高加索乳杆菌醇脱氢酶的基因克隆、表达及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醇脱氢酶(Alcohol Dehydrogenase, E.C.1.1.1.1.)属于氧化还原酶,在醇类代谢途径中起重要作用,生物体内很多醇类代谢均通过该类酶催化完成。由于醇脱氢酶具有立体专一性还原前手性羰基化合物的能力,因而在氧化还原酶这一大类酶中占有重要地位。醇脱氢酶可用于高效合成具有光学活性的手性醇,后者往往是医药化工业生产用关键结构单元。寻找和开发新的有实用价值的醇脱氢酶并应用于手性药物的生产及其他方面是研究的一大热点。本研究从高加索乳杆菌Lactobacillus kefir DSM20587中克隆了一个新的醇脱氢酶基因LK-adh,进行了重组醇脱氢酶工程菌的构建、表达条件及酶学性质研究,并研究了该酶在不对称还原反应中的对映选择性和辅酶依赖类型,最后对LK-ADH在高加索乳杆菌中的表达进行了初步研究。结果如下:
     在生物信息学指导下,结合TAIL-PCR技术从高加索乳杆菌L.kefir DSM20587基因组DNA中克隆得到一个全长1044bp的LK-adh基因。该序列具有完整的开放阅读框,编码347个氨基酸。在GenBank数据库里与已知序列的同源性均不超过78%,该基因已提交GenBank收录,登录号为:EU877965;其编码蛋白的序列登录号为:ACF95832。
     将LK-adh基因克隆到表达载体pET-28a(+)上,构建了醇脱氢酶基因工程菌株E.coli BL21(DE3)/pYG461。经IPTG诱导,工程菌株能表达有活性的重组酶。通过培养温度、诱导剂浓度、摇床转速、菌浓和pH值等产酶因素的优化考察,得到工程菌的最佳培养条件为:27℃、pH 6.0、150rpm(偏心距25mm),最佳诱导条件为:OD600达到0.8后用0.2mmol/L IPTG诱导6h。在此条件下酶活2.17×10~(-1)U/ml较优化前的7.2×10~(-2)U/ml提高了201%。
     对重组酶进行了纯化与转化产物鉴定的研究,纯化采用包涵体透析复性的方法,纯化后的蛋白经过SDS-PAGE电泳显示为单一条带,比酶活为6.7U/mg,较纯化前提高了3.5倍。LK-ADH能够高对映选择性地转化苯乙酮为(S)-苯乙醇,对映体过量值达到99.4%,同时辅酶依赖类型为NADH型,表明该酶是一种NADH依赖的(S)-醇脱氢酶。
     酶学性质研究表明重组醇脱氢酶氧化反应和还原反应的最适反应pH值分别为5.6和5.0;最适反应温度在35℃左右。重组酶在-20℃保藏4周剩余约70%活力;在20~35℃保温1h后活力没有明显的降低。经过动力学参数测定,还原反应:Km=55.37mmol/L;氧化反应:Km=88.60mmol/L。Zn~(2+)及Mg~(2+)对酶活性有促进作用,Cu~(2+)以及还原剂β-巯基乙醇及DTT对LK-ADH的活性有抑制作用。该酶能够有效转化带有较大的侧链基团的酮类化合物如苯乙酮及其衍生物,对各种醇类化合物该酶的氧化反应活性则较低。
     通过RT-PCR实验,确认LK-adh基因在L.kefir细胞中呈表达状态,24h转录活性约为12h转录活性的130%;另外在L.kefir中另一种醇脱氢酶基因LK-adh(R)的转录水平在12~24h比LK-adh高38%~63%。此结果证明了在高加索乳杆菌基因组中至少有两种对映选择性相反的醇脱氢酶基因。用L.kefir细胞转化苯乙酮也表明产物包括(R),(S)两种构型的苯乙醇。
Alcohol dehydrogenases (E.C.1.1.1.1, also known as keto-reductase) belong to the class of oxidoreductases. They play an important role in metabolic pathway by catalyzing alcohol metabolism in organism. Among the class of oxidoreductases, alcohol dehydrogenases represent an important group due to their ability to stereospecifically reduce prochiral carbonyl compounds. Alcohol dehydrogenases (ADH) can be used in high-efficient synthesis of optically active alcohols (chiral alcohol), which are key building blocks for the medical and pharmaceutical industry. Finding and developing novel alcohol dehydrogenase applicable in the production of chiral drug or other field is very popular scientific research. In this work, a novel gene named LK-adh encoding alcohol dehydrogenase was cloned from Lactobacillus kefir DSM20587. An engineering strain expressing the recombinant LK-ADH was constructed and the conditions for its expression and enzymology were investigated. The cofactor preference and enantioselectivity of this novel alcohol dehydrogenase in asymmetric reduction were also determined. Finally, a preliminary research was carried out to study the transcription and expression of LK-ADH in Lactobacillus kefir. Details are as follows:
     A fragment which consists of an open reading frame (ORF) of 1,044bp, coding for 347 amino acids, was cloned from the genomic DNA of Lactobacillus kefir DSM20587 with the help of bioinformatics and TAIL-PCR. The ORF was analyzed and named as LK-adh by a Blast similarity search in GenBank database. The highest homology was found less than 78% at protein level. This novel gene was deposited into GenBank with the accession number of EU877965 and the corresponding protein sequence could be found under the accession number of ACF95832.
