替莫唑胺缓释微球治疗大鼠C6胶质瘤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:评价替莫唑胺缓释微球(TM-MS)治疗C6脑胶质瘤大鼠的有效性及安全性,研究该药有效成分治疗作用的机制,进一步研究该药与抗肿瘤血管生成药物Vatalanib联合化疗的疗效和安全性。
     方法:
     一、SD大鼠C6脑胶质瘤模型的建立:细胞培养传代C6胶质瘤细胞,取其对数期细胞,在立体定向指引下,将2×10~6个C6细胞悬液注入大鼠左侧尾状核区,观察动物接种后表现,接种后第6天行头颅MRI检查,并随机抽样处死行HE染色、免疫组化GFAP和PCNA检查,并行透射电镜检查,根据MRI、HE染色、免疫组化和透射电镜结果判定大鼠C6脑胶质瘤模型制作成功。
     二、TM-MS治疗C6恶性胶质瘤:1、不同剂量替莫唑胺缓释微球治疗C6胶质瘤:将荷瘤大鼠分为5组:对照组、替莫唑胺原药(TM)组、TM-MSⅠ组、TM-MSⅡ组、TM-MSⅢ组。各组化疗均在模型植入C6细胞后第6天进行,对照组切除脑肿瘤表面脑组织;TM组予以口服替莫唑胺50mg/kg/day,连服5天,并切除脑肿瘤表面脑组织;TM-MSⅠ组切除脑肿瘤表面脑组织后植入TM-MS12mg;TM-MSⅡ组切除脑肿瘤表面脑组织后植入TM-MS 16mg;TM-MSⅢ组切除脑肿瘤表面脑组织后植入TM-MS 20mg。治疗14天后分别处死各组动物(各组大鼠中一半用以观察生存期,不予处死),统计平均生存期,计算肿瘤体积和抑瘤率,行PCNA免疫组化检查,评价TM-MS疗效,并寻找合适的TM-MS用药剂量。2、根据上部分获得的TM-MS合适剂量,将TM-MS分别与植入用5-FU和替尼泊甙(VM-26)作疗效对比:将荷瘤大鼠分为4组:对照组、TM-MS组、氟尿嘧啶(FU)组和VM-26组。TM-MS组予以切除脑肿瘤表面脑组织后植入TM-MS16mg,FU组切除脑肿瘤表面脑组织后植入FU 9mg,VM-26组予以VM-26静脉微泵(替尼泊甙3.6mg微泵每日1次,连用3天)。治疗后处死(各组大鼠中一半用以观察生存期,不予以处死),统计平均生存期,计算肿瘤体积和抑瘤率,行PCNA免疫组化检查,评价化疗疗效。3、评价TM-MS间质化疗的安全性:检查间质化疗后血常规、肝肾功能的改变,通过对TM-MS周围脑组织病理学检查评价TM-MS的体内生物相容性。
     三、TM-MS治疗C6脑胶质瘤大鼠的作用机制:将荷瘤大鼠分为对照组和TM-MS组。治疗方式同前,治疗14天后处死,行透射电镜检查和TUNEL法检测C6细胞凋亡情况,用Western Blot法检测P53蛋白和活化caspase-3蛋白在C6细胞凋亡信号转导途径中的表达水平。
     四、TM-MS与Vatalanib联合化疗治疗大鼠C6脑胶质瘤:将荷瘤大鼠分为4组:对照组、TM-MS组、Vatalanib组、联合化疗组。TM-MS组治疗方式同前;Vatalanib组从植入C6细胞后行Vatalanib治疗(Vatalanib 5mg口服1/日),治疗20天后处死;联合化疗组从植入C6细胞后开始行口服Vatalanib 5mg治疗,连续治疗20天,并在第6天时加用TM-MS行间质化疗,间质化疗14天后处死(各组大鼠中一半用以观察生存期,不予以处死)。处死大鼠前抽血查血常规、肝功、生化,评价联合化疗的安全性。统计平均生存期,计算测量肿瘤体积变化,行PCNA免疫组化检测,评价化疗对肿瘤细胞增殖能力的影响;检测VEGF和C31评价化疗对肿瘤血管生成的影响;检测ICAM-1和MMP-9的水平,评价化疗对肿瘤间质的影响。
     结果:
     一、SD大鼠C6脑胶质瘤模型的建立:本组实验10只SD大鼠有9只在肿瘤细胞种植后一周左右开始出现食欲减退,精神差、活动明显减少,皮毛粗糙,体重减轻。头颅MRI平扫和增强提示:左基底节占位,T1低信号,T2高信号,强化均匀明显,大鼠脑内占位形成。处死后标本GFAP和PCNA检查提示:GFAP在肿瘤细胞胞浆高表达提示肿瘤为神经胶质源性,PCNA在肿瘤细胞胞核高表达表示肿瘤细胞有较高的增殖能力。透射电镜检查显示:肿瘤细胞突触和微绒毛较多,是神经胶质源性肿瘤的特征之一,核内异染色质较多,表明细胞有较高的增殖能力。根据大鼠头颅MRI、免疫组化和电镜结果,说明大鼠C6脑胶质瘤模型成功建立,肿瘤种植成功率较高,达90%。
