芦竹活性炭的制备、表征及吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以生物质资源-芦竹为原料,焦磷酸为活化剂制备活性炭。首先优化了常规加热和微波加热下活性炭的制备条件,明确了两种加热方式下制备活性炭的最佳参数,对比研究了常规加热和微波加热下两种活性炭的物理结构、化学性质和吸附行为,然后结合吸附质的特点,对活性炭进行无机和有机改性,调控其孔径结构和表面化学性质,增加对目标污染物的亲和性,提高吸附效果。采用扫描电子显微镜(SEM)、比表面测定仪、傅里叶红外光谱仪(FT-IR).X-射线衍射仪(XRD)和X-射线光电子能谱(XPS)分析等现代分析手段对芦竹活性炭的结构形貌、比表面积和孔径、表面官能团和元素含量等性质进行分析表征,采用静态实验方法,在不同的pH、温度、投加量、时间和其它共存离子条件下,考察芦竹活性炭对水体中污染物的吸附性能,结合上述性质分析和表征结果,研究芦竹活性炭与吸附质之间的构效关系,并明确吸附机理。本研究对于芦竹的资源化利用及芦竹活性炭应用于不同性质废水的处理提供理论指导。
     选择芦竹为原料,焦磷酸为活化剂,普通加热法制备活性炭。通过单因素实验考察了剂料比、浸渍时间和活化温度对活性炭产品得率、比表面积和孔容的影响,筛选出制备活性炭的最优条件,通过SEM、氮气吸附脱附实验和XPS分析对最优活性炭进行表征,通过土霉素(OTC)吸附试验考察最优条件下制备的活性炭的吸附性能。结果表明当温度大于400℃时,活性炭比表面积开始大幅度增加,最大比表面积在600℃时取得,最大孔容在500℃时取得;在剂料比为0.4时,比表面积可达到1150.69m2/g,孔容可达0.59m3/g,随着剂料比的增加,比表面积和孔容也逐渐增加,在剂料比为0.75时,比表面积达到最大,在剂料比为1.0时,孔容达到最大值;随着浸渍时间的延长,比表面积和孔容均呈现先增加后降低的趋势,在浸溃时间为5h时,比表面积达到最大值,在浸渍时间为10h时,总孔容达到最大值。与磷酸作为活化剂时相比,焦磷酸的使用量较少,得到的活性炭介孔含量更多,更加适合于对大分子污染物的去除,在20℃,对OTC的最大吸附量为534.8mg/g。
     采用微波加热法制备了芦竹活性炭。通过单因素实验考察辐射功率、辐射时间和剂料比对活性炭得率、比表面积和孔容的影响。通过表面形态分析、氮气吸附脱附实验和吸附试验对最优活性炭性质进行表征。结果表明随着辐射功率的增加,芦竹活性炭的比表面积和孔容均呈现先上升后趋于下降的趋势,在700w时达到最大值,当辐射功率过低时,所达到的温度不足以使芦竹原料完全活化,当辐射功率增加到一定值时,芦竹原料能够活化完全,形成发达的孔隙结构,比表面积增加,当辐射功率过高时,导致反应过快,反应温度过高,部分孔被烧蚀,造成比表面积降低。活性炭的比表面积和孔容均随着剂料比的增加而增加,当剂料比达到0.75时,比表面积达到最大值,当剂料比超过0.75时,造成比表面积的降低。随着辐射时间的增长,芦竹活性炭的比表面积和总孔容呈现先上升后下降的趋势,在辐射时间为15min时达到最大值。综上,微波加热法制备芦竹活性炭的最佳制备条件为:辐射功率700w,辐射时间为10min,剂料比为0.75。此时,活性炭得率为56.1%,比表面积高达1568m2/g,微孔比表面积为631m2/g,外比表面积为936m2/g,孔容为1.08m3/g,微孔孔容为0.28m3/g,外孔容为0.80m3/g。
     在前两章节的基础上,采用氮气吸附/脱附试验、傅里叶红外光谱分析和贝姆滴定等多种手段对比研究了两种加热方式下活性炭的物理化学性质和对环丙沙星的吸附性能。氮气吸附/脱附试验表明微波炭具有较大的比表面积;傅里叶红外光谱分析和贝姆滴定结果表明普通炭表面的酸性含氧官能团含量明显高于微波炭,微波加热减少了活性炭表面的酸性官能团含量,增加了pHpzc。吸附实验结果表明,在20℃时,普通炭和微波炭对环丙沙星吸附量分别为321.07mg/g和300.35mg/g,虽然微波炭具有较大的比表面积,但对环丙沙星(CIP)吸附量却较低,这主要是由于微波炭表面含氧官能团较少,负电性较弱,对CIP静电吸引较弱导致的。由于存在静电斥力的作用,初始溶液pH太高或者太低对环丙沙星的吸附都不利,在3.2-8.2范围内,吸附量最大。两种活性炭对CIP的吸附均符合伪二级动力学模型和Langumuir吸附等温模型。吸附等温线拟合结果表明该吸附为单分子层吸附,吸附过程以物理吸附为主,热力学参数表明该吸附过程是一个放热自发的过程,温度升高不利于吸附的进行。
     采用磷酸为活化剂,FeCl3、MnCl2和AICl3作为辅助活化剂制备了芦竹活性炭,并考察其对溶液中Cr(VI)的去除效果。结果表明FeCl3、AICl3和MnCl2作为辅助活化剂制备的活性炭均可提高对溶液中Cr(VI)的吸附效果,MnCl2作为辅助活化剂制备的活性炭具有最大的比表面积(1332m2/g)和最大的孔容(1.060cm3/g);AlC13的加入不利于活性炭孔的生成,此时活性炭比表面积和孔容分别为992m2/g和0.688cm3/g, FeCl3的加入对活性炭的比表面积影响很小,但增加了活性炭的介孔含量,降低了活性炭的微孔含量,增加了活性炭的孔容。溶液中三价铬和六价铬的比值及XPS分析结果了证实Cr(Ⅵ)在吸附过程中的转化过程。共存离子吸附结果显示溶液中的正电荷极易被吸附到表面带负电的活性炭吸附后,中和了活性炭表面的负电性,因此,有利于对带负电荷的铬酸根的吸附。
     采用环氧氯丙烷、N,N-二甲基甲酰胺、二乙烯三胺以及三乙胺对活性炭进行了改性(AC-EDT)研究,重点考察了改性对活性炭性质及吸附性能所产生的影响。XPS分析结果表明氨基成功的接枝到活性炭表面,对带负电的铬酸根具有更好的亲和作用。与改性前吸附平衡时间为10h相比,AC-EDT对Cr(VI)的吸附速度更快,10min即可达到平衡,且AC-EDT对铬酸根具有更好的吸附效果。AC对铬酸根的吸附以孔吸附为主,当强氧化性的Cr(VI)吸附到活性炭表面后,与活性炭表面能提供电子的C=C、C=O反应,自身还原为Cr(Ⅲ);而对于AC-EDT,吸附机理以静电吸引为主,当Cr(VI)快速吸附到表面后,同样发生氧化还原反应。
     本研究利用资源丰富的芦竹为原料制备出了优质活性炭,并通过辅助活化和改性,从孔径分布和表面性质两个方面对活性炭性质进行调控,提高了活性炭的选择性,拓宽了芦竹活性炭的应用范围。该研究不仅节约了煤炭资源,也为芦竹的利用寻找到一个合理的出路,实现了其资源化、高值化和商品化。该研究具有一定的环境、经济和社会效益。
Activated carbons were prepared from biomass renewable source-Arundo donax L.was using H4P2O7as activator. First, the preparation conditions were optimized by conventional and microwave heating and the optimal preparation condition was obtained. The physicochemical properties and adsorption behavior of two optimal activated carbons were compared. Then, according the characteristics of adsorbate, the activated carbon was modified by inorganic and organic methods to regulate the pore textural and surface chemistry, enhancing the affinity between activated carbon and adsorbate and improving adsorption capacity. Analysis methods such as scanning electron microscopy (SEM), BET specific surface area analyzer, Fourier transformed infrared (FT-IR), X-Ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface morphology, BET specific surface area, surface functional group and element speciation analysis of activated carbon. Batch experiments with variable pH, temperature, dosage, contact time and other coexisting ions were conducted to evaluate the sorption performance of pollutant by adsorbents from aqueous solutions. Combined with structural analysis and characterization results, the adsorption structure-activity relationship was established and the adsorption mechanism was discussed. This study provides theoretical basis for resource utilization of Arundo donax L. and the treatment of wastewater with different properties by activated carbon.