     LK-adh was then subcloned into the plasmid pET-28a(+) followed by transforming into E.coli BL21(DE3) to obtain the engineering strain E.coli BL21(DE3)/pYG461. The recombinant LK-ADH could be efficiently expressed by IPTG induction. The conditions for enzyme activity such as incubation temperature, IPTG concentration, rotation speed of shaker and so on were studied.The optimum conditions for incubation of engineering strain were as follows:temperature 27℃,initial pH value of medium 6.0, rotation speed of shaker 150rpm; the optimum conditions for the induction of recombinant LK-ADH were:optical density of engineering strain (OD600) 0.8, 0.2mmol/L IPTG,induction time 6 h. Under these conditions, the recombinant enzyme activity was increased from 7.2×10~(-2)U/ml to 2.17×10~(-1)U/ml.
     The recombinant LK-ADH was purified to apparent homogeneity in SDS-PAGE and the purification factor was 4.5 fold while the specific activity of the purified enzyme was 6.7 U/mg. LK-ADH showed high enantioselectivity in the reduction of acetophenone to (S)-phenylethanol, the enantiomeric excess (ee) value was calculated as 99.4%. Coenzyme dependent assay indicated that NADH was preferably used as a cofactor. Therefore, LK-ADH was identified to be a NADH-dependent (S)-specific alcohol dehydrogenase.
     The zymological properties of recombinant enzyme were characterized. The optimum pH in oxidative and reductive reaction is 5.6 and 5.0 respectively and the optimum reaction temperature is 35℃. The enzyme activity had no obvious loss after stored at 20~35℃for 1h . However, only 70% activity was remained if stored at -20℃for 4 weeks. The Km values of the LK-ADH in reductive and oxidative reaction were 55.37mmol/L and 88.60mmol/L respectively. The enzyme activity could be activated by Zn~(2+) and Mg~(2+), but inhibited by Cu~(2+), 2-mercaptoethanol and DTT. LK-ADH showed relatively high activity with all the tested aldehydes as substrates but low activity in oxidation of alcohols. Ketones with bulky side chains, such as acetophenone and its derivative were also found to be effectively transformed to their corresponding alcohols. .
     LK-adh was identified to be continuously expressed in L.kefir cell by RT-PCR analysis. The transcription level at 24h was 130% as compared with that at 12h, however, 38%~63% lower than those by a previously reported alcohol dehydrogenase gene LK-adh(R) in L.kefir cell at 12h and 24h. These results showed that at least two alcohol dehydrogenase genes with different enantioselectivity are existed in the genome of Lactobacillus kefir. Transformation of acetophenone by L.kefir cell also showed that both (R) and (S)-phenylethanol were acquired in the products.
引文
[1]黄量,戴立信.手性药物的化学与生物学[M].北京:化学工业出版社, 2002: 1.
    [2] Hutt AJ, Tan SC. Drug chirality and its clinical significance[J]. Drugs, 1996, 52 (Suppl 5):1-12.
    [3] Burger A. Understanding Medications. What the Label Doesn't Tell You [M]. Washington, D.C: American Chemical Society, 1995: 1568.
    [4] Sheldon RA. Chirotechnology[M]. New York: Marcel Decker, 1993: 12
    [5] Tombo GMR, Bellus D. Chirality and Crop Protection[J]. Angew. Chem. Int. Ed. Eng, 1991, 30(10): 1193-1215.
    [6]甘斯顿.D.立体化学入门[M].北京:化学工业出版社, 1982: 29.
    [7] Lavallee C, Lemay G, Leborgne A, et al. Synthesis and polymerization of racemic and optically activeβ-monosubstitutedβ-propiolactones[J]. Macromolecules, 1984, 17(12): 2457-2462.
    [8]杨忠华,姚善径,夏海峰,等.酵母催化2-辛酮不对称还原为2-辛醇[J].化工学报, 2004, 55(8): 1301-1305.
    [9]王胜国,于国清.不对称催化及其在精细化工中的应用[J].工业催化, 2000, 8(4): 9-16.
    [10] Victor SL, Zbignie WD, Keith SW. How Nature deals with stereoisomers[J]. Current Opinion in Structural Biology, 1995, 11(5): 830-836.
    [11] Hasegawa J, Ogura M, Tsuda S. High-yield Production of Optically Active1,2-Diols from the Corresponding Racemates by Microbial Stereoinversion[J]. Agric Biol Chem, 1990, 54(6):1819-1827.
    [12]孙万儒.手性化合物和手性药物的酶法合成[J].药物生物技术, 1996, 3(4):239-245.