     二、替莫唑胺缓释微球治疗C6恶性脑胶质瘤大鼠:1、不同剂量替莫唑胺缓释微球治疗C6胶质瘤:不同对照组、TM组、TM-MSⅠ组、TM-MSⅡ组、TM-MSⅢ组的平均生存期依次为:22.2天、26.0天、26.4天、29.8天和32.4天。抑瘤率依次分别为:17.20%、35.28%、46.99%和48.94%。TM-MSⅡ、Ⅲ组与对照组相比均有明显差异(P<0.01)。TM-MSⅡmg组与TM-MSⅢ组比较无明显差异提示:中浓度TM-MS和高浓度TM-MS相比疗效无明显差异。各组PCNA阳性率依次为63.2±5.9%、41.7±6.7%、37.5±5.8%、20.2±4.3%、18.8±3.4%。TM-MSⅠ、Ⅱ和Ⅲ组与对照组相比均有明显差异(P=0.0000),TM-MS间质化疗大鼠脑胶质瘤效果明显。TM-MSⅡ组与TM-MSⅢ组比较无明显差异(P>0.05)提示:中浓度TM-MS和高浓度TM-MS相比疗效无明显差异,考虑高浓度TM-MS可能会对脑组织有更强的刺激,因此TM-MS间质化疗时采用16mg是较合适剂量。2、TM-MS分别与植入用5-FU和替尼泊甙(VM-26)作疗效对比结果:TM-MSⅡ组间质化疗较FU组和VM-26组疗效好,有明显差异(P<0.01)。3、TM-MS间质化疗的安全性评价结果:TM-MSⅠ组、TM-MSⅡ组、TM-MSⅢ组的血常规、生化、肝功指标均正常,肝、肾病理切片显示未见明显坏死,炎症、水肿等病理改变。TM-MS的病理学结果提示TM-MS的生物相容性较好。
     三、TM-MS治疗C6脑胶质瘤大鼠的作用机制研究结果:透射电镜显示:C6细胞体积缩小,异染色质浓缩趋边提示该肿瘤细胞发生凋亡。TUNEL法对C6细胞染色显示:对照组肿瘤凋亡细胞阳性率为8.63±1.52%,TM-MS组肿瘤凋亡细胞阳性率为26.24±2.33%,两组间有明显差异(P=0.0000)。Western Blot方法测P53和活化caspase-3结果显示:TM-MS组P53蛋白表达上调,其表达量为对照组的2倍,两组间有明显差异(P=0.0000);TM-MS组活化caspase-3蛋白表达量较对照组高,两组间有明显差异(P=0.0000);
     四、TM-MS与Vatalanib联合化疗治疗C6胶质瘤:对照组、TM-MS组、Vatalanib组和联合化疗组的平均生存期依次为:21.7天、28.9天、26.4天、22.3天和31.6天。抑瘤率依次分别为:53.15%、16.39%和64.40%。PCNA细胞阳性率依次为:65.2±4.5%、30.1±6.2%、42.3±5.7%、和22.1±4.6%,四组之间存在差异(P=0.0000),TM-MS组与对照组之间有显著差异(P<0.01),Vatalanib组与对照组之间有明显差异(P<0.05),联合化疗组与对照组之间有显著差异(P<0.01),联合化疗组与TM-MS组之间有明显差异(P<0.05)。四个实验组的VEGF细胞阳性率依次为:70%、60%、50%、和40%,四组之间无明显差异(P=0.5682)。各组的微血管密度依次为:23.24±2.45、18.53±1.53、12.43±0.63、和5.48±0.87个/视野,四组之间存在差异(P=0.0000),TM-MS组与对照组相比有明显差异(P<0.05),Vatalanib组与对照组之间有明显差异(P<0.01),联合化疗组与对照组之间有明显差异(P<0.01)。四个实验组的肿瘤细胞ICAM-1表达存在差异(P=0.0000),Vatalanib组与对照组相比有明显差异(P<0.01),联合化疗组与对照组之间有明显差异(P<0.01)。各组MMP-9表达程度存在差异(P=0.0000),TM-MS组与对照组相比有明显差异(P<0.05),Vatalanib组与对照组之间有明显差异(P<0.05),联合化疗组与对照组之间有明显差异(P<0.05)。联合化疗中荷瘤鼠血常规、生化、肝功指标均正常。
     结论:
     1、采用立体定向法建立SD大鼠C6脑胶质瘤模型确实可靠,该模型能较好地模拟胶质瘤颅内生长情况,适于胶质瘤间质化疗和全身化疗的实验性研究。
     2、替莫唑胺缓释微球间质化疗能安全有效地治疗C6脑胶质瘤大鼠。
     3、替莫唑胺缓释微球通过诱导肿瘤细胞发生凋亡来抑制肿瘤生长。在促进肿瘤细胞凋亡的信号转导中,P53和caspase-3是参与其发生凋亡的重要蛋白质。
     4、替莫唑胺缓释微球间质化疗联合Vatalanib抗肿瘤血管治疗能安全、更有效地治疗大鼠C6胶质瘤。
Objective To evaluate the effectivity and safety of Temozolomide/PLGA microspheres in interstitutial chemotherapy. Furthermore, to explore the mechanism of Temozolomide/PLGA microspheres in C6 rat glioma. Additionally, to investigate the changes in C6 rat glioma after the combined chemotherapy with temozolomide/PLGA microspheres and Vatalanib.
