Z151-89).航空发动机燃油与控制系统柱塞式燃油泵设计指南[S].中华人民共和国航空航天工业部,1989.
    [3]《航空发动机设计手册》总编委会编.航空发动机设计手册(十五册.控制及燃油系统)[M].北京:航空工业出版社,2002.
    [4]希乌科夫(苏).燃气涡轮发动机的燃料泵和喷嘴[M].北京:国防工业出版社,1960.
    [5]曾俊英.航空动力装置控制(元件部分)[M].北京:航空工业出版社,1995.
    [6]蒲志理.航空油泵设计[M].北京:国防工业出版社,1983.
    [7]吴琪华,贺惠珠,张加帧.航空发动机调节[M].北京:国防工业出版社,1986.
    [8]雷勇.航空高压高速液压柱塞泵的设计研究[D].贵阳:贵州大学硕士学位论文,2006.
    [9]李玉琳.液压元件与系统设计[M].北京:北京航空航天大学出版社,1991.
    [10]Zeliang Li. Condition Monitoring of Axial Piston Pump[D]. Canada: Thesis for the Degree of Master of Science.University of Saskatchewan,2005.
    [11]王致清,沙宝森.对阻尼槽型滑靴新设计理论的探讨[J].机床与液压,1980(2):16-22.
    [12]阮健.静压支承滑靴研究[D].哈尔滨:哈尔滨工业大学,1986.
    [13]王志斌,高峰.液压泵滑靴失效分析与改进优化设计[J].材料工程,2005(11):54-57.
    [14]许耀铭.轴向柱塞泵滑靴和配流盘摩擦副的设计方法[J].液压与气动,1977(2):3-12.
    [15]潘永阁,韩德才,周铁龙.轴向柱塞泵静压支承滑靴油膜动特性的理论分析和实验研究[J].齐齐哈尔轻工学院学报,1990,6(3):10-16.
    [16]赵俊一,赵永凯,张国栋等.轴向柱塞泵故障诊断振动分析方法[J].燕山大学学报,1994,18(3):214-219.
    [17]李大勇,王建军.轴向柱塞泵运行工况与振动的研究[J].华北电力技术,2005(4):5-6+18.
    [18]张红伟.基于现代设计方法的轴向柱塞变量泵柱塞的研究[D].重庆:重庆大学,2003.
    [19]DEEKEN M. Simulation of the tribological contacts in an axial piston machine[J]. lhydraulik und Pneumatik,2003(47):11-12.
    [20]EDGE K A, DARLING J. Cylinder pressure transients in oil hydraulic pumps with sliding plate valves[J]. Journal of Management and Engineering Manufacture,1986,200(B1):45-54.
    [21]FANG Y, SHIRAKASHI M. Mixed lubrication characteristics between piston and cylinder in hydraulic piston pump-motor[J]. Journal of Tribology,1995(117):80-85.
    [22]IVANTYSYNOVA M, LASAAR R. An investigation into micro- and macrogeometric design of piston/cylinder assembly of swash plate machings[J]. International Journal of Fluid Power, 2004,5(11):23-36.
    [23]MANRING N D, ZHANG Yihong. The improved volumetric-efficiency of an axial-piston pump utilizing a trapped-volume design[J]. Journal of Dynamic Systems, Measurement, and Control,2001(123):479-487.
    [24]MANRING N D. Friction forces within the cylinder bores of swash plate type axial-piston pumps and motors[J]. Journal of Dynamic Systems, Measurement and Control,1999(121): 531-537.
    [25]MANRING N D. The discharge flow ripple of axial piston swash-plate hydrostatic pump[J]. Journal of Tribology,2004(126):511-518.
    [26]MARRING N D, WRAY C L, DONG Z. Experimental studies on the performance of slipper bearings within axial-piston pumps[J]. Journal of Tribology,2004(116):511-518.
    [27]OLEMS L. Investigations of the temperature behaviour of the piston cylinder assembly in axial piston pumps[J]. International Journal of Fluid Power,2000,1(1):27-38.