    [13]欧志敏,吴坚平,杨立荣,等.微生物法还原羰基化合物生产手性醇的研究——生物法合成手性药物的重要手段[J].山东农业大学学报(自然科学版), 2003, 34(3): 459-462.
    [14] Crosby J. Synthesis of optically active compounds: A large scale perspective [J]. Tetrahedron, 1991, 47(27): 4789-4846
    [15] Blaser HU. The chiral pool as a source of enantioselective catalysts and auxiliaries[J]. Chem.Rev, 1992, 92(5): 935-952.
    [16] Sherk AE, Fraser-Reid B. Synthetic Routes to 6, 8-Dioxabicyclo[3.2.1]Octyl Pheromones from D-Glucose Derivatives. 2. Synthesis of (+)-exo-Brevicomin[J]. J. Org. Chem, 1982, 47(6): 932-935.
    [17] Bemardo SD, Tengi JP, Sasso G, et al. Synthesis of (+)-Negamycin from D-Glucose[J]. Tetrahedron Lett, 1988, 29(33): 4077-4080.
    [18]林国强,陈耀全,陈新滋,等.手性合成-不对称反应及其应用[M].北京:科学出版社, 2000: 1-8.
    [19] Liao LA, Zhang F, Yan N, et al. An Efficient and General Method for Resolving Cyclopropene Carboxylic Acids[J]. Tetrahedron, 2004, 60(8): 1803-1816.
    [20] Rüchardt C, G?rtner H, Salz U. Optically Activeα-Arylcarboxylic Acids by Kinetic Resolution: Pyrethroid Acids[J]. Angew Chem. Int. Ed. Engl, 1984, 23(2): 162-164.
    [21]林国强,陈耀全,陈新滋,等.手性合成-不对称反应及其应用[M].北京:科学出版社, 2000: 33.
    [22]蒋耀忠,宓爱巧,邓金根.不对称催化反应与手性药物合成.段元骇,蒋耀忠主编.不对称催化反应进展[M].北京:科学出版社, 2000: 12-42.
    [23] Singh VK. Practical and Useful Methods for the Enantioselective Reductionof Unsymmetrical Ketones[J]. Synthesis, 1992, 21(7): 605-617.
    [24]崔建国,晏日安,曾陇梅.酮的不对称还原[J].有机化学, 1998, 18(6): 521-531.
    [25] Noyori R, Tomino I, Tanimoto Y, et al. Asymmetric Synthesis via Axially Dissymmetric Molecules. 6. Rational Designing of Efficient Chiral Reducing Agents. Highly Enantioselective Reduction of Aromatic Ketones by Binaphthol-Modified Lithium Aluminum Hydride Reagents[J]. J. Am. Chem. Soc, 1984, 106(22): 6709-6716.
    [26] Midland MM, Greer S, Tramontano A, et al. Chiral Trialkylborane Reducing Agents.Preparation of 1-Deuterio Primary Alcohols of High Enantiomeric Purity[J]. J. Am. Chem. Soc, 1979, 101(9): 2352-2355.
    [27] Hirao A, Nakahama S, Mochizuki H, et al. Asymmetric Reduction of Prochiral Aromatic Ketones with Modified Reagents Prepared from Sodium Borohydride and Carboxylic Acids in The Presence of 1,2:5,6-Di-O-Isopropylidene-Alpha-D-Glucofuranose[J]. J.Org. Chem, 1980, 45(21): 4231-4233.
    [28] Pini D, Iuliano A, Salvadori P. Optically Active Lithium 1,2-biphenyl-l,2-Ethanediolate: An Efficient Chiral Auxiliary in The Enantioselective Hydrosilylation of Ketones[J]. Tetrahedron :Asymmetry, 1992, 3(6): 693-694.
    [29] Masamune S, Kennedy RM, Petersen JS, et al. Organoboron Compounds in Organic Synthesis. 3. Mechanism of Asymmetric Reduction of Dialkyl Ketones with(R,R)-2,5-Dimethylborolane[J]. J. Am. Chem. Soc, 1986, 108(23): 7404-7405.
    [30] Evans DA, Nelson SG, Gagne MR, et al. A Chiral Samarium-Based Catalyst for the Asymmetric Meerwein-Ponndorf-Verley Reduction[J]. J. Am. Chem. Soc, 1993, 115(21): 9800-9801
    [31] Koeller KM, Wong CH. Enzymes for Chemical Synthesis[J]. Nature, 2001, 409(6818): 232-240.
    [32] Rozzell JD. Commercial Scale Biocatalysis: Myths and Realities[J]. Bioorg. Med. Chem, 1999, 7(10): 2253-2261.
    [33] Schmid A, Dordick JS, Hauer B, et al. Industrial Biocatalysis Today and Tomorrow[J]. Nature, 2001, 409(6818): 258-268.
    [34] Schoemaker H, Mink D, Wubbolts MG. Dispelling the Myths-Biocatalysis in Industrial Synthesis[J]. Science, 2003, 299(5613): 1694-1697.