     Methods Fifty SD male rats were injected with 2×10~6 C6 cells into the left caudate nucleus area using steoreotaxis techniques. The animals were scanned with MRI at the 4th day after implantation to monitor tumor growth. The rats were divided into five groups. The control group (n=10) received sham operation. The temozolomide group were treated with temozolomide 50mg/kg/day p.o.for 5 days from the 6th postoperation day. The Temozolomide/PLGA microspheres (TM-MS) 12mg group (n=10), TM-MS 16mg group (n=10) and TM-MS 20mg group (n=10) were treated with interstitial TM-MS chemotherapy. The biocompatibility of TM-MS was investigated through histology on different days after the operation. Then, forty SD rats were divided into 4 groups . The control group (n=10) received sham operation. The TM-MS 16mg group (n=10) were treated with interstitial TM-MS chemotherypy. The 5-FU group were treated with interstitial 5-FU chemotherapy, and the VM group were treated with VM-26 via intraveins approach. The technical aspects, therapeutic effectivity, and complications of chemotherapy were analyzed. The therapeutic efficacy was evaluated by histology and transmission electron microscopy investigation. In order to investigate the antitumor mechanism of the Temozolomide/PLGA microspheres, C6 cells apoptosis were measured by transmission electron microscopy investigation and TUNEL method. P53 and caspase-3 were measured by Western Blot method. Forty rats were divided into the four groups. The control group (n=10) received sham operation. The TM-MS 16mg group (n=10) were treated with interstitial TM-MS chemotherapy. The Vatalanib group were treated with Vatalanib with 5ml/kg p.o. for 20 days and the combined chemotherapy group were treated with both TM-MS and Vatalanib. All the animals were undertaken autopsy and pathology examinations. All statistical analyses were performed with computer software SPSS 11.0. For all statistical analyses, P <0.05 was considered statistically significant.
     Results The tumorigenic rate was 90%. Rat's head enhanced MRI shows the glioma in the left caudate putamen area. Pathology shows the GFAP and PCNA were positive in tumor cells. Transmission electron microscopy investigation discovered the C6 tumor cells. All rats tolerated the chemotherapy well. TM-MS group acquired effective outcome (P=0.0000), the TM-MS 16mg group didn't show any statistic difference with TM-MS 20mg group (P>0.05) ,and 16mg is the appropriate dose. TM-MS showed good biocompatitility. The TM-MS 16mg group got better outcome than FU group and VM-26 group. The TUNEL data discovered the apoptosis cells in TM-MS group were more than those in sham operation group (P=0.0000). P53 was up-regulated in the TM-MS group (P=0.0000).Caspase-3 show obvious difference between the TM-MS group and the sham operation group (P=0.0000). All rats well tolerated with the combined chemotherapy. Pathology showed PCNA in combined chemotherapy group was down-regulated (P<0.01), microvessel density (MVD) was reduced in combined chemotherapy group, VEGF was also decreased in combined chemotherapy group(P<0.01). ICAM-1 and MMP-9 were reduced in combined chemotherapy group (P<0.01).
     Conclusions (1) the models of C6 glioma rat were suitable for the study of interstitial chemotherapy and combined chemotherrpy. (2) Temozolomide/PLGA interstitial chemotherapy was a safe and effective therapeutic option for C6 glioma. (3) Temozolomide/PLGA induced tumor cells apoptosis. P53 and caspase-3 were associated with tumor cell apoptosis. (4) Combined chemotherapy with Temozolomide/PLGA and Vatalanib was safe, and more effective than single drug chemotherapy.