     Activated carbons were prepared from renewable source Arundo donax Linn using H4P2O7as activator with conventional heating method. Through single factor experiment, the influences of chemical impregnation ratio (mass of H4P2O7:Arundo donax Linn), activation temperature and soaking time on the properties (yield, BET surface area, pore volume and surface functional group) of activated carbon were investigated. The optimal activated carbon (ALAC) was characterized by SEM, N2adsorption/desorption isotherms, XPS and oxytetracycline (OTC) adsorption experiments. Results showed that the pore development was significant at temperatures>400℃, and reached maximum BET surface area (1463m2/g) at600℃and maximum total pore volume (1.24cm3/g) at500℃. At a low impregnation ratio of0.4, BET surface area and pore volume could reach as high as1150.69m2/g and0.59m3/g respectively. Both BET surface area and pore volume initial increase followed by decrease after reaching a maximum, with the maximal surface area was obtained at impregnation ratio of0.75and maximal pore volume at1.0. BET surface area and mesopore volume reached maximum after soaking for10h. compared with activated carbon prepared by H3PO4, activated carbon prepared by H3PO4had a higher portion of mesopore which was favorable for adsorption of large molecules. At temperature of20℃, the adsorption capacity for OTC534.8mg/g。
     Activated carbons were prepared with a microwave-induced activation process using H4P2O7as the activating agent. Through single factor experiment, the effects of various factors such as microwave radiation power, radiation time and impregnation ratio between H4P2O7and precursor on the specific surface area and pore volume were studied. Results showed that both the BET specific surface area and pore volume increased at the first stage and then decreased with the increase of radiation power. The highest value was obtained at700W. Lower temperature could not make raw materials be fully activated and higher temperature made the pore produced be ablated, thus resulting in the lower surface area and lower pore volume. As the radiation time increased, both the BET specific surface area and pore volume increased at the first stage and then decreased and the highest value was obtained at radiation of15min. The same trend was observed with the increase of impregnation ratio and the highest value was obtained at impregnation ratio of0.75. H4P2O7has a strong ability for microwave-absorbing. With the increase of impregnation ratio, the activated temperature was high and the raw material was fully activtated. In addtion, the raw material was impregnated fully by H4P2O7was advantage to pore development. When the impregnation ratio was higher than0.75, the pore was ablated because of the higer temperature. The optimal activation conditions were determined as:microwave power of700W, radiation time of10min and H4P2O7/precursor ratio of0.75:1, under which a carbon yield of56.1%, a surface area of1568m2/g, a micropore surface area of631m2/g, a external surface area of936m2/g, a total pore volume of1.08m3/g, a micropore of0.28m3/g and a external pore volume of0.80m3/g could be reached.
     The textural structure, chemical properties and adsorption behavior of activated carbons (ACs) derived from Arundo donax Linn using H4P2O7activation by conventional (AAC) and microwave heating methods (MAAC) were compared. Although N2adsorption/desorption isotherms showed that MAAC had larger surface area than AAC, AAC acted as a better adsorbent for the removal of CIP with maximum monolayer adsorption capacities of418.410mg/g for AAC and395.257mg/g for MAAC at20℃. It was related to the less acidic functionalities of MAAC. The initial pH from2.1to2.8corresponding to a lower CIP adsorption capacity was probably related to the electrostatic repulsion between cation and positive surface charge of the sorbents. When the pH was higher than the pKa2of the CIP, the anionic form would predominate and thus induce evident repulsion to negatively charged carbon surfaces. Such behaviors would lead to a significant reduction of CIP uptake on both adsorbents. Thus, the optimum operation pH for AAC and MAAC adsorption were both in the range of3.2-8.2, suggesting that both cationic and zwitterionic forms of CIP could adsorb significantly onto carbons. Compared with pseudo-first-order kinetic, pseudo-second-order kinetic model was considered more appropriate to represent the kinetic data. The negative AG values for both carbons indicated spontaneous nature and feasibility of the adsorption process. The negative AH indicated exothermic nature of the adsorption process. Higher temperature is not favorable for CIP adsorption.
     FeCl3, AICl3and MnCl2were used as the assisted activation agent in activated carbon preparation by H3PO4activation using microwave heating method. The results suggested that carbon with MnCl2as assisted activation agent displayed the highest BET surface area (1332m2/g) and the highest pore volume (1.060cm3/g). Doping with MnCl2was favorable for the enlargement of activated carbon, especially for micropore, whereas, the addition of AICl3decreased the specific surface area of activated carbon. The addition of FeCl3, MnCl2and AICl3increased the yield of carbons, but hindered the creation of acidic functional groups on carbons. FeCl3, AICl3and MnCl2had successfully improved Cr(VI) adsorption and activated carbon with FeCl3as assisted activation agent exhibited the best uptake capacity. The adsorption of Cr(VI) onto activated carbons was not only due to the large surface area but the interactions between charged chromium ions and carbon surface. After interaction with electron on carbon surface, Cr(VI) was reduced to Cr(III), which was adsorbed by carbons or partly released into solution. The XPS analysis indicated the acidic surface functional was beneficial for the conversion of Cr(VI) to Cr(III).To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data.
     AC-EDT, which contained amino groups, was an effective adsorbent for Cr(VI) adsorption from aqueous solution. The amino groups-grafted activated carbon demonstrated a better adsorption capacity for Cr(VI) compared to the original carbon. The adsorption of Cr(VI) was highly pH-dependent and the best results were obtained at a wide pH range. In addition, the rate of Cr(VI) adsorption onto AC-EDT was rapid,10min was sufficient. However, in the case of AC, equilibrium time was obtained with10h. The results proposed that AC adsorbed adsorbate involved in three steps:the external surface adsorption, the intraparticle diffusion stage and the final equilibrium stage. After reaction with electron, Cr(VI) was reduced to Cr(III), which was adsorbed by carbon or partly released into solution. In the case of AC-EDT, Cr(VI) was adsorbed via an electrostatic attraction and was subsequently reduced from toxic Cr(VI) to Cr(III) on the adsorbent surface. These results were confirmed by the XPS analysis. Moreover, The reduced Cr(VI) on the AC-EDT was bound to C-O or carbonyl groups (C=O). The results of this study showed that the AC-EDT was a efficient adsorbent for the removal of Cr(VI) in wastewater.
     Compared with previous study, renewable source Arundo donax L. was employed as raw material for activated carbon. On one hand, the coal resource was saved. On the other hand, a reasonable way was found to realize the use of Arundo donax L.. The properties such as pore distribution and surface chemistry of activated carbon were regulated to make it had the ability of selectivity. According the characteristic of adsorbate, the preparation condition and the modification method could be adjusted. Arundo donax Linn was used as raw material to prepare activated carbon with excellent properties. This study has a certain environmental, economic and social benefits
引文
[1]张联伟,徐勇,黄书娥,赵新德.微山湖区芦竹引进栽培技术[J].中国林副特产,2010(6):61-64.
    [2]Baccar, R., Bouzid, J., Feki, M, and Montiel, A. Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions [J]. Journal of Hazardous Materials,2009.162(2-3):1522-1529.
    [3]Leyva Ramos, R., J. Ovalle-Turrubiartes, and M.A. Sanchez-Castillo, Adsorption of fluoride from aqueous solution on aluminum-impregnated carbon [J]. Carbon,1999.37(4):609-617.