    [35]吕士杰,段元骇.不对称催化反应的工业应用.段元骇,蒋耀忠主编.不对称催化反应进展[M].北京:科学出版社, 2000: 1-12.
    [36] Anderson BA, Hansen MM, Harkness AR, et al. Application of a practical biocatalytic reduction to an enantioselective synthesis of the 5H-2,3-benzodiazepine LY300164[J]. J. Am. Chem. Soc, 1995, 117(20): 12358-12359.
    [37] Crocq V, Masson C, Winter J, et al. Synthesis of trimegestone: The first industrial application of baker’s yeast mediated reduction of a ketone[J]. Org Proc Res Dev, 1997, 1(1): 2-13.
    [38] Sun HW, Plapp BV. Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family[J]. J Mol Evol, 1992, 34(6): 522-535.
    [39] Büchner M, Sund H. Yeast Alcohol Dehydrogenase:-SH Groups,Di-sulfide Groups,Quaternary Structure,and Reactivation by Reductive Cleavage of Disulfide Groups[J]. Eur J Biochem 1969, 11(2): 73-77.
    [40] Dalziel K, Dickinson F. The Kinetics and Mechanism of Liver Alcohol Dehydrogenase with Primary and Secondary Alcohols as Substrates[J]. Biochem J, 1966, 100(6): 34-39.
    [41] Vallee B, Hoch F. Zinc:A Component of Yeast Alcohol Dehydrogenas[J]. J Am Chem Soc, 1955, 77(6): 821-826.
    [42] Hilborn JW, Lu Z-H, Jurgens AR, et al. A practical asymmetric synthesis of (R)-fluoxetine and its major metabolite (R)-norfluoxetine[J]. Tetrahedron Lett, 2001, 42(51): 8919-8921.
    [43] Patel RN. Stereoselective biotransformations in synthesis of some pharmaceutical intermediates[J]. Adv Appl Microbiol, 1997, 43(1):91-140.
    [44]张玉彬.生物催化的手性合成[M].北京:化学工业出版社, 2002: 120.
    [45] Devaux BR, Bergel A, Comtat M. Potential applications of NAD(P)-dependent oxidoreductases in synthesis:A survey[J]. Enzyme and Microb Technol, 1997, 20(6): 248-258.
    [46] Hummel W. Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments[J]. Trends Biotechnol, 1999, 17(12): 487-492.
    [47] Kometani T, Yoshii H, Matsuno R. Large-scale production of chiral alcohols with bakers' yeast[J]. J Mol Catal B:Enzym, 1996, 1(2): 45-52.
    [48] Stahl S, Greasham R, Chartrain M. Implementation of a rapid microbial screening procedure for biotransformation activities[J]. J Biosci Bioeng, 2000, 89(4): 367-371.
    [49] Nakamura K, Matsuda T. Asymmetric Reduction of Ketones by the Acetone Powder of Geotrichum candidum [J]. J. Org. Chem, 1998, 63(24): 8957 -8964.
    [50] Stampfer W, Kosjek B, Faber K, et al. Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM 44541[J]. J Org Chem, 2003, 68(2): 402-406.
    [51] Yadav JS, Nanda S, Reddy PT, et al. Efficient enantioselective reduction of ketones with Daucus carota root[J]. J Org Chem, 2002, 67(11): 3900-3903.
    [52]刘湘,孙培冬,李明,等.面包酵母用于苯乙酮的不对称还原研究[J].分子催化, 2002, 16(2): 107-110.
    [53] Nakamura K, Takenaka K, Fujii M, et al. Asymmetric Synthesis of Both Enantiomers of Secondary Alcohols by Reduction with a Single Microbe[J]. Tetrahedron Lett., 2002, 43(20): 3629-3631.
    [54] Bruni R, Fantin G, Medici A, et al. Plants in organic synthesis: an alternative to baker's yeast[J]. Tetrahedron Lett, 2002, 43(18): 3377-3379.
    [55] Yoshihiko A, Mirai T, Makoto K, et al. Biocatalytic preparation of chiral alcohols by enantioselective reduction with immobilized cells of carrot[J]. J. Chem. Soc., Perkin Trans, 1995, 1(1): 1295-1298.
    [56] Patel RN , McNamee CG , Banerjee A, et al. Stereoselective reduction ofβ-keto esters by Geotrichum candidum[J]. Enzyme Microb Technol, 1992, 14(9): 731–738.
    [57]杨忠华,姚善泾.水相中酵母细胞催化4-氯乙酰乙酸乙酯不对称还原反应[J].催化学报, 2004, 25(6): 434-438
    [58] Patel R, McNamee C, Banerjee A, et al. Stereoselective reduction ofβ-ketoesters by Geotrichum candidum[J]. Enzyme Microb Technol 1992, 14(9): 731-738.
    [59] Dahl AC, Fjeldberg M. Baker's yeast: improving the D-stereoselectivity in reduction of 3-oxo esters[J]. Tetrahedron: Asymmetry, 1999, 10(3): 551-559.