引文
[1].P.L.Komblith,M.Walker.Chemotherapy for maglinant gliomas.J Neurosurg,1998,68:1-17
    [2].Hasoo Seong,et al.BCNU-loaded poly(D,L-lactide-co-glycolide) wafer and antitumor activity against XF-498 human CNS tumor cells in vitro.Intemational Journal of Pharrnaceuties,2003,251:1-12
    [3].T.Painbeni,M.C.Venier-Julienne,J.P.Benoit.Internal morphology of poly (D,L-lactide-co-glycolide) BCNU-loaded microspheres.Influence on drug stability.Eur J Pharm&Biopharm,1998,45(1):31-39
    [4].杜小莉.治疗顽固性多形性成胶质细胞瘤的新药-替莫唑胺.中国药学杂志,2000,35(2):135-136
    [5].Inia JaiueA,KatzAE,Ba UE,et al.Microvessel densety as a predicator of PsA recurrence after radical prostatectomy.A comparison of CD34 and CD31[J].Am J Clin Pathol,2000(4):113
    [6].Goldbrunner RH,Bendszus M,Wood J,et al.PTK787/ZK222584,an inhibitor of vascular endothelial growth factor receptor tyrosine kinases,decreases glioma growth and vascularization[J].Neumsurgery,2004,55:426.
    [1]. Bower M, Newlands E.S, Bleehen N.M, et al. Multicentre CRC Phase II trial of temozolomide in recurrent or progressive high-grade glioma. Cancer Chemother Pharmacol, 1997,40:484-488.
    [2]. Friedman H.S, Dolan M.E, et al. Activity of temozolomide in the treatment of central nervous system tumor xenografts. Cancer Res, 1995, 55: 2853-2857
    [3]. Schering Corporation. Package Insert of Temodar Capsules. 1999.
    [4]. Dhodapkar M, Rubin J, Reid JM, et al. Phase I trial of temozolomide (NSC 362856) in patients with advanced cancer. Clin Cancer Res. 1997,3(7):1093.
    [5]. Hatch EE, Linet M S, Zhang J Y, et al. Reproductive and Hormonal Factors and Risk of Brain Tumor in Adult Females [J]. IntJCancer, 2005, 114: 797-805.
    [6]. Li Y, Owusu A, Lehnert S. Treatment of Intracranial Rat Glioma Model with Implant of Radiosensitizer and Biomodulator Drug Combined with Extenal Beam RadiOtheyapy[J]. Int J Radiat Oncol Biol Phvs, 2004, 58(2): 519-527.
    [7]. Andreas S, EwaldM, Stephan G, etal. Integration of Biochem-ical Images of A Tumor Into Frameless Stereotaxy Achieved Using A Magnetic Resonance Imaging / Magnetic Resonance Spectroscopy Hybrid Data Set[J]. Neurosury, 2004, 101: 287-294.
    [8]. Vottorio M, Morreale V M, Herman B H, et al. A Brain Tumor Model Utilizing Stereotact Implantation of A Perm anent Cannula[J]. Neurosurg, 1993, 78: 959-965.
    [9].Schering Corporation.Package Insert of Temodar Capsules.1999.
    [10].Dhodapkar M,Rubin J,Reid JM,et al.Phase Ⅰ trial of temozolomide(NSC 362856) in patients with advanced cancer.Clin Cancer Res.1997,3(7):1093.
    [11].Bower M,Newlands E.S,Bleehen N.M,et al.Multicentre CRC Phase Ⅱtrial of temozolomide in recurrent or progressive high-grade glioma.Cancer Chemother Pharmacol,1997,40:484-488.
    [12].Friedman H.S,Dolan M.E,et al.Activity of temozolomide in the treatment of central nervous system tumor xenografts.Cancer Res,1995,55:2853-2857.
    [13].Hochberg FH,Pruitt A.Assumptions in the radiotherapy of glioblastoma.Neurology,1980,30:907-911.
    [14].Zhang H,Gao S.Temozolomide/PLGA microparticles and antitumor activity against glioma C6 cancer cells in vitro.Int J Pharm,2007,329:122-8.
    [15].13.Sipos EP,Tyler B,Piantadosi S,Burger PC,Brem H.Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors.Cancer Chemother Pharmacol 1997;39(5):383-9.
    [16].Abril,N.,Margison,G.P.,.Mammalian cells expressing Eschedchia coli O6-alkylguanine-DNA alkyltransferases are hypersensitive to dibromoalkanes.Chem.Res.Toxicol.1999,12,544-551.
    [17].沈剑峰,周永庆.脑胶质瘤同步内放疗和内化疗的临床研究.中华神经外科杂志,2002,18(1):44-46.
    [18].曾宪起,申长虹,浦佩玉,等.应用替莫唑胺对照司莫司汀治疗恶性脑胶质瘤的疗效观察[J].中华神经外科杂志,2006,22(4):204-207.
