压力交换制冷机入射损失与排气返流问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力交换制冷机是继静止式气波机和旋转式气波机之后的新型气波制冷设备,它利用激波和接触面在振荡管中的运动来完成能量交换,实现气体膨胀制冷。具有结构紧凑,震动小,管内无积液,效率稳定等优点,具有非常广阔的应用前景。
     为了进一步优化压力交换制冷机结构,提高设备的制冷效率,本文结合运用气体动力学非定常流动理论、数值模拟实验和物理实验三种方法对压力交换制冷机入射损失与排气返流两方面问题进行了如下一些研究与优化:
     (1)提出了入射激波分析的稳定入射模型,并结合传统的激波管模型,运用气体动力学一维非定常流动分析方法,对压力交换制冷机波转子内部波系运动及气体流动进行了详细分析。
     (2)分别研究了波转子通道壁结构、喷嘴结构、喷嘴宽度、泄漏问题等对入射的损失的影响。
     建立二维循环多通道入射数值模型,对波转子通道壁结构、喷嘴结构、喷嘴宽度和等熵效率损失的关系进行了数值模拟研究,提出了一些新的结构。
     建立三维循环多通道入射数值模型研究高压入口喷嘴处间隙泄漏和等熵效率损失的关系,并具体将泄漏分为6个部分进行分析。
     (3)建立了整机循环换热数值模拟模型,并通过整机数值模拟实验研究,分析了排气阶段返流问题以及反向压缩波问题的形成原因以及其对制冷机工作性能的影响。通过整机数值模拟实验,提出了优化制冷机内部流场、抑制排气返流现象的两种方案。
     (4)利用最新一代压力交换制冷机建立全新的实验系统进行实验,以验证两种优化方法的实际效果。
     通过本文的研究,证明了增长高压入口喷嘴固壁长度以及优化高温出口压力均可以有效地削弱排气返流现象对制冷机性能造成的不利影响,分别使等熵效率提高约4.5%~6.5%和10%~15%。
The Pressure Exchanging Refrigerator(PER) is a new generation gas wave refrigeration equipment following the generation-static gas wave machine and the generation-rotating wave refrigerator.It can transfer energy directly between different fluids and actualize expansion refrigeration due to movement of the shock wave,expansion wave and contact discontinuity.It has some superiority such as compact structure,weak oscillation,static jet and working without liquid accumulation compared with rotating gas wave machine,and the application prospect is wide.
     The study and optimization of incidence efficiency loss and exhaust gas reverse flow problems is done in three ways in this thesis,including the unsteady flow theory of aerodynamics,numerical simulation experiment and physical experiment.
     (1) A new shock wave model for stable phase of the incident process is put forward.The wave movement in Pressure Exchanging Refrigerator is analyzed in detail with the new shock wave model and the traditional shock tube model,using one-dimensional theory of gas unsteady flow.
     (2) Study of the relationship between incidence efficiency loss and passage wall structure, nozzle structure,nozzle width,nozzle gap is done.
     A two-dimensional multi-passage incident numerical model is established to study the relationship between refrigeration efficiency and the structural parameters of passage wall and nozzle,and then some new structures are presented.
     A three-dimensional multi-passage incident numerical model is established to study leakage flow through the nozzle gap.Furthermore,carry out a detailed analysis by divide leakage flow into six parts.
     (3) Sets up a new whole machine numerical model with heat exchanging cycle.The numerical simulation studies focus on the reverse compressing wave problem and reverse flow problem,analysis the causes and the impact on work performance of the two problems. Put forward two optimization methods.
     (4) Establishes new experimental system,to verify the effectiveness of the two optimization methods.
     The study demonstrates the adverse effects of exhaust gas reverse flow problem can be impaired by increasing the length of the nozzle wall and raising the pressure of high temperature port to get optimum.By using the two optimization methods,the isentropic efficiency can be increased 4.5%~6.5%and 10%~15%.
引文
[1]陈光明,陈国邦.制冷与低温原理[M].浙江:机械工业出版社,2000.
    [2]张波.一种新型自由活塞式膨胀机的研制及试验研究[J].西安交通大学学报,2006,40(7):2-5.
    [3]江楚标.透平膨胀机及发展动态[J].深冷技术,2001(5).
    [4]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用[J].制冷,1995,50(1):10-15.
    [5]童秉纲,孔详言,邓国华.气体动力学[M].北京:高等教育出版社,1990.
    [6]VREBALOVICH T,BULL.Phys sot[M],1958,3:29.
    [7]CHESTER W.Resonant oscillations in closed tubes[J].Journal of Fluid Mechanics,1963,18(2):44-46.
    [8]Temkin S.The physics Fluids.1968,11(5):960-963.
    [9]E BROCHER,C MARESCA,M H BOURNAY.Fluid Dynamics of The Resonance Tube[J].Journal of Fluid Mechanics,1970,43(2):369-384.
    [10]J KELLER.Resonant Oscillations in Closed Tubes:The Solution of Chester's Equation [J].Journal of Fluid Mechanics,1976,77(2):279-304.
    [11]M COTTERLAZ-RENNAZ.Wellhead Gas Refrigerator Field Strips Condensate[J].World Oil,1971:60-61.