    [60] Kizaki N, Yasohara Y, Hasegawa J, et al. Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes[J]. Appl Microbiol Biotechnol, 2001, 55(5): 590-595.
    [61] Yamamoto H, Kimoto N, Matsuyama A, et al. Purification and properties of a carbonyl reductase useful for production of ethyl (S)-4-chloro-3-hydroxybutanoate from Kluyveromyces lactis[J]. Biosci Biotechnol Biochem, 2002, 66(8): 1775-1778.
    [62] Kataoka M, Yamamoto K, Kawabata H, et al. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes[J]. Appl Microbiol Biotechnol, 1999, 51(4): 486-490.
    [63] Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase[J]. Biosci Biotechnol Biochem, 2002, 66(2):481-483.
    [64] Iwamoto K, Kuramoto T, Izumi M, et al. Asymmetric reduction of ethyl 2-methyl e-oxobutanoate by fungi[J]. Biosci Biotechnol Biochem, 2000, 64(1): 194-197.
    [65] Kuramoto T, Iwamoto K, Izumi M, et al. Asymmetric reduction of ethyl 2-methyl 3-oxobutanoate by Chlorella[J]. Biosci Biotechnol Biochem, 1999, 63(3): 598-601.
    [66] Lagos FM, Sinisterra JV. New yeast strains for enantioselective production of halohydrin precursor of (S)-Propranolol[J]. Enzyme and Microbial Technology, 2002 30(7): 895-901.
    [67] Nakamura K, Matsuda T, Itoh T, et al. Different Stereochemistry for the Reduction of Trifluoromethyl Ketones and Methyl Ketones Catalyzed by Alcohol Dehydrogenase from Geotrichum[J]. Tetrahedron Lett., 1996, 37(32): 5727-5730.
    [68] Matsuda T, Harada T, Nakajima N, et al. Two classes of enzymes of opposite stereochemistry in an organism: one for fluorinated and another for nonfluorinated substrates[J]. J Org Chem, 2000, 65(1): 157-163.
    [69] Yadav JS, Reddy PT, Nanda S, et al. A Facile Synthesis of (R)-(-)-2-azido-1-arylethanols from 2-azido-1-arylketones Using Baker’s Yeast[J]. Tetrahedron: Asymmetry, 2001, 12(1): 63-67.
    [70] Chartrain M, Roberge C, Chung J, et al. Asymmetric bioreduction of (2-(4-nitro-phenyl)-N-(2-oxo-2-pyridin-3-yl-ethyl)-acetamide) to its corresponding (R) alcohol (R)-N-(2-hydroxy-2-pyridin-3-yl-ethyl)-2-(4-nitro-phenyl)-acetamide by using Candida sorbophila MY 1833 - stereospecific reductions of a b-ketoester[J]. Enzyme and Microbial Technology, 1999, 25(6): 489-496.
    [71] Kozikowski AP, Mugrage BB, Li CS, et al. Chemistry of baker's yeast reduction products: Use of optically active (S)-(+)-1-(p-toluenesulfonyl)propan-2-ol and (S)-(+)-1-(phenylsulfonyl)propan-2-ol in synthesis. [J]. Tetrahedron Lett, 1986, 27(40): 4817-4820.
    [72] Lorraine K, King S, Greasham R, et al. Asymmetric bioreduction of a ketosulfone to the corresponding trans-hydroxysulfone by the yeast Rhodotorula rubra MY 2169[J]. Enzyme Microb Technol, 1996, 19(4): 250-255.
    [73] Short RP, Kennedy RM, Masamune S. An improved synthesis of (-)-(2R,5R)-2,5-dimethylpyrrolidine[J]. J. Org. Chem, 1989, 54(7): 1755-1756
    [74] Fuhshuku K, Funa N, Akeboshi T, et al. Access to Wieland-Miescher ketone in an enantiomerically pure form by a kinetic resolution with yeast-mediated reduction[J]. J Org Chem, 2000, 65(1): 129-135.
    [75] Branden G, Jornvall H, Eklund H. Alcohol dehydrogenase.The Enzymes, 3rd ed[M]. Academic Press,New York: In: Boyer, 1975: 126.
    [76] Hildebrandt P, Musidlowska A, Bornscheuer UT, et al. Cloning, functional expression and biochemical characterization of a stereoselective alcohol dehydrogenase from Pseudomonas fluorescens DSM50106[J]. Appl Microbiol Biotechnol, 2002, 59(4-5): 483-487.
    [77] Peters J, Minuth T, Kula MR. A novel NADH-dependent carbonyl reductase with an extremely broad substrate range from Candida parapsilosis: purification and characterization[J]. Enzyme Microb Technol, 1993, 15(11): 950-958.
    [78] Hata H, Shimizu S, Hattori S, et al. Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase[J]. Biochim Biophys Acta, 1989, 990(2): 175-181.
    [79] Hummel W, Kula M-R. Dehydrogenases for the synthesis of chiral compounds[J]. Eur J Biochem, 1989, 184(1): 1-13.