    [28]孙健国.轴向柱塞泵返回盘设计与计算[J].南京航空航天大学学报,1978(1):145-155.
    [29]张家桢,陆山,崔伟军等.航空柱塞式油泵ZB-16D柱塞腔壁贯穿故障分析[J].航空学报1993,14(4):153-158
    [30]史培林,张婷,高懿.柱塞泵保持架滑靴安装孔的设计及尺寸计算[J].航空动力学报,2007,22(12):2124-2133.
    [31]陈永琴,苏三买,常博博.航空燃油柱塞泵运动学参数计算的坐标法[J].航空动力学报,2010,25(2):466-470
    [32]CHEN Yong-qin, CHEN Jian-jun, SU San-mai. The Slipping Shoe Motion Trajectory Analysis and Simulation of Spherical Swashplate Type Axial Piston Pump[C].2011 2nd International Conference on Advanced Measurement and Test,2011:943-948.
    [33]苏三买,常博博,陈永琴.倾斜柱塞式轴向柱塞泵运动学参数计算方法[J].计算机仿真,2010,27(10):20-23.
    [34]潘华辰,盛敬超.轴向柱塞机械配流盘油膜计算方法[J].浙江大学学报,1988(S1):21-27.
    [35]郑家锦,李胜,裴翔等.一种抗倾侧滑靴的刚度特性研究[J].浙江工业大学学报,2001,29(3):224-229.
    [36]胡新华.轴向柱塞泵静压支承球铰副与柱塞副的理论研究[D].杭州:浙江工业大学,2003.
    [37]艾青林.轴向柱塞泵配流副润滑特性的试验研究[D].杭州:浙江大学,2005.
    [38]胡新华,杨继隆,姜伟.静压支承球铰副的支承特性研究[J].液压与气动,2002(11):33-34.
    [39]胡新华.轴向柱塞泵静压支承球铰副刚度特性的研究[J].机床与液压,2007,35(3):100-101.
    [40]袁生杰,董恩国.斜盘式轴向柱塞泵滑靴的设计计算[J].天津工程师范学院学报,2007, 17(1):40-42
    [41]吴琪华,贺惠珠,张加祯.航空发动机调节[M].北京:国防工业出版社,1986.
    [42]邓乐,任卫红.斜盘滑靴副最小功率损失和最佳油膜厚度的计算[J].煤矿机电,2001(2):22-23.
    [43]唐令力,吕立功.轴向柱塞泵摩擦副磨损及改进探讨[J].通用机械,2003(6):39-42
    [44]那成烈,王静修.轴向柱塞泵斜盘横向倾角和配流盘减振孔共同设计时的计算[J].工程机械,1988(3):30-35.
    [45]那成烈.轴向柱塞泵可压缩流体配流原理[M].北京:兵器工业出版社,2003.
    [46]那成烈,王静修.轴向柱塞泵液压回冲的控制方法[J].机床与液压,1986(1):29-40.
    [47]那成烈,尹文波,那焱青.可压缩流体工作介质情况下轴向柱塞泵配流盘设计[J].甘肃工业大学学报,2002(4):65-67.
    [48]那成烈.恒压变量轴向柱塞泵带卸荷槽非对称重叠型配流盘的最佳设计[J].兰州理工大学学报,1984(1):37-47.
    [49]尹文波.可压缩流体工作介质轴向柱塞泵配流及瞬时流量仿真研究[D].兰州:兰州理工大学,2003.
    [50]那成烈,叶敏,孙琪余.轴向柱塞泵减振孔和减振槽的计算与特性分析[J].兰州理工大学学报,1988(1):9-19.
    [51]曾祥荣.轴向柱塞泵摩擦副的综合设计法[J].机床与液压,1981(3):1-6.
    [52]张百海.斜盘型轴向柱塞泵智能CAD的研究[D].哈尔滨:哈尔滨工业大学,1994.