    [19].Brade M,Hoang Auan K,Rampling A.Multicenter phase Ⅱ trail of temozolomide in patients with glioblastoma multiform at first replase[J].Ann Onclo,2003,12(3):159-166.
    [20].Middleton MR,Grob JJ,Aaronson N,et al.Randomized phase Ⅲ study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma.J Clin Oncol 2000;18(1):158-66.
    [21].E.Foumier,C.Passirani,C.N.Montero-Menei,et al.Biocompatibility of implantable synthetic polymeric drug carriers:focus on brain biocompatibility.Biomaterials,2003(24):3311-3331
    [22].Emerich DF,Ttracy MA,Ward KL.et al.Biocompatibility of poly(DL-lactide-co-glycolide) microspheres implanted into the brain.Cell Transplant,2001,8:47-58.
    [23].Menei P,Daniel V,Montero-Menei C,et al.Biodegradation and brain tissue reaction to poly(DL-lactide-co-glycolide) microspheres.Biomaterials,1993,14:470-478
    [24].徐新女,王金环,鲁格等.卡氮芥-聚乳酸缓释剂生物相容性研究.天津医药,2004,32(8):493-495
    [25].Brem H,Mahaley MS Jr,Vick NA,Black KL,Schold SC Jr,Burger PC,et al.Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas.J Neurosurg 1991;74(3):441-6.
    [26].Renaudin J,Fewer D,Wilson CB,Boldrey EB,Calogero J,Enot KJ.Dose dependency of decadron in patients with partially excised brain tumors.J Neurosurg 1973;39(3):302-5.
    [1]. Ormerod MG The study of apoptotic cells by flow cytometry. Leukemia , 1998,12:101321025.
    [2]. Aihara M, Scardino PT, Truong LD,et al.The frequency of apoptosis correlates with the prognosis of Gleason grade 3 adenocarcinoma of the prostate.Cancer,1995,75(2):522-529.
    [3]. Krueger A , Baumann S, Krammer PH. FLICE inhibitory proteins: regulators of death receptor mediated apoptosis [J]. Mol.Cell Biol, 2001, 21 (24): 8247-8254.
    [4]. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, et al. Essential role for oncogenic Ras in tumour maintenance. Nature 1999;400(6743):468-72.
    [5]. Guadagni F, Ferroni P, Palmirotta R, Portarena I, Formica V,Roselli M. Review. TNF/VEGF cross-talk in chronic inflammation-related cancer initiation and progression: an early target in anticancer therapeutic strategy. In Vivo 2007;21(2):147-61.
    [6]. PiseitelliSC, ThibaultA, FiggWD, etal.Disposition of Phenylbutyrate d test abolites , Phenyetated Phenyletyglutne. J Clin Phanaeol , 1995 , 35(4):368-373.
    [7]. ChnagSM, Kuhn Jq, RobinsHl, et al. Phase II sutdy of Phenylaeetate in Patients with recurrent malignant glioma: a North Ameriena Brain Tumor Consortiumre Port. J Clin Oncol, 1999, 17(3):984 — 990.
    [8]. Ozwa A, Thu JL, Hu LJ, etal.Functional lityofhyPoxia-induced BAX expression in a human glioblastoma xenograft model.Cancer Gene Ther, 2005, 12(5):449-455.
    [9]. Adam L, Cre Pin M, IsraelL.Tumor growth inhibition, apoptosis, and Bax down-regulation of MCF-7 rats tumors by sodium Phenylaeetate and maoxien combination.Cancer Res, 1997, 57(6): 1023 — 1029.
    [10]. BoglerO, Mikkelsen, TAngiogenesis and apoptosis in glioma: two are of Promising new therpies. J Cell Biochem, 2005,96(1): 16-24.
    [1]. Ma J, Li S, Reed K, et al,Pharmacodynamic mediated effects of the angiogenesis inhibitor SU5416 on the tumor disposition of temozolomide in subcutaneous and intracerebral glioma xanograft models. J Phamacol ExpTher. 2003: 305: 833.
    [2]. Griscel li,H.Li, C.Cheong, P.Opolon, et al. Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model, Proc. Nat. Acad. Sci.U.S.A. 97(2000): 6698-6703.
    [3]. Fox SB, Gatter KC, Harris AL. Tumour angiogenesis. J Pathol, 1996, 17 9(3):232-7.
    [4]. Gasparini G, Weidner N, Bevilacqua P, et al. Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel in vasiona relevant prognostic markers in node-negative breast carcinoma Clin Oncol, 1994,12(3):454-466.
    
    [5]. Marnix Jansena, Philip C.Witt Hamerb, et al. Current perspectives on ntiangiogenesis strategies in the treatment of malignant gliomas, Brain Research Reviews 45 (2004): 143-163.