    [4]Hsu, L.-Y. and H. Teng, Influence of different chemical reagents on the preparation of activated carbons from bituminous coal [J]. Fuel Processing Technology,2000.64(1-3):155-166.
    [5]Wu, F.-C., Wu, P.-H., Tseng, R.-L., and Juang, R.-S., Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption [J]. Journal of Environmental Management.91(5):1097-1102.
    [6]Marsh, H., Yan, D. S., O'Grady, T. M., and Wennerberg, A., Formation of active carbons from cokes using potassium hydroxide [J]. Carbon,1984.22(6):603-611.
    [7]Rambabu, N., Azargohar, R., Dalai, A. K., and Adjaye, J., Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications [J]. Fuel Processing Technology,2013.106(0):501-510.
    [8]Shi, Y, Chen, J., Chen, J., Macleod, R. A., and Malac, M., Preparation and evaluation of hydrotreating catalysts based on activated carbon derived from oil sand petroleum coke [J]. Applied Catalysis A:General,2012.441-442(0):99-107.
    [9]Deng, M.-g. and R.-q. Wang, The effect of the HC1O4 oxidization of petroleum coke on the properties of the resulting activated carbon for use in supercapacitors [J]. New Carbon Materials, 2013.28(4):262-265.
    [10]Suhas, P.J.M. Carrott, and M.M.L. Ribeiro Carrott, Lignin-from natural adsorbent to activated carbon:A review [J]. Bioresource Technology,2007.98(12):2301-2312.
    [11]Montane, D., V. Torne-Fernandez, and V. Fierro, Activated carbons from lignin:kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid [J]. Chemical Engineering Journal, 2005.106(1):1-12.
    [12]Cotoruelo, L. M., Marques, M. D., Rodriguez-Mirasol, J., Rodriguez, J. J., and Cordero, T., Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate:Equilibrium and kinetic studies [J]. Journal of Colloid and Interface Science,2009.332(1):39-45.
    [13]Cotoruelo, L. M., Marques, M. D., Diaz, F. J., Rodriguez-Mirasol, J., Rodriguez, J. J., and Cordero, T, Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions [J]. Chemical Engineering Journal,2012.184(0):176-183.
    [14]Esfandiari, A., T. Kaghazchi, and M. Soleimani, Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes [J]. Journal of the Taiwan Institute of Chemical Engineers,2012.43(4):631-637.
    [15]Deng, H., Li, G, Yang, H., Tang, J., and Tang, J., Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation [J]. Chemical Engineering Journal. 163(3):373-381.
    [16]Chan, L. S., Cheung, W. H., Allen, S. J., and McKay, G, Separation of acid-dyes mixture by bamboo derived active carbon [J]. Separation and Purification Technology,2009.67(2): 166-172.
    [17]Wang, X. S., Chen, L. F., Li, F. Y., Chen, K. L., Wan, W. Y, and Tang, Y. J., Removal of Cr (VI) with wheat-residue derived black carbon:Reaction mechanism and adsorption performance [J]. Journal of Hazardous Materials.175(1-3):816-822.
    [18]Wang, L., Zhang, J., Zhao, R., Li, Y, Li, C., and Zhang, C., Adsorption of Pb(II) on activated carbon prepared from Polygonum orientate Linn.:Kinetics, isotherms, pH, and ionic strength studies [J]. Bioresource Technology.101(15):5808-5814.
    [19]Zhang, J., Shi, Q., Zhang, C., Xu, J., Zhai, B., and Zhang, B., Adsorption of Neutral Red onto Mn-impregnated activated carbons prepared from Typha orientalis [J]. Bioresource Technology, 2008.99(18):8974-8980.
    [20]赵廷林,王鹏,邓大军,舒伟,曹冬辉.生物质热解研究现状与展望[J].农业工程技术(新能源产业),2007,5:54-60.
    [21]李传统.新能源与可再生能源技术[M].江苏:东南大学出版社,2005:116-117.
    [22]翟秀静,刘奎仁,韩庆.新能源技术[M].北京:化学工业出版社,2005:266-271.
    [23]Gueye, M., Richardson, Y, Kafack, F. T., and Blin, J., High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater [J]. Journal of Environmental Chemical Engineering,2014.2(1):273-281.
    [24]Heidari, A., Younesi, H., Rashidi, A., and Ghoreyshi, A., Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood:Effect of chemical activation [J]. Journal of the Taiwan Institute of Chemical Engineers,2014.45(2): 579-588.
    [25]Danish, M., Hashim, R., Ibrahim, M. N. M., and Sulaiman, O., Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass [J]. Biomass and Bioenergy,2014.61(0):167-178.
    [26]Okman, I., Karagoz, S., Tay, T., and Erdem, M., Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide [J]. Applied Surface Science,2014.293(0):138-142.
    [27]Liu, H., Gao, Q., Dai, P., Zhang, J., Zhang, C., and Bao, N., Preparation and characterization of activated carbon from lotus stalk with guanidine phosphate activation:Sorption of Cd(II) [J]. Journal of Analytical and Applied Pyrolysis,2013.102(0):7-15.
    [28]Xiao, H., Peng, H., Deng, S., Yang, X., Zhang, Y, and Li, Y, Preparation of activated carbon from edible fungi residue by microwave assisted K2CO3 activation-Application in reactive black 5 adsorption from aqueous solution [J]. Bioresource Technology,2012.111(0):127-133.
    [29]Chang, C.-F., C.-Y. Chang, and W.-T. Tsai, Effects of Burn-off and Activation Temperature on Preparation of Activated Carbon from Corn Cob Agrowaste by CO2 and Steam [J]. Journal of Colloid and Interface Science,2000.232(1):45-49.
    [30](日)立本英机,(日)安部郁夫,高尚愚译编.活性炭的应用技术[M]:维持管理及存在问题.南京:东南大学出版社,2002.
    [31]Lillo-Rodenas, M.A., D. Cazorla-Amoros, and A. Linares-Solano, Understanding chemical reactions between carbons and NaOH and KOH:An insight into the chemical activation mechanism [J]. Carbon,2003.41(2):267-275.
    [32]彭金辉,杨显万.微波能技术新应用[M].第一版,昆明:云南科技出版社,1997.
    [33]华一新,彭金辉,刘纯鹏.微波化学[M](金钦汉主编,第十四章微波化学在冶金中的应用).第一版,北京:科学技术出版社,2001.
    [34]Yuen, F.K. and B.H. Hameed, Recent developments in the preparation and regeneration of activated carbons by microwaves [J]. Advances in Colloid and Interface Science,2009.149(1-2): 19-27.
    [35]Valente Nabais, J. M., Carrott, P. J. M., Ribeiro Carrott, M. M. L., and Menendez, J. A., Preparation and modification of activated carbon fibres by microwave heating [J]. Carbon,2004. 42(7):1315-1320.
    [36]Pezoti Junior, O., Cazetta, A. L., Gomes, R. C, Barizao, E. O., Souza, I. P. A. F., Martins, A. C., Asefa, T., and Almeida, V. C., Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis:Optimization using RSM and methylene blue adsorption [J]. Journal of Analytical and Applied Pyrolysis,2014.105(0): 166-176.
    [37]Franca, A.S., et al., Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents [J]. Bioresource Technology.101(3):1068-1074.
    [38]邓辉,张根林,高英,孙萍,棉杆活性炭的微波辐射磷酸法制备、表征及吸附性能[J].石河子大学学报(自然科学版)2011,29(5):618-622
    [39]Ahmed, M.J. and S.K. Theydan, Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption [J]. Journal of Analytical and Applied Pyrolysis,2014.105(0):199-208.
    [40]Ferrera-Lorenzo, N., Fuente, E., Suarez-Ruiz, I., and Ruiz, B., KOH activated carbon from conventional and microwave heating system of a macroalgae waste from the Agar-Agar industry [J]. Fuel Processing Technology,2014.121(0):25-31.