    [53]李小宁.斜盘型轴向柱塞泵主体部件的计算机辅助设计系统[D].哈尔滨:哈尔滨工业大学,1989.
    [54]曾祥荣,马六成.轴向柱塞泵摩擦副综合设计法的应用和实验研究[J].机床与液压,1984(1):45-48.
    [55]陈石灵,李小宁.应用遗传算法进行斜盘型轴向柱塞泵缸体优化设计[J].机床与液压,1999(3):37-39.
    [56]曾祥荣,李小宁.斜盘型轴向柱塞泵缸体优化设计[J].哈尔滨工业大学学报,1988(1):20-27.
    [57]曾祥荣,李小宁.斜轴型轴向柱塞泵缸体组件的优化设计[J].哈尔滨工业大学学报,1989(2):33-46
    [58]李玉龙,刘焜.轴向柱塞泵缸体集成开发之参数化研究[J].机械传动,2006,30(6):22-24
    [59]李玉龙.轴向柱塞泵用配流盘的参数化集成开发研究[J].液压与气动,2006(11):5-7
    [60]郭晓梅,王春林,杨敏官.泵CAD软件的开发研究[J].流体机械,2003,31(3):39-41
    [61]孙毅刚,许耀铭.轴向柱塞泵缸体部件疲劳可靠度计算方法[J].工程机械,1993(4):38-40
    [62]田彦,刘雅梅,岳晓峰.轴向柱塞泵柱塞设计的难点分析[J].吉林工学院学报,1998,19(3):49-52
    [63]刘桓龙.水压轴向柱塞泵的滑靴静压支承研究[D].成都:西南交通大学,2001.
    [64]邓斌.水压轴向柱塞泵的特性研究与分析[D].成都:西南交通大学,2004.
    [65]李中复.轴向柱塞泵缸体力矩平衡计算与分析[J].阜新矿业学院学报,1988,7(4):123-127
    [66]张红伟.基于现代设计方法的轴向柱塞变量泵柱塞的研究[D].重庆:重庆大学,2003
    [67]柯坚,刘桓龙,刘思宁等.水压轴向柱塞泵滑靴静压支承分析与计算[J].中国机械工程,2003,14(2):101-104
    [68]胡纪滨,邹云飞,杜玖玉.轴向柱塞泵配流副短阻尼孔效应研究[J].润滑与密封,2009,34(3):20-24
    [69]杨华勇,艾青林,周华.轴向柱塞泵配流副润滑特性的研究进展[J].中国机械工程,2004,15(17):1587-1593
    [70]何必海,孙建国,叶志峰.燃汕柱塞泵滑靴副和配流副油膜计算研究[J].航空动力学报,2010,25(6):1437-1442
    [71]刘桓龙,柯坚,王国志等.水压轴向柱塞泵滑靴静压支承中的惯性影响[J].机械工程学报,2002,38(4):141-143
    [72]范旭平.水压轴向柱塞泵配流盘静压支承的理论分析[D].成都:西南交通大学,2001
    [73]王伟.轴向柱塞泵球面配流副理论研究[D].淮南:安徽理工大学,2009
    [74]王勇,李磊,贾旭等.柱塞倾角对球面配流副轴向斜柱塞泵流体特性的影响[J].液压气动与密封,2011,31(1):20-23
    [75]李庆扬,莫孜中,祁立群著.非线性方程组的数值解法[M].北京:科学出版社,1999.
    [76]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [77]陈永琴,苏三买.自适应变搜索域遗传算法及其在发动机模型中的应用[J].推进技术,2007,28(4):428-432.
    [78]苏三买.遗传算法及其在航空发动机非线性数学模型中的应用研究[D].西北工业大学博士学位论文,2002.
    [79]Bernard R Frey. Rethinking the piston pump-a physicist's convictions[J]. World Pumps, 2000(401):32-33.