    [6]. G.D.Yancopoulos, S.Davis, N.W.Gale, et al. Vascular-specific growth factors and blood vessel formation, Nature 407(2000):242-248..
    [7]. I.H.Chaudhry, P.E.Brenchley, H.Reid, et al. Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas, Histopathology 39(2001):409-415.
    [8]. L.D.Ke, Y.X.Shi, S.A.Im,et al. The relevance of cell proliferation, vascular endothelial growth factor, and basic fibroblast growth factor production to angiogenesis and tumorigenicity in human glioma cell lines, Clin.Cancer Res.6 (2000):2562-2572.
    [9]. K.H.Plate, GBreier, H.A.Weich,W.Risau, Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo, Nature 359(1992): 845-848.
    [10]. K.Samoto, K,Ikezaki, T.Shono, et al. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors, Cancer Res.55(1995):1189-1193.
    [11]. K.J.Kim, B.Li, J.Winer, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo, Nature 362(1993):841-844.
    [12]. B.Millauer, L.K.Shawver, K.H.Plate, et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant, Nature 367(1994):576-579.
    [13]. B.Millauer, M.P.Longhi, K.H.Plate, et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo, Cancer Res.56(1996):1615-1620.
    [14]. S.Y.Cheng, H.J.Huang, M.Nagane, et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor, Proc. Natl. Acad. Sci.U.S.A.93(1996): 8502-8507.
    [15]. Bo L, Peterson JW, Mork S, et al. Distribution of immunoglobulin superfamily members ICAM-1, -2, -3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions[J]. J Neuropathol Exp Neurol, 1996, 55 (10): 1060-1072.
    [16]. Caudroy S, Polette M, Nawrocki-Raby B, et al. EMMPRIN-mediated MMP regulation in tumor and endothelial cells [J]. Clin Exp Metastasis, 2002,19(8): 697-702.
    [17]. Hara I, Miyake H, Hara S, et al. Significance of matrix metalloproteinases and tissue inhibitors of metalloproteinase expression in the recurrence of superficial transitional cell carcinoma of the bladder [J]. J Urol,2001,165(5): 1769-1772.
    [18]. Fiore E, Fusco C, Romero P, et al. Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity [J]. Oncogene, 2002,21(34): 5213-5223.
    [19]. Vitolo D, Paradiso P, Uccini S, et al. Expression of adhesion molecules and extracellular matrix proteins in glioblastomas: relation to angiogenesis and spread[J]. Histopathology, 1996, 28(6): 521-528.
    [20]. Riedel F, Gotte K, Schwalb J, et al. Expression of 92-kD type IV collagenase correlates with angiogenic markers and poor survival in head and neck squamous cell carcinoma [J]. Int J Oncol, 2000, 17(6): 1099-1105.
    [1].周志彬,黄开勋等.聚酸酐控释片瘤内化疗治疗脑胶质瘤的进展.肿瘤防治研究,2001,28(1):76-78
    [2].杜小莉.治疗顽固性多形性成胶质细胞瘤的新药.替莫唑胺.中国药学杂志,2000,35(2):135-136
    [3].Hochberg FH,Pruitt A.Assumptions in the radiotherapy of glioblastoma.Neurology,1980,30:907-911
    [4].牟永告,陈忠平.脑恶性胶质瘤的局部治疗.中国微侵袭神经外科杂志,2003(8):379-38l
    [5].Langer R.New methods of drug delivery.Science,1990,249(4976):1527-1553
    [6].Olivi A,Ewend MG,Utsuki T,et al.Interstitial delivery of carboplantin via biodegradable polymers is effective against experimental glioma in the rat.Cancer chemother pharmacol,1996,39(1-2):90-96
    [7].张又平,徐新女.脑胶质瘤缓释化疗剂3H-BCNU聚乳酸的体外释药研究.中国危重病急救医学,2003,15(9):568-569
    [8].Foumier E,Passirani C,et al.Biocompatibility of implantable synthetic polymeric drug carriers:focus on brain biocompatibility.Biomaterials,2003,24(19):3311-3331
    [9].Emerich DF,Tracy MA,et al.Biocompatibility of poly(DL-lactide-co-glycolide)microspheres implanted into the brain.Cell Transplant,1999,8(1):47-58
    [10].Menei P,Daniel V,et al.Biodegradation and brain tissue reaction to poly(D,L-lactide-co-glycolide) microspheres.Biomaterials,199314(6):470-478
    [11].Lo H,Kadiyala S,Guggion SE,et al.Poly(L-lactic acid) foams with cell seeding and controlled-release capacity.J Biomed materal Res,1996,30(4):475-484