    [41]Xin-hui, D., Srinivasakannan, C., Jin-hui, P., Li-bo, Z., and Zheng-yong, Z., Comparison of activated carbon prepared from Jatropha hull by conventional heating and microwave heating [J]. Biomass and Bioenergy,2011.35(9):3920-3926.
    [42]梁霞,王雪江.活性炭改性方法及在水处理中的应用[J].水处理技术,2011,37(8),1-6.
    [43]Chun, L., C. Hongzhang, and L. Zuohu, Adsorptive removal of Cr(VI) by Fe-modified steam exploded wheat straw [J]. Process Biochemistry,2004.39(5):541-545.
    [44]Huang, G, J.X. Shi, and T.A.G. Langrish, Removal of Cr(VI) from aqueous solution using activated carbon modified with nitric acid [J]. Chemical Engineering Journal,2009.152(2-3): 434-439.
    [45]Yin, C.Y., M.K. Aroua, and W.M.A.W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions [J]. Separation and Purification Technology,2007.52(3):403-415.
    [46]杨金辉,王劲松,周书葵,邓钦文.活性炭改性方法的研究进展.湖南科技学院学报[J],2010,31(4):90-93.
    [47]江霞,蒋文举,金燕,张振鹏.改性活性炭在环境保护中的应用[J].环境科学与技术.2003,26(5):52-58.
    [48]Liu, Q.-S., Zheng, T., Li, N., Wang, P., and Abulikemu, G., Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue [J]. Applied Surface Science.256(10):3309-3315.
    [49]Menendez, J. A., Menendez, E. M., Iglesias, M. J., Garcia, A., and Pis, J. J., Modification of the surface chemistry of active carbons by means of microwave-induced treatments [J]. Carbon, 1999.37(7):1115-1121.
    [50]Maldhure, A.V. and J.D. Ekhe, Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption [J]. Chemical Engineering Journal,2011. 168(3):1103-1111.
    [51]Yagmur, E., M. Ozmak, and Z. Aktas, A novel method for production of activated carbon from waste tea by chemical activation with microwave energy [J]. Fuel,2008.87(15-16):3278-3285.
    [52]韩严和,全燮,薛大明,赵雅之,陈硕.活性炭改性研究进展[J].环境污染治理技术与设备, 2003,4(1):33-37.
    [53]Acharya, J., Sahu, J. N., Mohanty, C. R., and Meikap, B. C, Removal of lead(II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation [J]. Chemical Engineering Journal,2009.149(1-3):249-262.
    [54]Ahmadpour, A. and D.D. Do, The preparation of active carbons from coal by chemical and physical activation [J]. Carbon,1996.34(4):471-479.
    [55]Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Bjornbom, E., Minkova, V., and Goranova, M., Characterization and application of activated carbon produced by H3PO4 and water vapor activation [J]. Fuel Processing Technology,2006.87(10):899-905.
    [56]Girgis, B. S., Smith, E., Louis, M. M., and El-Hendawy, A.-N. A., Pilot production of activated carbon from cotton stalks using H3PO4 [J]. Journal of Analytical and Applied Pyrolysis,2009. 86(1):180-184.
    [57]Gomez-Serrano, V., Cuerda-Correa, E. M., Fernandez-Gonzalez, M. C., Alexandre-Franco, M. F., and Macias-Garcia, a. A., Preparation of activated carbons from chestnut wood by phosphoric acid-chemical activation. Study of microporosity and fractal dimension [J]. Materials Letters, 2005.59(7):846-853.
    [58]Krol, M., G. Gryglewicz, and J. Machnikowski, KOH activation of pitch-derived carbonaceous materials-Effect of carbonization degree [J]. Fuel Processing Technology.92(3):158-165.
    [59]Otowa, T., Y. Nojima, and T. Miyazaki, Development of KOH activated high surface area carbon and its application to drinking water purification [J]. Carbon,1997.35(9):1315-1319.
    [60]Lillo-Rodenas, M. A., Cazorla-Amoros, D., and Linares-Solano, A., Understanding chemical reactions between carbons and NaOH and KOH:An insight into the chemical activation mechanism [J]. Carbon,2003.41(2):267-275.
    [61]陈永,椰壳纤维基高比表面积中孔活性炭的制备[J].新型炭材料,2010.25(2):151-155.
    [62]Zhang, J., Jin, L., He, X., Liu, S., and Hu, H., Catalytic methane decomposition over activated carbons prepared from direct coal liquefaction residue by KOH activation with addition of SiO2 or SBA-15 [J]. International Journal of Hydrogen Energy,2011.36(15):8978-8984.
    [63]Qu, Y.-F., Guo, J.-X., Chu, Y.-H., Sun, M.-C., and Yin, H.-Q., The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts [J]. Applied Surface Science,2013. 282(0):425-431.
    [64]Yao, X., Liu, J., Gong, G, Jiang, Y, and Xie, Q., Preparation and modification of activated carbon for benzene adsorption by steam activation in the presence of KOH [J]. International Journal of Mining Science and Technology,2013.23(3):395-401.
    [65]Molina-Sabio, M., Rodriguez-Reinoso, F., Caturla, F., and Selles, M. J., Development of porosity in combined phosphoric acid-carbon dioxide activation [J]. Carbon,1996.34(4): 457-462.
    [66]Caturla, F, M. Molina-Sabio, and F. Rodrfguez-Reinoso, Preparation of activated carbon by chemical activation with ZnCl2 [J]. Carbon,1991.29(7):999-1007.
    [67]Abdel-Nasser A, E.-H., Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon [J]. Carbon,2003.41(4):713-722.
    [68]Likodimos, V., Steriotis, T. A., Papageorgiou, S. K., Romanos, G. E., Marques, R. R. N., Rocha, R. P., Faria, J. L., Pereira, M. F. R., Figueiredo, J. L., Silva, A. M. T., and Falaras, P., Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothennal oxidation [J]. Carbon,2014.69(0):311-326.
    [69]Shim, J.-W., S.-J. Park, and S.-K. Ryu, Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers [J]. Carbon,2001.39(11):1635-1642.
    [70]Marques, R.R.N., Machado, B.F., Faria, J.L., Silva, A.M.T., Controlled generation of oxygen functionalities on the surface of Single-Walled Carbon Nanotubes by HNO3 hydrothermal oxidation [J]. Carbon,2010.48(5):1515-1523.
    [71]Chand, R., Watari, T., Inoue, K., Luitel, H. N., Torikai, T., and Yada, M., Chemical modification of carbonized wheat and barley straw using HNO3 and the adsorption of Cr(III) [J]. Journal of Hazardous Materials,2009.167(1-3):319-324.
    [72]Liu, X.-j., Liang, X.-y., Liu, C.-j., Zhan, L., Qiao, W.-m., and Ling, L.-c., Pitch spheres stabilized by HNO3 oxidation and their carbonization behavior [J]. New Carbon Materials,2010.25(1): 29-34.
    [73]Liu, L., Deng, Q.-F., Liu, Y.-P., Ren, T.-Z., and Yuan, Z.-Y., HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene [J]. Catalysis Communications,2011. 16(1):81-85.
    [74]Venhryn, B. Y, Stotsko, Z. A., Grygorchak, 1. I., Bakhmatyuk, B. P., and Mudry, S. I., The effect of ultrasonic and HNO3 treatment of activated carbon from fruit stones on capacitive and pseudocapacitive energy storage in electrochemical supercapacitors [J]. Ultrasonics Sonochemistry,2013.20(5):1302-1307.
    [75]刘文宏,袁怀波,吕建平.不同温度下HN03改性对活性炭吸附银的影响[J].中国有色金属学报,2007,17(4):663-667.
    [76]Strelko Jr, V. and D.J. Malik, Characterization and Metal Sorptive Properties of Oxidized Active Carbon [J]. Journal of Colloid and Interface Science,2002.250(1):213-220.