    [80]Fang Yi, Shirakashi, Masataka. Evaluation of lubrication characteristics between the piston and cylinder in hydraulic piston pump and motor[C]. C Hen/Transactions of the Japan Society of Mechanical Engineers,1994:618-624.
    [81]E.Koc, C.J.Hooke. Considerations in the design of partially hydrostatic slipper bearings[C], Tribology International,1997,30(11):815-823.
    [82]A.J.Solomon. The effect of kinematics and Surface characteristics on the life and durability of axial piston pumps[D]. Wisconsin:University of Wisconsin Madison,1979.
    [83]Erin Whitehead. Pump Force [J]. Rental Equipment Register,2006,6:57-63
    [84]C.J.Hooke, K.Foster, G.Maderas. A Note on the Effect of Shaft and Casing Stiffness on the Port Plate Lubrication Film of a Particular Slipper-pad Axial Piston Pump[C].4th International Fluid Power,1975,743-748.
    [85]E.Koc, C.J.Hooke. Investigation into the effects of orifice size, offset and overclamp ratio on the lubrication of slipper beatings[J]. Tribology International,1996,29(4):299-305.
    [86]Hook, C.J. The effect of centrifugal load and ball friction on the lubrication of slippers in axial piston pumps[C].6th International Fluid Power Symposium,1989:813-819
    [87]J. M. Bergada, J. M. Haynes, J. Watton. Leakage and Groove Pressure of an Axial Piston Pump Slipper with Multiple Lands[J]. Tribology Transactions,2008,51(4):469-474.
    [88]Manring, Noah D. Valve-Plate Design for an Axial Piston Pump Operating at Low Displacements[J]. Journal of Mechanical Design,2003,125(1):200-204.
    [89]Jiong-Ki Kim, Hyoung-Eui Kim, Yong-Bum Lee. Measurment of fluid film thickness on the valve plate in oil hydraulic axial piston pumps (Part II:Spherical design effects)[J]. Journal of Mechanical Science and Technology,2005,19(2):655-660.
    [90]Naohiro IBOSHI. Characteristics of a Slipper Bearing for Swash Plate Type Axial Piston Pumps and Motors:3rd Report, Design Method for a Slipper with a Minimum Power Loss in Fluid Lubrication[J]. Bulletin of JSME,1986,29(254):2529-2534.
    [91]Xiaohui Luo, Zihua Niu, Zhaocun Shi, Junhua Hu. Analysis and design of an axial piston water-pump with piston valve[J]. Journal of Mechanical Science and Technology,2011,25(2): 371-376.
    [92]Huachen Pan, Jingchao Sheng, Yongxiang Lu. Finite difference computation of valve plate fluid film flows in axial piston machines[J]. International Journal of Mechanical Sciences,1989, 31(10):779-784.
    [93]Khalil, M K Bahr, Svoboda, J. Modeling of Swash Plate Axial Piston Pumps With Conical Cylinder Blocks[J]. Journal of Mechanical Design,2004,126(1):196-200.
    [94]S.J.Lin. The Effect of Oil Entrapment in an Axial Piston Pump[J]. ASME Journal of Dynamic Systems, Measurement and Control,1985,107(12):246-251.
    [95]P.M.Harris. The Suction Dynamics of Positive Displacement Axial Piston Pumps[J]. ASME Journal of Dynamic Systems, Measurement and Control,1985,107(12):146-152.
    [96]N.D.Nanring. Modeling and Designing a Variable-Displacement Open-Loop Pump[J]. ASME Journal of Dynamic Systems, Measurement and Control,1996,118(6):267-271.
    [97]K.A.Edge. The Pumping Dynamics of Swash Plate Piston Pumps[J]. ASME Journal of Dynamic Systems, Measurement and Control,1989,111(12):307-312.
    [98]G.Zeiger, A.Akers. Toque on the Swash-plate of and Axial Piston Pump[J]. ASME Joural of Dynamic Systems, Measurement and Control,1985,107(9):220-225.