    [12].Menei P,Benoit JP,Boisdron-celle M,et al.Drug targeting into the central nervous system by stereotactic implantation of biodegradable microspheres.Neurosurgery,1994,34(6):1058-1064
    [13].刘金龙,陈硕郎,林家平等.胶质瘤显微外科切除加术中间质化疗的临 床效果.中华显微外科杂志,2003,26(2):156-158
    [14].Garfield J,Dayan AD.Postoperative intracavitary chemotherapy of malignant gliomas.J Neurosurg,1973,39(3):315-322
    [15].Thompson RC,Brem H.Treatment of gliomas using polymer-drug delivery.From:Berger MS and Wilson CB W.B.The gliomas.Saunders company,Toronto,1999,555-563
    [16].周波,黄书岚,刘仁忠.间质内应用BCNU缓释剂治疗恶性胶质瘤.国外医学神经病学神经外科学分册,2003,30(6):580-583
    [17].Yang MR.Tamargo RJ.Brem H.Controlled delivery of BCNU from ethylene-viny1 acetate copolymer.Cancer Res,1989,49:5103-5107
    [18].Grossman SA,Reinbard C.Colvin OM,et al.The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymer.Neurosurg,1992,76(4):640-647
    [19].Tamargo RJ,Myseros JS.Epstein JI,et al.Interstitial chemotherapy of the 9L gliosacroma:controlled release polymers for drug delivery in the brain.Cancer Res,1999,53:329-333
    [20].Walter KA,Cahan MA,Gur A,et al.Interstitial taxol delivery from a biodegradable polymer implant against experimental malignant glioma.Cancer Res,1994,54:2207-2212
    [21].Brem H,Walter,Tamargo,et al.Drug delivery to the brain.In:Domb AJ(ed).Polymer site-specific pharmacotherapy.New York,John Wiley&Sons.1994:117-139
    [22].徐蔚,张纪.碳铂壳聚糖微球瘤内化疗的实验研究.中华神经外科杂志,2000,16(2):88-90
    [23].田新华.脑胶质瘤的缓释型BCNU局部化疗.上海医学,1995,18:616-616
    [24].胡水明,王立根.脑胶质细胞瘤的间质化疗.陕西医学杂志.1997,26:95-98
    [25].Brem H,Piantadosi S,Burger PC,et al.Placebo-controlled trail of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas.Lancet,1995,345:1008-1012
    [26].Brem H,Ewend MG,Piantadosi S,et al.The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas:phase Ⅰ trial.J Neuro Oncol,1995,26:111-123
    [27].Valtonen S,Timonen U,Toivanen P,et al.Interstitial chemotherapy with carmustine-loaded polymers for high grade gliomas:A randomized double-blind study.Neurosurgery,1997,41:44-49
    [28].Brem H,Mahaley MS,Vick NA,et al.Interstitial chemotherapy with drug polymer implant for treatment of recurrent gliomas.J Neurosurg.1991,74(3):441-446
    [29].Engelhard HH.The role of interstitial BCNU chemotherapy in the treatment of malignant glioma.Surg Neurol,2000,53(5):458-464
    [30].沈剑峰,周永庆.脑胶质瘤同步内放疗和内化疗的临床研究.中华神经外科杂志,2002,18(1):44-46
    [1].Black PM.Brain tumors.Part 1.N Engl J Med 1991;324(21):1471-6.
    [2].Kornblith PL,Walker M.Chemotherapy for malignant gliomas.J Neurosurg 1988;68(1):1-17.
    [3].Sampath P,Brem H.Implantable Slow-Release Chemotherapeutic Polymers for the Treatment of Malignant Brain Tumors.Cancer Control 1998;5(2):130-137.
    [4].Tamargo RJ,Myseros JS,Epstein JI,Yang MB,Chasin M,Brem H.Interstitial chemotherapy of the 9L gliosarcoma:controlled release polymers for drug delivery in the brain.Cancer Res 1993;53(2):329-33.
    [5].Leong KW,Brott BC,Langer R.Bioerodible polyanhydrides as drug-carrier matrices.Ⅰ:Characterization,degradation,and release characteristics.J Biomed Mater Res 1985;19(8):941-55.
    [6].Tamargo RJ,Epstein JI,Reinhard CS,Chasin M,Brem H.Brain biocompatibility of a biodegradable,controlled-release polymer in rats.J Biomed Mater Res 1989;23(2):253-66.
    [7].Yang MB,Tamargo RJ,Brem H.Controlled delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea from ethylene-vinyl acetate copolymer.Cancer Res 1989;49(18):5103-7.
    [8].Grossman SA,Reinhard C,Colvin OM,Chasin M,Brundrett R,Tamargo RJ,et al.The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers.J Neurosurg 1992;76(4):640-7.
    [9].Fung LK,Ewend MG,Sills A,Sipos EP,Thompson R,Watts M,et al.Pharmacokinetics of interstitial delivery of carmustine,4-hydroperoxycyclophosphamide,and paclitaxel from a biodegradable polymer implant in the monkey brain.Cancer Res 1998;58(4):672-84.