    [77]Chen, J.P., S. Wu, and K.-H. Chong, Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption [J]. Carbon,2003.41(10):1979-1986.
    [78]Jurewicz, K., Babel, K., Ziolkowski, A., and Wachowska, H., Ammoxidation of active carbons for improvement of supercapacitor characteristics [J]. Electrochimica Acta,2003.48(11): 1491-1498.
    [79]Mangun, C. L., Benak, K. R., Economy, J., and Foster, K. L., Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia [J]. Carbon, 2001.39(12):1809-1820.
    [80]Jansen, R.J.J. and H. van Bekkum, XPS of nitrogen-containing functional groups on activated carbon [J]. Carbon,1995.33(8):1021-1027.
    [81]Raymundo-Pinero, E., D. Cazorla-Amoros, and A. Linares-Solano, The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres [J]. Carbon,2003.41(10):1925-1932.
    [82]高尚愚,安部郁夫,棚田成纪,松原义治.表面改性活性炭对苯酚及苯磺酸吸附的研究[J].林产化学与工业,1994,24(3):29-34
    [83]Chen, W., F.S. Cannon, and J.R. Rangel-Mendez, Ammonia-tailoring of GAC to enhance perchlorate removal. Ⅱ:Perchlorate adsorption [J]. Carbon,2005.43(3):581-590.
    [84]Huang, M.-C. and H. Teng, Nitrogen-containing carbons from phenol-formaldehyde resins and their catalytic activity in NO reduction with NH3 [J]. Carbon,2003.41(5):951-957.
    [85]李开喜,凌立成,刘朗,等.氨水活化的活性炭纤维的脱硫作用[J].环境科学学报,2001,21(1):74-78.
    [86]Shaarani, F.W. and B.H. Hameed, Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol [J]. Chemical Engineering Journal,2011.169(1-3):180-185.
    [87]Cui, H. and S.Q. Turn, Adsorption/desorption of dimethylsulfide on activated carbon modified with iron chloride [J]. Applied Catalysis B:Environmental,2009.88(1-2):25-31.
    [88]Alcaniz-Monge, J., Lillo-Rodenas, M. A., Bueno-Lopez, A., and Ⅲan-Gomez, M. J., The influence of iron chloride addition to the precursor pitch on the formation of activated carbon fibers [J]. Microporous and Mesoporous Materials,2007.100(1-3):202-209.
    [89]Yurum, A.,Kocabas-Atakli, Z. O., Sezen, M., Semiat, R., and Yurum, Y., Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water [J]. Chemical Engineering Journal,2014.242(0):321-332.
    [90]朱慧杰,贾永锋,吴星,王赫.负载型纳米铁吸附剂去除饮用水中As(Ⅲ)的研究.环境科学[J],2009,30(6)1644-1648.
    [91]姚淑华,贾永锋,汪国庆,石中亮.活性炭负载Fe(III)吸附剂去除饮用水中的As(V)[J].过程工程学报,2009,9(2):250-256.
    [92]Zhu, H., Jia, Y, Wu, X., and Wang, H., Removal of arsenic from water by supported nano zero-valent iron on activated carbon [J]. Journal of Hazardous Materials,2009.172(2-3): 1591-1596.
    [93]Wang, J., Zhao, F., Hu, Y, Zhao, R., and Liu, R., Modification of Activated Carbon Fiber by Loading Metals and Their Performance on SO2 Removal [J]. Chinese Journal of Chemical Engineering,2006.14(4):478-485.
    [94]Srinivasan, N.R., P.A. Shankar, and R. Bandyopadhyaya, Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection [J]. Carbon,2013.57(0):1-10.
    [95]Wei, F., Zhang, Y, Lv, F., Chu, P. K., and Ye, Z., Extraction of organic materials from red water by metal-impregnated lignite activated carbon [J]. Journal of Hazardous Materials,2011.197(0): 352-360.
    [96]Dobrowolski, R. and M. Otto, Preparation and evaluation of Ni-loaded activated carbon for enrichment of arsenic for analytical and environmental purposes [J]. Microporous and Mesoporous Materials,2013.179(0):1-9.
    [97]Sandoval, R., Cooper, A. M., Aymar, K., Jain, A., and Hristovski, K., Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles [J]. Journal of Hazardous Materials,2011.193(0):296-303.
    [98]Tao, S., Li, C., Fan, X., Zeng, G., Lu, P., Zhang, X., Wen, Q., Zhao, W., Luo, D., and Fan, C., Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas [J]. Chemical Engineering Journal,2012.210(0):547-556.
    [99]Maruyama, J. and Ⅰ. Abe, Enhancement effect of an adsorbed organic acid on oxygen reduction at various types of activated carbon loaded with platinum [J]. Journal of Power Sources,2005. 148(0):1-8.
    [100]Chen, J.P. and S. Wu, Simultaneous adsorption of copper ions and humic acid onto an activated carbon [J]. Journal of Colloid and Interface Science,2004.280(2):334-342.
    [101]解强,李兰亭,李静,等.活性炭低温氧/氮等离子体表面改性的研究[J].中国矿业大学学报,2005,34(6):688-693.
    [102]Wen, H.-C, Yang, K., Ou, K.-L., Wu, W.-F., Chou, C.-P., Luo, R.-C., and Chang, Y.-M., Effects of ammonia plasma treatment on the surface characteristics of carbon fibers [J]. Surface and Coatings Technology,2006.200(10):3166-3169.
    [103]103. Zhang, W., Liu, H., Xia, Q., and Li, Z., Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma [J]. Chemical Engineering Journal,2012.209(0):597-600.
    [104]Wu, L., Sitamraju, S., Xiao, J., Liu, B., Li, Z., Janik, M. J., and Song, C., Effect of liquid-phase O3 oxidation of activated carbon on the adsorption of thiophene [J]. Chemical Engineering Journal,2014.242(0):211-219.
    [105]Valente Nabais, J. M., Carrott, P. J. M., Ribeiro Carrott, M. M. L., and Menendez, J. A., Preparation and modification of activated carbon fibres by microwave heating [J]. Carbon, 2004.42(7):1315-1320.
    [106]何小超,郑经堂,于维钊,王广昌,曲险峰.活性炭臭氧化改性及其对噻吩的吸附热力学和动力学[J].石油学报,2009.24(4):426-432.
    [107]江霞, 蒋文举,朱晓帆,金燕.微波改性活性炭的吸附性能[J].环境污染治理技术与设备.2004,5(1):43-46.
    [108]Choi, H.-D., Jung, W.-S., Cho, J.-M., Ryu, B.-G, Yang, J.-S., and Baek, K., Adsorption of Cr(VI) onto cationic surfactant-modified activated carbon [J]. Journal of Hazardous Materials, 2009.166(2-3):642-646.
    [109]Albishri, H.M. and H.M. Marwani, Chemically modified activated carbon with tris(hydroxymethyl)aminomethane for selective adsorption and determination of gold in water samples [J]. Arabian Journal of Chemistry, In press http://dx.doi.Org/10.1016/j.arabjc.2011.03.017.
    [110]谢龙,汪德爟.花叶芦竹潜流人工湿地处理生活污水的研究[J].中国给水排水,2009.25(5):89-91.
    [111]韩志萍,王趁义.不同生态型芦竹对Cd、Hg、Pb、Cu的富集与分布[J].生态环境.2007,16(4):1092-1097.
    [112]Papazoglou, E.G, Arundo donax L. stress tolerance under irrigation with heavy metal aqueous solutions [J]. Desalination,2007.211(1-3):304-313.
    [113]Mirza, N., Pervez, A., Mahmood, Q., Shah, M. M., and Shafqat, M. N., Ecological restoration of arsenic contaminated soil by Arundo donax L [J]. Ecological Engineering,2011.37(12): 1949-1956.