    [12]M COTTERLAZ-RENNAZ.New French Gas Cooler Recovers 120 Bpd Gasoline[J].World Oil,1973:57-59.
    [13]D CHRISTIAN J C AMANNDE,C VILTARD.Barge-mounted NGL Plant Boosts Recovery From Offshore Field,World Oil,1982,7:105-107.
    [14]方曜奇等.第四届全国激波管与激波学术会论文集[C].上海:[出版者不祥],1987:67-71.
    [15]黄志达,黄钟岳,方曜奇.新型节能装置-透平式热分离机的研究[J].大连工学院学报,1983,22(3):115-119.
    [16]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用[J].大连工学院学报,1985,24(4):123-124.
    [17]方曜奇等.接受管结构对热分离机制冷的影响[J].流体工程,1987,17(3):15-18.
    [18]邵件,包裕弟.转动喷嘴膨胀机的实验研究[J].浙江大学学报,1984,3(18):52-54.
    [19]方曜奇等.接受管结构对热分离机制冷的影响[J].流体工程,1987,17(3):15-18.
    [20]包裕弟,沈永年.回收气体压力能的转动喷嘴膨胀机的实验研究[J].能源工程,1982,2:27-30
    [21]陈祖志.射流振荡制冷机性能和机理研究[D].大连:大连理工大学,2008.
    [22]邹久朋.消弱接受管内反射激波能量的实验研究[J].低温工程,2001,3:48-53.
    [23]KNAUFF R.Converting Pressure of Liberated Gas Energy into Mechanical Work [M].British Patent,1906.
    [24]KNAUFF R.Converting Internal Gas Energy into Mechanical Work[M].British Patent,1906.
    [25]KENTFIELD J A C.Wave Rotors and Highlights of Their Development[J].AIAA,1998.
    [26]MEYER A.Recent Developments in Gas Turbines[J].Journal of Mechanical Engineering,1947,69(4).
    [27]BEREHTOLD M.The Comprex:A New Concept of Diesel Supercharging[J].ASME Paper,1958.
    [28]BERCHTOLD M.The Comprex Diesel Supercharger[J].SAE Paper,1958,63A.
    [29]BERCHTOLD M,GULL H P.Road Performance of a Comprex Supercharged Diesel Truck [J].SAE Paper,1959.
    [30]DOERFLER P K.Comprex Supercharging of Vehicle Diesel Engines[J].SAE Paper,1975,750355.
    [31]SCHRUF G M,KOLLBRUNNER T A.Application and Matching of the Comprex Pressre Wave Supercharger to Automotive Diesel Engines[J].SAE Paper,1984,840133.
    [32]ZEHNDER G,MAYER A.Comprex Pressure Wave Supercharging for Automotive Diesels State-of-the-Art[J].SAE Paper,1984,840132.
    [33]BERCHTOLD.The Comprex Proceeding ONR/NAVAIR Wave Rotor Research and Technology Workshop[J].Report NPS,1985:50-74.
    [34]ZEHNDER G,MAYER A,MATHEWS L.The Free Running Comprex[J].SAE Paper,1989,830234.
    [35]MEYER A,ODA J,KATO K,HAASE W.Extruded Cermic-A New Technology for the Comprex Rotor[J].SAE Paper,1989,890453.
    [36]ZAUNER E,CHYOU Y P.Gas Turbine Topping Stage Based on Energy Exchangers:Process and Performance[J].ASME Paper,1993,93-GT-58.
    [37]ANONYMOUS.NEFF Funding of Swiss Energy Research 1977-1997,1997[C].Project No.426:142-153.
    [38]PEZHMAN AKBARI,AMIR A.KHARAZI,NORBERT MUELLER.2003 ASME International Mechanical Engineering Congress & Exposition,2003[C].Washington,D.C,2003
    [39]AMIR A.KHARAZI,PEZHMAN AKBARI,NOBERT MULLER.Preliminary Study of a Novel R718Compression Refrigeration Cycle Using a Three-Port Condensing Wave Rotor [J].Journal of Engineering for Gas Turbines and Power,2005,127.
    [40]AMIR A.KHARAZI,PEZHMAN AKBARI,NOBERT MULLER.An Application of Wave Rotor Technology for Performance Enhancdment of R718 Refrigeration Cycles[J].AIAA 2004,5636.
    [41]P AKBARI,E SZPYNDA,M R NALIM.Recent Developments in Wave Rotor Combustion Technology and Future Perspectives:A Progress Review[J].AIAA,2007,5055-730:17.
    [42]代玉强.压力交换制冷机性能分析[D].大连:大连理工大学,2003.
    [43]刘虎.压力交换制冷机结构参数优化研究[D].大连:大连理工大学,2006.
    [44]冯雪.压力交换制冷机振荡管内非定常流动的分析[D].大连:大连理工大学,2006.
    [45]丁美霞.压力交换制冷机参数对性能的影响[D].大连:大连理工大学,2007.
    [46]谈文虎.压力交换制冷机结构优化研究[D].大连:大连理工大学,2008.