    [80] Wong C-HH, Whitesides GM. Enzymes in synthetic organic chemistry[M]. Oxford: Elsevier Press, 1994: 56.
    [81] Drauz K, Waldmann H. Enzyme catalysis in organic synthesis: A comprehensivehandbook[M]. 2nd, Weinheim: Wiley-VCH Press, 2002: 12.
    [82] Yasohara Y, Kizaki N, Hasegawa J, et al. Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase from Candida magnoliae, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate[J]. Biosci Biotechnol Biochem, 2000, 64(7): 1430-1436.
    [83] Wolberg M, Ji A, Hummel W, et al. Enzymatic reduction of hydrophobicβ,δ-diketo esters[J]. Synthesis, 2001, 937-942.
    [84] Schubert T, Hummel W, Muller M. Highly enantioselective preparation of multifunctionalized propargylic building blocks[J]. Angew Chem, 2002, 114(4): 656-659.
    [85] Bare G, Swiatkowski T, Moukil A, et al. Purification and characterization of a microbial dehydrogenase: a vanillin:NAD(P)+ oxidoreductase[J]. Appl Biochem Biotechnol, 2002, 98-100): 415-428.
    [86] Kirschner A, Altenbuchner J, Bornscheuer UT. Design of a secondary alcohol degradation pathway from Pseudomonas fluorescens DSM 50106 in an engineered Escherichia coli[J]. Appl Microbiol Biotechnol, 2007, 75(5): 1095-1101.
    [87] Wang JC, Sakakibara M, Liu JQ, et al. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding phenylacetaldehyde reductase from styrene-assimilating Corynebacterium sp. strain ST-10[J]. Appl Microbiol Biotechnol, 1999, 52(3): 386-392.
    [88] Itoh N, Mizuguchi N, Mabuchi M. Production of chiral alcohols by enantioselective reduction with NADH-dependent phenylacetaldehyde reductase from Corynebacterium strain,ST-10[J]. J Mol Catal B, 1999, 6(1): 41-50.
    [89] Itoh N, Matsuda M, Mabuchi M, et al. Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH[J]. Eur J Biochem, 2002, 269(9): 2394-2402.
    [90] Hummel W. New alcohol dehydrogenases for the synthesis of chiral compounds[J]. Adv Biochem Eng Biotechnol, 1997, 58(2): 145-184.
    [91] Abokitse K, Hummel W. Cloning, sequence analysis, and heterologous expression of the gene encoding a (S)-specific alcohol dehydrogenase from Rhodococcus erythropolis DSM 43297[J]. Appl Microbiol Biotechnol, 2003, 62(4): 380-386.
    [92]聂尧,徐岩,王海燕.重组大肠杆菌不对称还原2-羟基苯乙酮合成(R)-苯基乙二醇[J].化工进展, 2006, 25(10): 1231-1236.
    [93] Yamamoto H, Kawada N, Matsuyama A, et al. Cloning and expression in Escherichia coli of a gene coding for a secondary alcohol dehydrogenase from Candida parapsilosis[J]. Biosci Biotechnol Biochem, 1999, 63(6): 1051-1055.
    [94] Jornvall H, Hoog JO, Persson B. SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature[J]. FEBS Lett, 1999, 445(2-3): 261-264.
    [95] Tanaka N, Kusakabe Y, Ito K, et al. Crystal structure of glutathione-independent formaldehyde dehydrogenase[J]. Chem Biol Interact, 2003, 143-144(3):211-218.
    [96] Kataoka M, Delacruz-Hidalgo AR, Akond MA, et al. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis[J]. Appl Microbiol Biotechnol, 2004, 64(3): 359-366.
    [97]许娜,王海燕,聂尧.近平滑假丝酵母(R)-专一性羰基还原酶基因的克隆与表达[J].微生物学通报, 2006, 33(4): 112-118.
    [98] Shorrock VJ, Chartrain M, Woodley JM. An alternative bioreactor concept for application of an isolated oxidoreductase for asymmetric ketone reduction[J]. Tetrahedron, 2004, 60(3): 781-788.
    [99] Soni P, Banerjee UC. Enantioselective reduction of acetophenone and its derivatives with a new yeast isolate Candida tropicalis PBR-2 MTCC 5158[J]. Biotechnol J, 2006, 1(1):80-85.
    [100] Soni P, Kaur G, Chakraborati AK. Candida viswanathii as a novel biocatalyst for stereoselective reduction of heteroaryl methyl ketones :a highly efficient enantioselective synthesis of (S)-α-(3-pyridyl) ethanol[J]. Tetrahedron Asymmetry, 2005, 16(14): 2425-2428.
    [101] Ema T, Yagasaki H, Okita N. Asymmetric reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity[J]. Tetrahedron, 2006, 62(26): 6143-6149.
    [102] Zhu D, Mukherjee C, David J. A recombinant ketoreductase tool-box. Assessing the substrate selectivity and stereoselectivity toward the reduction ofβ-ketoesters[J]. Tetrahedron, 2006, 62(5): 901-905.