    [114]吴武汉芦竹—一种种高产优质的造纸原料[J].天津造纸,1993(4):28-29.
    [115]邬义明.植物纤维素化学[M],1991:27.
    [116]张志诚.造纸工业辞典[M],1998,173.
    [117]张自敏,李群,谭国民, 杨振海.芦竹造纸的发展[J].天津造纸,2004,3,14-20.
    [118]洪喻,胡洪营,黄晶晶.芦竹抑藻物质的初步分离及抑制铜绿微囊藻的效果[J].环境化学,2008,27(6):751-755.
    [119]Xu, X., Gao, B., Zhao, Y, Chen, S., Tan, X., Yue, Q., Lin, J., and Wang, Y., Nitrate removal from aqueous solution by Arundo donax L. reed based anion exchange resin. Journal of Hazardous Materials,2012.203-204(0):86-92.
    [120]Vernersson, T., Bonelli, P. R., Cerrella, E. G, and Cukierman, A. L., Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation. Bioresource Technology,2002.83(2):95-104.
    [121]Zhang, J., Li, Y, Zhang, C., and Jing, Y, Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root. Journal of Hazardous Materials, 2008.150(3):774-782.
    [122]Langmuir. I., The Adsorption of Gases on plane surfaces of glass MiCa and platinum [J]. Journal o fthe Ameriean Chemical,1918.40(9):1361-1403
    [123]刘培生,多孔材料孔径及孔径分布的测定方法[J].钛工业进展,2006,23(2)29-34.
    [124]Lowell S., Shields J. E., Powder Surface Area and Porosity 3 rd ed.[M], New York:Chapman and Hall,1991:119.
    [125]严继民,张启元,吸附与凝聚—固体的表面和孔[M],北京:科学出版社,1979,P149.
    [126]Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers [J]. Journal of the American Chemical Society,1938.60(2):309-319.
    [127]Salame, I.I. and T.J. Bandosz, Surface Chemistry of Activated Carbons:Combining the Results of Temperature-Programmed Desorption, Boelum, and Potentiometric Titrations [J]. Journal of Colloid and Interface Science,2001.240(1):252-258.
    [128]Boehm, H.P., Some aspects of the surface chemistry of carbon blacks and other carbons [J]. Carbon,1994.32(5):759-769.
    [129]姚镔,石雷,孙琪.活性炭负载FeC13胶体催化剂催化苯羟基化制苯酚[J].石油化工2012.41(10):1131-1136.
    [130]Franz, M., H.A. Arafat, and N.G. Pinto, Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon [J]. Carbon,2000.38(13): 1807-1819.
    [131]汪树军.x射线衍射法对树脂炭微观结构测试分析[J].炭素技术,2000(6):8-12.
    [132]Babu V.S., seehra M.S., Modeling of disorder and X-ray diffraction in coal-based graphitic carbons [J], Carbon,1996,34(10):1259-1265.
    [133]国家环保总局.水和废水监测分析方法[M],第四版.
    [134]Sen Gupta, S. and K.G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials:A review [J]. Advances in Colloid and Interface Science.162(1-2):39-58.
    [135]Yao, Y., Xu, F., Chen, M., Xu, Z., and Zhu, Z., Adsorption behavior of methylene blue on carbon nanotubes [J]. Bioresource Technology.101(9):3040-3046.
    [136]Jiang, M.-q., Jin, X.-y., Lu, X.-Q., and Chen, Z.-l., Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay [J]. Desalination.252(1-3):33-39.
    [137]Lagergren, S., About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens [M].1898, Handlingar, Band 24, No.4:1-39.
    [138]Kavitha, D. and C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon [J]. Bioresource Technology,2007.98(1):14-21.
    [139]Ho Y. S, McKay G. Psudo-second order model for sorption processes[J]. Trans Chem E,1999.77B:165-173.
    [140]Ho Y S, McKay G, The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J]. Water Research,2000.34:735-742.
    [141]Freundlich, H., Uber die adsorption in lunsungen [J]. Journal of Physical Chemisty,1915.57: 387-470.
    [142]Vijayaraghavan, K., Padmesh, T. V. N., Palanivelu, K, and Velan, M., Biosorption of nickel(II) ions onto Sargassum wightii:Application of two-parameter and three-parameter isotherm models [J]. Journal of Hazardous Materials,2006.133(1-3):304-308.
    [143]Freundlich H.M.F., Over the adsorption in solution [J], J. Chem. Phys.57 (1906) 385-471.
    [144]Tempkin M.I., Pyzhev V., Kinetics of ammonia synthesis on promoted iron catalyst [J], Acta Physico-chimica Sinica (USSR) 1940.12:327-356.
    [145]Hobson J.P., Physical adsorption isotherms extending from ultra high vacuum to vapor pressure [J], Journal of Physical Chemisry,1969.73:2720-2727.
    [146]Foo, K.Y. and Hameed B.H., Insights into the modeling of adsorption isotherm systems [J]. Chemical Engineering Journal.156(1):2-10.
    [147]Ozcan, A., Ozcan, A. S., Tunali, S., Akar, T., and Kiran, I., Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum [J]. Journal of Hazardous Materials,2005.124(1-3):200-208.
    [148]Gunay, A., E. Arslankaya, and I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite:Adsorption equilibrium and kinetics [J]. Journal of Hazardous Materials,2007.146(1-2):362-371.
    [149]Dabrowski, A., Adsorption-from theory to practice [J]. Advances in Colloid and Interface Science,2001.93(1-3):135-224.
    [150]Castro-Muniz, A., Suarez-Garcia, F., Martinez-Alonso, A., and Tascon, J. M. D., Activated carbon fibers with a high content of surface functional groups by phosphoric acid activation of PPTA [J]. Journal of Colloid and Interface Science,2011.361(1):307-315.
    [151]Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS.Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process [J]. Environ Sci Technol.2005.39(15):5816-23.
    [152]Mompelat, S., B. Le Bot, and O. Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water [J]. Environment International,2009.35(5): 803-814.
    [153]Sturini, M., Speltini, A., Maraschi, F., Profumo, A., Pretali, L., Fasani, E., and Albini, A., Photochemical Degradation of Marbofloxacin and Enrofloxacin in Natural Waters [J]. Environmental Science & Technology.44(12):4564-4569.
    [154]李魁晓,曹楠,张昱,杨敏,易其臻Fenton法氧化处理水中土霉素的研究[J].环境工程学报,2008.2(7):865-868.
    [155]Wen, X., Y. Jia, and J. Li, Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium [J]. Journal of Hazardous Materials.177(1-3):924-928.
    [156]Rodriguez-Reinoso, F. and M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation:an overview [J]. Carbon,1992.30(7): 1111-1118.
    [157]唐志红,朱文魁,张双全.磷酸法木质素活性炭的研究现状[J].炭素技术,2004.23(1):45-48.
    [158]Solum, M. S., Pugmire R.J., Jagtoyen M., Derbyshire, F. Evolution of carbon structure in chemcally activated wood [J]. carbon,1995,33(9):1247-1254.
    [159]王玉新,苏伟,周亚平,不同磷酸活化工艺过程及活性炭孔结构的影响[J].炭素材料,2009.28(1):17-21.
    [160]Guo, Y. and D.A. Rockstraw, Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation [J]. Bioresource Technology,2007.98(8):1513-1521.
    [161]K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systalkss:with Special Reference to the Determination of Surface Area and Porosity [J]. Pure and Applied Chemistry,1985.57: 603-619.
    [162]Ozcan, A. and A.S. Ozcan, Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite [J]. Journal of Hazardous Materials,2005.125(1-3):252-259.
    [163]Onyango, M. S., Kojima, Y., Aoyi, O., Bernardo, E. C., and Matsuda, H., Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9 [J]. Journal of Colloid and Interface Science,2004. 279(2):341-350.
    [164]Milmile, S. N., Pande, J. V., Kannakar, S., Bansiwal, A., Chakrabarti, T., and Biniwale, R. B., Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin [J]. Desalination,2011.276(1-3):38-44.