    [47]邵件,包裕弟,沈永年等.转动喷嘴膨胀机的试验研究[J].浙江大学学报,1984,18(3):25-34.
    [48]邵件,沈永年.转动式热分离机转速与变压管长度匹配的研究[J].浙江大学学报,1988,22(5):114-119.
    [49]李学来,方曜奇.气波制冷机振荡管外强化换热的实验研究[J].制冷,1996,4:7-9.
    [50]朱雪琴.气波制冷机接受管最佳管长的研究[J].无锡轻工业学院学报,1993,2:135-140.
    [51]李学来.管长对振荡管冷效应影响的实验研究[J].制冷,1996,2:15-1.
    [52]李学来.振荡管管壁轴向导热的实验研究[J].大连理工大学学报,1996,1:37-39.
    [53]李学来.振荡管冷端传热分析[J].制冷,1998,1:28-31.
    [54]WILSON J.An Experiment on Losses in a Three Port Wave-Rotor[J].NASA CR-198508,1997.
    [55]S S HOXIE JR,W E LEAR,G J MICKLOW.A CFD Study of Wave Rotor Losses due to the Gradual Opening of Rotor Passage Inlets[J].AIAA,1995,10(2):13-15.
    [56]P AKBARI,M R NALIM.Leakage Assessment of Pressure-Exchange Wave Rotors[J].Journal of Propulsion and Power,2008,24(4):732-740.
    [57]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [58]Azoury P H.Proceedings of the Institution of Mechanical Engineers,1966[C],180(1),18:451-480.
    [59]GUZZELLA L,WENGER U,MARTIN R.IC Engine Downsizing and Pressure-Wave Supercharging for Fuel Economy[J],SAE Paper,2000-01-1019.
    [60]KNAUFF R.Converting Internal Gas Energy into Mechanical Work British Patent,1906[C],8273.
    [61]PIECHNA J.Comparison of Different Methods of Solution of Euler Equations in Application to Simulation ofthe Unsteady Processes in Wave Supercharger[J].The Archive of Mechanical Engineering,1998,45(2):87-106.
    [62]PIECHNA J.Numerical Simulation of the Comprex Type of Supercharger:Comparison of Two Models of Boundary Conditions[J].The Archive of Mechanical Engineering,1998,45(3):233-250.
    [63]PIECHNA J.Numerical Simulation of the Pressure Wave Supercharger-Effects of Pockets on the Comprex Supercharger Characteristics[J].The Archive of Mechanical Engineering,1998,45(4):305-323.
    [64]PIECHNA J,LISEWSKI P.Numerical Analysis of Unsteady Two-Dimensional Flow Effects in the Comprex Supercharger[J].The Archive of Mechanical Engineering,1998,45(4):341-351.
    [65]SELEROWICZ W,PIECHNA J.Comprex Type Supercharger As a Pressure-Wave Transformer Flow Characteristics[J].The Archive of Mechanical Engineering,1999,46(1):57-77.
    [66]ELLOYE K J,PIECHNA J.Influence of the Heat Transfer on the Operation of the Pressure Wave Supercharger[J].The Archive of Mechanical Engineering,1999,46(4):297-309.
    [67]ZAUNER E,CHYOU Y P,WALRAVEN F,ALTHAUS R.Gas Turbine Topping Stage Based on Energy Exchangers:Process and Performance[J].ASME Paper,1993,93-GT-58.
    [68]ANONYMOUS.A Pressure-Wave Machine with Integrated Constant-Volume Combustion [J].NEFF Funding of Swiss Energy Research 1977-1997,1997,Project No.426:142-153.
    [69]NOUR ELDIN H A,OBERHEM H,SCHUSTER U.Proceeding of the IMACS/IFAC International Symposium on Modeling and Simulation of Distributed Parameter Systems,Japan,1987[C],433-440.
    [70]OBERHEM H,NOUR ELDIN H A.Proceeding of the IMACS International Symposium on Mathematical and Intelligent Models in System Simulation,Belgium,1990[C],807-815.
    [71]OBERHEM H,NOUR ELDIN H A.7th International Conference on Numerical Methods in Laminar and Turbulent Flow,US,1991[C].
    [72]NOUR ELDIN H A,OBERHEM H.8th International Conference on Numerical Methods in Laminar and Turbulent Flow,UK,1993[C].
    [73]MARKARIOUS S H,NOUR ELDIN H A,PU H.9th International Conference on Numerical Methods in Laminar and Turbulent Flow,US,1995[C].
    [74]OBERHEM H,NOUR ELDIN H A.Accurate Animation of the Thermo-Fluidic Performance of the Pressure-Wave Machine and its Balanced Material Operation[J].International Journal of Numerical Methods of Heat and Fluid Flow,1995,5(1):63-74.
    [75]MARKARIOUS S H,HACHICHO O H,NOUR ELDIN H A.10th International Conference on Numerical Methods in Laminar and Turbulent Flow,UK,1997[C].
    [76]AZOURY P H.Engineering Applications of Unsteady Fluid Flow[M].New York:John Wiley and Sons,1992.
    [77]ROSE P H.Proceedings of the 12th International Symposium on Shock Tubes and Waves,1979[C],3-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700