    [10].Brem H,Tamargo RJ,Olivi A,Pinn M,Weingart JD,Wharam M,et al.Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain.J Neurosurg 1994;80(2):283-90.
    [11].Brem H,Mahaley MS Jr,Vick NA,Black KL,Schold SC Jr,Burger PC,et al.Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas.J Neurosurg 1991;74(3):441-6.
    [12].Brem H,Piantadosi S,Burger PC,Walker M,Selker R,Vick NA,et al.Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas.The Polymer-brain Tumor Treatment Group. Lancet 1995;345(8956):1008-12.
    [13]. Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 1997;41(1):44-8; discussion 48-9.
    [14]. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 2003;5(2):79-88.
    [15]. Sipos EP, Tyler B, Piantadosi S, Burger PC,Brem h. Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 1997;39(5):383-9.
    [16]. Olivi A, Grossman SA, Tatter S, Barker F, Judy K, Olsen J, et al. Dose escalation of carmustine in surgically implanted polymers in patients with recurrent malignant glioma: a New Approaches to Brain Tumor Therapy CNS Consortium trial. J Clin Oncol 2003;21(9): 1845-9.
    [17]. Kleinberg LR, Weingart J, Burger P, Carson K, Grossman SA, Li K, et al. Clinical course and pathologic findings after Gliadel and radiotherapy for newly diagnosed malignant glioma: implications for patient management. Cancer Invest 2004;22(1):1-9.
    [18]. Glantz MJ, Cole BF, Forsyth PA, Recht LD, Wen PY, Chamberlain MC, et al. Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2000;54(10): 1886-93.
    [19]. Renaudin J, Fewer D, Wilson CB, Boldrey EB, Calogero J,Enot KJ. Dose dependency of decadron in patients with partially excised brain tumors. J Neurosurg 1973;39(3):302-5.
    [1]. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005;438(7070):967-74.
    [2]. Ton NC, Jayson GC. Resistance to anti-VEGF agents. Curr Pharm Des 2004;10(1):51-64.
    [3]. Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 2007;104(9):3225-30.
    [4]. Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 2007;445(7129):781-4.
    [5]. Scehnet JS, Jiang W, Kumar SR, et al. Inhibition of D114-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood 2007;109(11):4753-60.
    [6]. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, et al. Delta-like ligand 4 (D114) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 2007; 104(9):3219-24.
    [7]. Leslie JD, Ariza-McNaughton L, Bermange AL, et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 2007;134(5):839-44.
    [8]. Hellstrom M, Phng LK, Hofmann JJ, et al. Dll4 signalling through Notchl regulates formation of tip cells during angiogenesis. Nature 2007;445(7129):776-80.
    [9]. Noguera-Troise I, Daly C, Papadopoulos NJ, et al. Blockade of D114 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006;444(7122):1032-7.
    [10]. Ridgway J, Zhang G, Wu Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 2006;444(7122):1083-7.
    [11]. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006;7(9):678-89.
    [12]. Karsan A. The role of notch in modeling and maintaining the vasculature. Can J Physiol Pharmacol 2005;83(1):14-23.
    [13]. Fischer A, Schumacher N, Maier M, et al. The Notch target genes Heyl and Hey2 are required for embryonic vascular development. Genes Dev 2004;18(8):901-11.
    [14]. Ikeuchi T, Sisodia SS. The Notch ligands, Deltal and Jagged2, are substrates for presenilin-dependent "gamma-secretase" cleavage. J Biol Chem 2003 ;278(10):7751-4.
    [15]. Benedito R, Duarte A. Expression of D114 during mouse embryogenesis suggests multiple developmental roles. Gene Expr Patterns 2005;5(6):750-5
    [16]. Patel NS, Dobbie MS, Rochester M, et al. Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin Cancer Res 2006; 12(16):4836-44.
    [17]. Patel NS, Li JL, Generali D, et al. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 2005;65(19):8690-7.
    [18]. Williams CK, Li JL, Murga M, et al. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 2006;107(3):931-9.
    [19]. Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2(1):38-47.
    [20]. Diez H, Fischer A, Winkler A, et al. Hypoxia-mediated activation of D114-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp Cell Res 2007;313(1):1-9.
    [21]. Seo S, Fujita H, Nakano A, et al. The forkhead transcription factors, Foxcl and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol 2006;294(2):458-70.
    [22]. Duarte A, Hirashima M, Benedito R, et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 2004; 18(20) :2474-8.
    [23]. Sainson RC, Aoto J, Nakatsu MN, et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 2005;19(8):1027-9.
    [24]. Nikolova G, Strilic B,Lammert E. The vascular niche and its basement membrane. Trends Cell Biol 2007;17(1):19-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700