    [165]McKay, G, M.J. Bino, and A.R. Altamemi, The adsorption of various pollutants from aqueous solutions on to activated carbon [J].. Water Research,1985.19(4):491-495.
    [166]Mohan, D. and J.C.U. Pittman, Arsenic removal from water/wastewater using adsorbents--A critical review [J]. Journal of Hazardous Materials,2007.142(1-2):1-53.
    [167]Song, X., Liu, D., Zhang, G., Frigon, M., Meng, X., and Li, K., Adsorption mechanisms and the effect of oxytetracycline on activated sludge [J]. Bioresource Technology,2014.151(0): 428-431.
    [168]齐瑞环,李兆君,龙健,范菲菲,梁永超.土壤粉碎粒径对土霉素在土壤中吸附的影响[J].环境工程,2011,32(2):589-595.
    [169]刘江国,李杰霞,陈玉成,刘波,蒋小丽,杨健.改性玉米秸秆对土霉素的吸附研究[J].三峡环境与生态,2009.2(6):28-34.
    [170]邹星,吴小莲,莫测辉,李彦文,高鹏,黄显东,刘利伟.蒙脱石对四环素类抗生素的吸附平衡及动力学[J].高校化学工程学报,2011.25(3):524-528.
    [171]汪晶,薛祯祯,陈飞,赵玉明.树脂吸附法回收母液中土霉素的实验研究[J].环境科学与技术,2008.31(10):26-28.
    [172]崔振水.膨润土/活性炭复合吸附剂对土霉素的吸附性能研究[J].河北化工,2006.29(3):17-35.
    [173]杨煜东,陈东辉,陈亮,黄满红.厌氧、缺氧与好氧污泥对土霉素的吸附研究[J].水处理技术,2010.36(5):66-69.
    [174]钱天才,周烈兴,王绍华.微波活化处理活性炭对空气中TVOC吸附性能的研究[J].现代化工,2007,27(S2):234-236.
    [175]蒙冕武,蒋治良.微波法制备甘蔗渣活性炭及表征[J].林产化学与工业,20(3):22-26.
    [176]陈金根,余养伦,赵丽华,倪涌舟.微波辐照制备竹类活性炭及表征[J].林产化学与工业,2003,23(2):47-50.
    [177]Liu, Q.-S., Zheng, T., Wang, P., and Guo, L., Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation [J]. Industrial Crops and Products.31(2):233-238.
    [178]Hartmann, A., Alder, A. C., Koller, T., and Widmer, R. M., Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater [J]. Environmental Toxicology and Chemistry,1998.17(3):377-382.
    [179]陈昦,张劲强,钟明,李胜生,董元华.磺胺类药物在太湖地区典型水稻土上的吸附特征[J].中国环境科学,2008.28(4):309-312.
    [180]Switzerland Eva M. Golet,Alfredo C. Alder, and, and Walter Giger. Environmental Exposure and Risk Assessment of Fluoroquinolone Antibacterial Agents in Wastewater and River Water of the Glatt Valley Watershed [J], Environmental Science & Technology 2002.36 (17):3645-3651.
    [181]Miao, X.-S., Bishay, F., Chen, M., and Metcalfe, C. D., Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada [J]. Environmental Science & Technology,2004.38(13):3533-3541.
    [182]Xiao, Y., Chang, H., Jia, A., and Hu, J., Trace analysis of quinolone and fluoroquinolone antibiotics from wastewaters by liquid chromatography-electrospray tandem mass spectrometry [J]. Journal of Chromatography A,2008.1214(1-2):100-108.
    [183]Sahu, J.N., J. Acharya, and B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology [J]. Bioresource Technology,2010.101(6):1974-1982.
    [184]A. Reffasa,b, V. Bernardeta, B. Davida, L. Reinerta, M. Bencheikh Lehocineb, M. Duboisc, N. Batissec, L. Duclauxa, Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL [J].. Journal of Hazardous Materials 175 (2010) 779-788.
    [185]Chen, B. L.; Johnson, E. J.; Chefetz,B.; Zhu, L. Z.; Xing, B. S. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials:Role of polarity and accessibility [J].. Environmental Science & Technology 2005,39(16),6138-6146.
    [186]Koch, A.; Krzton, A.; Finqueneisel, G.; Heintz,O.; Weber, J. V.; Zimny, T. A study of carbonaceous char oxidation in air by semi-quantitative FTIR spectroscopy [J].. Fuel 1998, 77(6),563-569.
    [187]Haberhauer, G; RafFerty, B.; Strebl,E; Gerzabek, M. H. Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy [J].. Geoderma 1998,55(3-4),331-342.
    [188]Chen'B. L.; Zhou, D. D?; Zhu,L. Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J].. Environmental Science & Technology 2008,2(14),5137-5143.
    [189]Pasquali, C. E. L; Herrera, H. Pyrolysis of lignin and IR analysis of residues [J].. Thermochimica Acta 1997,293(1-2),39-46.
    [190]Labbe, N.; Harper, D.; Rials, T. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis [J].. Journal of Agricultural and Food Chemistry 2006,54(10),3492-3497.
    [191]Pastorova, I.; Botto, R. E.; Arisz,P. W.; Boon, J. J. Cellulose char structure-a combined analytical PY-GC-MS, FTIR,and NMR-study [J]. Carbohydrate Research 1994,262(1), 27-47.
    [192]Liu, Q.; Wang, S. R.; Zheng,Y.; Luo, Z. Y.; Cen, K. F. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis [J].. Journal of Analytical and Applied Pyrolysis 2008,52(1),170-177.
    [193]Bustin, R. M.; Guo, Y. Abrupt changes (jumps) in reflectance values and chemical compositionsof artificial charcoals and inertinite in coals [J].. International Journal of Coal Geology 1999,38(3-4),237-260.
    [194]Puziy, A. M., Poddubnaya, O. I., Martinez-Alonso, A., Suarez-Garcia, F., and Tascon, J. M. D., Surface chemistry of phosphorus-containing carbons of lignocellulosic origin [J]. Carbon, 2005.43(14):2857-2868.
    [195]Luis Vazquez, J., Berlanga, M., Merino, S., Domenech, O., Vinas, M., Teresa Montero, M., and Hern a ndez-Borrell, J., Determination by Fluorimetric Titration of the Ionization Constants of Ciprofloxacin in Solution and in the Presence of Liposomes [J]. Photochemistry and Photobiology,2001.73(1):14-19.
    [196]Montero, M.T., J. Freixas, and J. Hernandez-Borrell, Expression of the partition coefficients of a homologous series of 6-fluoroquinolones [J]. International Journal of Pharmaceutics, 1997.149(2):161-170.
    [197]Zupancic, M., Arcon, Ⅰ., Bukovec, P., Kodre, A., A physicochemical study of the interaction of cobalt (II) ion with ciprofloxacin [J]. Croatica chemica acta,2002.75:1-12.
    [198]Gu, C. and K.G. Karthikeyan, Sorption of the Antimicrobial Ciprofloxacin To Aluminum and Iron Hydrous Oxides [J]. Environmental Science & Technology,2005.39(23):9166-9173.
    [199]Wu, Q., Li, Z., Hong, H., Yin, K., and Tie, L., Adsorption and intercalation of ciprofloxacin on montmorillonite [J]. Applied Clay Science,2010.50(2):204-211.
    [200]Li, Z., Hong, H., Liao, L., Ackley, C. J., Schulz, L. A., MacDonald, R. A., Mihelich, A. L., and Emard, S. M., A mechanistic study of ciprofloxacin removal by kaolinite [J]. Colloids and Surfaces B:Biointerfaces,2011.88(1):339-344.
    [201]Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N., and Ismadji, S., Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent:A summary of recent studies [J]. Journal of Hazardous Materials,2009.162(2-3):616-645.