    [103] Yang Y, Zhu D, Timothy J. Enzymatic ketone reduction:mapping the substrate profile of a short-chain alcohol dehydrogenase (YMR226c) from Saccharomyces cerevisiae[J]. Tetrahedron :Asymmetry, 2007, 18(15): 1799-1803.
    [104] Brautigam S, Bringer-Meyer S, Weuster-Botz D. Asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration[J]. Tetrahedron:Asymmetry, 2007, 18(16): 1883-1887.
    [105] Goodman N. Biological data becomes computer literate: new advances in bioinformatics[J]. Curr Opin Biotechnol, 2002, 13(1): 68-71.
    [106] Andrade MA, Sander C. Bioinformatics: from genome data to biological knowledge[J]. Curr Opin Biotechnol, 1997, 8(6): 675-683.
    [107] Binder R, Brown J, Romancik G. Biochemical characterization of a glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas strain BL072[J]. Appl Environ Microbiol, 1994, 60(6): 1805-1809.
    [108]罗晖,胡晓佳,周航,等.产GL-7-ACA酰化酶重组大肠杆菌的构建和表达[J].微生物学通报, 2004,31(4): 38-42.
    [109] Shi Y, Sun XD, Yu HM. Bioinformatics analysis , cloning and expression of a Nocardia Nitrile hydrotase[J]. Proceedings of the 4 th Chinese Enzyme Engineering Symposium, 2003, 117.
    [110] Kim T. PCR primer design : an inquiry-based introduction to bioinformatics on the World Wide Web[J]. Biochemistry and Molecular Biology Education, 2000, 28(5): 274 - 276.
    [111] Zharkov DO, Grollman AP. Combining structural and bioinformatics methods for the analysis of functionally important residues in DNA glycosylases[J]. Free Radic Biol Med, 2002, 32(12): 1254-1263.
    [112] Wishart MJ, Taylor GS, Slama JT, et al. PTEN and myotubularin phosphoinositide phosphatases: bringing bioinformatics to the lab bench[J]. Curr Opin Cell Biol, 2001, 13(2): 172-181.
    [113] Sambrook J, Russell DW. Molecular cloning: A laboratory manual[M]. 3rd, New York: Cold Spring Harbor Laboratory Press, 2001:186.
    [114] Lamar EE, Palmer E. Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains[J]. Cell, 1984, 37(1): 171-177.
    [115] Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science, 1992, 257(5072): 967-971.
    [116] Liang P, Averboukh L, Pardee AB. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization[J]. Nucleic Acids Res, 1993, 21(14): 3269-3275.
    [117] Lisitsyn N, Wigler M. Cloning the differences between two complex genomes[J]. Science, 1993, 259(5097): 946-951.
    [118] Bowler LD. Representational difference analysis of cDNA[J]. Methods Mol Med, 2004, 94(1): 49-66.
    [119]任洪林,徐丹丹,乔琨,等.细菌攻毒杂色鲍血淋巴细胞抑制性差减杂交文库构建及巨噬细胞表达蛋白cDNA的克隆与差异表达[J].遗传, 2008, 30(8): 1043-1050.
    [120] Morissette DC, Dauch A, Beech R, et al. Isolation of mycoparasitic-related transcripts by SSH during interaction of the mycoparasite Stachybotrys elegans with its host Rhizoctonia solani[J]. Curr Genet, 2008, 53(2): 67-80.
    [121] Zabeau M, Vos P. Selective restriction fragment amplification. A general method for DNA fingerprinting[J]. 1993, European Patent Application 924026297(Publication number: 0534858 A )):
    [122] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res, 1995, 23(21): 4407-4414.
    [123] Jayaraman A, Puranik S, Rai NK, et al. cDNA-AFLP Analysis Reveals Differential Gene Expression in Response to Salt Stress in Foxtail Millet (Setaria italica L.)[J]. Mol Biotechnol, 2008, 40(3): 241-251.
    [124] Ritter E, Ruiz de Galarreta JI, van Eck HJ, et al. Construction of a potato transcriptome map based on the cDNA-AFLP technique[J]. Theor Appl Genet, 2008, 116(7): 1003-1013.
    [125] Anisimov SV. Serial Analysis of Gene Expression (SAGE): 13 years of application in research[J]. Curr Pharm Biotechnol, 2008, 9(5): 338-350.
    [126] Velculescu VE. Essay: Amersham Pharmacia Biotech & Science prize. Tantalizing transcriptomes--SAGE and its use in global gene expression analysis[J]. Science, 1999, 286(5444): 1491-1492.
    [127] Jung S, Lee J, Lee D. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress[J]. Plant Mol Biol, 2003, 52(3): 553-567.
    [128] Galbraith DW. DNA microarray analyses in higher plants[J]. OMICS, 2006, 10(4): 455-473.
    [129] Etienne W, Meyer MH, Peppers J, et al. Comparison of mRNA gene expression by RT-PCR and DNA microarray[J]. Biotechniques, 2004, 36(4): 618-620, 622, 624-616.