    [99]N.D.Manring. The Toque on the Input Shaft of an Axial-Piston Swash-Plate Type Hydrostatic Pump[J]. ASME Journal of Dydamic Systems, Measurement and Control,1998,120(3):57-62.
    [100]S.J.Lin. Optional Control Theory Applied to Pressure-Controlled Axial Piston Pump DesignfJ]. ASME journal of Dydamic systems, Measurement and Control,1990,112(9):475-479.
    [101]EdgeKA, DartingJ. Pumping Dynamics of Swash Plate Piston Pumps[J]. Journal of Dynamic systems Measurement and Control-Transactions of ASME,1989, (2):307-312.
    [102]薛景文.摩擦学及润滑技术[M].北京:兵器工业出版社,1991.
    [103]薛晓虎,杜金凤.柱塞泵效率特性的分析和研究[J].液压与气动,2003(12):43-46.
    [104]唐令力,吕立功.轴向柱塞泵摩擦副磨损及改进探讨[J].通用机械,2003(06):39-42.
    [105]郑炜,褶有雄,鲁宝杏.轴向柱塞泵配流副油膜的实验研究[J].工程机械,1994(4):21-23.
    []06]马砚英,刘家起,李勋.轴向柱塞泵配流副油膜的实验研究[J].润滑与密封,1999(3):35-39
    [107]李元勋,钟延修.油液粘度变化对配流副密封带压力分布的影响[J].上海交通大学学报,1998(11):38-42.
    [108]陈海明,胡新华,杨继隆等.变粘度条件下柱塞摩擦副泄漏流量的计算[J].润滑与密封,2003(03):25-26.
    [109]许耀铭.油膜理论与液压泵和马达的摩擦副设计[M].北京:机械工业出版社,1983.
    [110]郑炜,冯洪红.轴向柱塞泵配流盘的有限元分析[J].工程机械,1990(7).
    [111]R.M.Harris. Predicting the Behavior of Slipper Pads in Swash Plate-Type Axial Piston Pumps[J]. ASME Journal of Dynamic Systems, Measurement and Control,1996,118(3): 41-47.
    [112]Valenti, Michael, Ashley. Quiet axial piston pumps[J]. Mechanical Engineering,1997,119(4): 24-26
    [113]Tkinson RH. Noise Reduction in Vane and Piston pumps[C]. International Conference on Fluid Power Proceedings,1983:318-224.
    [114]Angyi. An Experimental Example of Comparing Even Piston Pump with Odd Piston Pump in Flow and Pressure Pulsation[C]. ICFP Hangzhou,1985.
    [115]J.D.Stringer. Hydraulic systems Analysis[M]. Macmillan Press LTD.,1976.
    [116]R.H.Warring. Hydralic Handbok[M]. TRADE&Technical PRESS LDT.,1983.
    [117]Ma Ji'en, Xu Bing, Zhang Bin. Flow Ripple of Axial Piston Pump with Computational Fluid Dynamic Simulation Using Compressible Hydraulic Oil[J]. CHINESE JOURNAL OF MECHANICAL ENGINEERING-ENGLISH EDITION,2010, (1):45-52.
    [118]Manring, Noah D. The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump[J]. Transactions of the ASME G Journal of Dynamic Systems Measurement Control,2000,122(2):263-268.
    [119]Ohkawa S., Konishi, A., Hatano, H. Piston Pump Failures in Various Type Hydraulic Fluids[J]. ASTM SPECIAL TECHNICAL PUBLICATION,2001,1339:263-277.
    [120]V. N. Eliseev, I. S. Yudin. Piston pumps for gas pumping[J]. Chemical and Petroleum Engineering USSR,1999,35(9):565-566.
    [121]Manring, Noah D, Dong Zhilin. The Impact of Using a Secondary Swash-Plate Angle Within an Axial Piston Pump[J]. Transactions of the ASME G Journal of Dynamic Systems Measurement Control,2004,126(1):65-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700