    [202]Chang, E, Qu, J., Liu, R., Zhao, X., and Lei, P., Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide [J]. Journal of Environmental Sciences.22(1):1-6.
    [203]钟成伟,乔显亮,陈景文等.Znz+络六促进土霉素在粘土矿物农面的吸附[J].环境科学,2009,30(8):2408-2413.
    [204]卢继新,赵鹏,张贵珠.四环素类药物在体内存在状态的研究[J].分析科学学报,1998.14(1):19-22.
    [205]Aaseth, J., Norseth, T., Handbook on the Toxicity of Metals [M]. Elsevier 1986:233-257.
    [206]Namasivayam, C. and M.V. Sureshkumar, Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent [J]. Bioresource Technology,2008.99(7):2218-2225.
    [207]Daulton, T. L., Little, B. J., Jones-Meehan, J., Blom, D. A., and Allard, L. F., Microbial reduction of chromium from the hexavalent to divalent state [J]. Geochimica et Cosmochimica Acta,2007.71(3):-556-565.
    [208]Thomson, R. C. and Miller, M. K., Carbide precipitation in martensite during the early stages of tempering Cr-and Mo-containing low alloy steels [J]. Acta materialia.1998.46 (6) 2203-2213.
    [209]Edebali, S. and E. Pehlivan, Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr(VI) from aqueous solution [J]. Chemical Engineering Journal, 2010.161(1-2):161-166.
    [210]Melita, L. and M. Popescu, Removal of Cr (VI) from industrial water effluents and surface waters using activated composite membranes [J]. Journal of Membrane Science,2008. 312(1-2):157-162.
    [211]Das, S., Mishra, J., Das, S. K., Pandey, S., Rao, D. S., Chakraborty, A., Sudarshan, M., Das, N., and Thatoi, H., Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil [J]. Chemosphere,2014.96(0):112-121.
    [212]Huang, L., Zhou, S., Jin, F., Huang, J., and Bao, N., Characterization and mechanism analysis of activated carbon fiber felt-stabilized nanoscale zero-valent iron for the removal of Cr(VI) from aqueous solution [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014.447(0):59-66.
    [213]Wang, X.-H., Liu, F.-F., Lu, L., Yang, S., and Wang, S.-G., Individual and competitive adsorption of Cr(VI) and phosphate onto synthetic Fe-Al hydroxides [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013.423(0):42-49.
    [214]Al-Othman, Z.A., R. Ali, and M. Naushad, Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell:Adsorption kinetics, equilibrium and thermodynamic studies [J]. Chemical Engineering Journal,2012.184(0):238-247.
    [215]Karthikeyan, T., S. Rajgopal, and L. Miranda, Chromium(VI) adsorption from aqueous solution by sawdust activated carbon [J]. Journal of Hazardous Materials,2005.124(1-3): 192-199.
    [216]Choi, H.-D., Cho, J.-M., Baek, K., Yang, J.-S., and Lee, J.-Y., Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon [J]. Journal of Hazardous Materials,2009. 161(2-3):1565-1568.
    [217]Babel, S. and T.A. Kurniawan, Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan [J]. Chemosphere,2004.54(7):951-967.
    [218]Xu, C., Tsubouchi, N., Hashimoto, H., and Ohtsuka, Y., Catalytic decomposition of ammonia gas with metal cations present naturally in low rank coals [J]. Fuel,2005.84(14-15): 1957-1967.
    [219]Kobya, M., Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon:kinetic and equilibrium studies [J]. Bioresource Technology,2004.91(3): 317-321.
    [220]Tang, P. L., Lee, C. K., Low, K.S., Zainal Z., Sorption of Cr(VI) and Cu(II) in aqueous solution by ethylenediamine modified rice hull [J]. Environmental Technology,2003.24 (10):1243-1251.
    [221]Babel, S., Kurniawan,T. A., Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan [J], Chemosphere,2000.54 (7):951-967.
    [222]Pehlivan, E. and T. Altun, Biosorption of chromium(Ⅵ) ion from aqueous solutions using walnut, hazelnut and almond shell [J]. Journal of Hazardous Materials,2008.155(1-2): 378-384.
    [223]Gundogan, R., B. Acemioglu, and M.H. Alma, Copper (II) adsorption from aqueous solution by herbaceous peat [J]. Journal of Colloid and Interface Science,2004.269(2):303-309.
    [224]Chiron, N., R. Guilet, and E. Deydier, Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models [J]. Water Research,2003.37(13):3079-3086.
    [225]Bassi, R., Prasher, S.O., Simpson, B.K., Removal of selected metal ions from aqueous solutions using chitosan flakes [J]. Separation Science and Technology,2000.35(4): 547-560.
    [226]Aoyama, M., Tsuda, M., Removal of Cr (VI) from aqueous solutions by larch bark [J], Wood Science and Technology,2001.35 (5):425-434.
    [227]Zeng, Y., Woo, H., Lee, G, and Park, J., Adsorption of Cr(Ⅵ) on hexadecylpyridinium bromide (HDPB) modified natural zeolites [J]. Microporous and Mesoporous Materials,2010. 130(1-3):83-91.
    [228]Mak, M.S.H., P. Rao, and I.M.C. Lo, Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron [J]. Water Research,2009.43(17):4296-4304.
    [229]Lv, X., Hu, Y, Tang, J., Sheng, T., Jiang, G., and Xu, X., Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites [J]. Chemical Engineering Journal,2013. 218(0):55-64.
    [230]Xiao, S., Ma, H., Shen, M., Wang, S., Huang, Q., and Shi, X., Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011.381(1-3): 48-54.
    [231]Liu, W., Zhang, J., Zhang, C., and Ren, L., Preparation and evaluation of activated carbon-based iron-containing adsorbents for enhanced Cr(VI) removal:Mechanism study [J]. Chemical Engineering Journal,2012.189-190(0):295-302.
    [232]Lakatos, J., Brown, S.D., Snape, C.E., Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous wastestreams [J], Fuel,2002.81 (5):691-698.
    [233]Ewecharoen, A., Thiravetyan, P., Wendel, E., and Bertagnolli, H., Nickel adsorption by sodium polyacrylate-grafted activated carbon [J]. Journal of Hazardous Materials,2009. 171(1-3):335-339.
    [234]Pefias-Sanjuan, A., Lopez-Garzon, R., Lopez-Garzon, J., Perez-Mendoza, M., and Melguizo, M., Preparation of a poly-alkylamine surface-functionalized carbon with excellent performance as a Pd(II) scavenger [J]. Carbon,2012.50(6):2350-2352.
    [235]Cho, D.-W., Chon, C.-M., Kim, Y, Jeon, B.-H., Schwartz, F. W., Lee, E.-S., and Song, H., Adsorption of nitrate and Cr(VI) by cationic polymer-modified granular activated carbon [J]. Chemical Engineering Journal,2011.175(0):298-305.
    [236]Xu, X., Gao, Y., Gao, B., Tan, X., Zhao, Y.-Q., Yue, Q., and Wang, Y, Characteristics of diethylenetriamine-crosslinked cotton stalk/wheat stalk and their biosorption capacities for phosphate [J]. Journal of Hazardous Materials,2011.192(3):1690-1696.
    [237]Kowalski, Z., Treatment of chromic tannery wastes [J]. Journal of Hazardous Materials,1994. 37(1):137-141.
    [238]Garg, U. K., Kaur, M. P., Garg, V. K., and Sud, D., Removal of hexavalent chromium from aqueous solution by agricultural waste biomass [J]. Journal of Hazardous Materials,2007. 140(1-2):60-68.
    [239]Tang, P. L., Lee, C. K., Low, K. S., and Zainal, Z., Sorption of Cr(VI) and Cu(II) in aqueous solution by ethylenediamine modified rice hull [J]. Environmental Technology,2003.24(10): 1243-1251.
    [240]Lakatos, J., Brown,S.D., Snape, C.E., Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams [J]. Fuel,2002.81(5):691-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700