    [130] Hao X, Sun B, Hu L, et al. Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis[J]. Cancer, 2004, 100(6): 1110-1122.
    [131] Widlak P. DNA microarrays, a novel approach in studies of chromatin structure[J]. Acta Biochim Pol, 2004, 51(1): 1-8.
    [132] Carstea ED, Morris JA, Coleman KG, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis[J]. Science, 1997, 277(5323): 228-231.
    [133] Fladung M, Deutsch F, Honicka H, et al. T-DNA and transposon tagging in aspen[J]. Plant Biol (Stuttg), 2004, 6(1): 5-11.
    [134] Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J]. Genomics, 1995, 25(3): 674-681.
    [135]罗丽娟,施季森.一种DNA侧翼序列分离技术-TAIL-PCR[J].南京林业大学学报(自然科学版), 2003, 7(27): 87-90.
    [136] Wang P, Chen J, Zheng A, et al. Expression cloning of functional receptor used by SARS coronavirus[J]. Biochem Biophys Res Commun, 2004, 315(2): 439-444.
    [137]应革,武威,何朝族. TAIL-PCR方法快速分离Xcc致病相关基因序列[J].生物工程学报, 2002, 18(2): 182-186.
    [138] Yang F. Cloning of Phytase Gene from Coriolus versicolor by TAIL-PCR and RT-PCR[J]. Chin J Appl Environ Biol, 2006, 12 (5): 618-622
    [139] Yang F, Lin JF, Guo A. Cloning ofβ-glucosidase by TAIL-PCR from hericiumerinaceus[J]. Food Fermen Ind 2005, 5(31): 9.
    [140]刘自勇,孙宪昀,曲音波.斜卧青霉114-2 cbh1基因的TAIL-PCR克隆及与抗阻遏突变株JU-A10的比较[J].微生物学报, 2008, 48(5): 667-671.
    [141]仇艳光,田景汉,葛荣朝,等. TAIL-PCR的改良及其在分离小麦基因启动子中的应用[J].生物工程学报, 2008, 24(4): 695-699.
    [142] Pillai MM, Venkataraman GM, Kosak S, et al. Integration site analysis in transgenic mice by thermal asymmetric interlaced (TAIL)-PCR: segregating multiple-integrant founder lines and determining zygosity[J]. Transgenic Res, 2008, 17(4): 749-754.
    [143] Hanhineva KJ, Karenlampi SO. Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR[J]. BMC Biotechnol, 2007, 7(11):51.
    [144] Amidjojo M, Franco-Lara E, Nowak A, et al. Asymmetric synthesis of tert-butyl (3R, 5S) 6-chloro-dihydroxyhexanoate with Lactobacillus kefir[J]. Appl Microbiol Biotechnol, 2005, 69(1): 9-15.
    [145] Hummel W. Reduction of acetophenone to R(+)-phenylethanol by a new alcohol dehydrogenase from Lactobacillus kefir[J]. Appl Microbiol Biotechnol, 1990, 34(1): 15-19.
    [146] Pfruender H, Amidjojo M, Hang F, et al. Production of Lactobacillus kefir cells for asymmetric synthesis of a 3,5-dihydroxycarboxylate[J]. Appl Microbiol Biotechnol, 2005, 67(5): 619-622.
    [147]萨姆布鲁克.J,拉塞尔.D.W.分子克隆实验指南,第三版[M].北京:科学出版社., 2002.
    [148] Reid MF, Fewson CA. Molecular characterization of microbial alcohol dehydrogenases[J]. Crit Rev Microbiol, 1994, 20(1): 13-56.
    [149] Liu YG, Huang N. Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asym-metric interlaced PCR[J]. Plant Mol. Biol. Rep, 1998, 16(2): 175-181.
    [150] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4(4): 406-425.
    [151]赵昶灵,郭维明,杨清,等.梅花南京红须F3′H全长基于gDNA的TAIL-PCR法克隆[J].西北植物学报, 2005, 25(12): 2378-2385.
    [152]宋达峰,韩凝,边红武,等.用改良TAIL-PCR技术分析转基因烟草cbf1基因插入区的侧翼序列[J].作物学报, 2005, 31(10): 1377-1379.
    [153] Stellmatch B,钱嘉渊(译).酶的测定方法[M].北京:中国轻工业出版社, 1992:212
    [154] Knoll M, Pleiss J. The Medium-Chain Dehydrogenase/reductase Engineering Database: a systematic analysis of a diverse protein family to understand sequence-structure-function relationship[J]. Protein Sci, 2008, 17(10): 1689-1697.
    [155] Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins[J]. Biochemistry, 1990, 29(24): 5647-5659.
    [156] Johansson K, El-Ahmad M, Kaiser C, et al. Crystal structure of sorbitol dehydrogenase[J]. Chem Biol Interact, 2001, 130-132(1-3): 351-358.
    [157]奥斯伯.F.精编分子生物学实验指南[M].第一版,北京:科学出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700