音波振荡器振荡性研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
射流振荡气波制冷机作为一种膨胀制冷设备,是通过射流振荡器生成振荡射流对一端封闭的振荡管周期性的射气,利用激波和膨胀波的运动,来实现冷热分离,到达制冷目的。射流振荡气波制冷机的突出优点是无需输入外加能量并且没有转动部件,只需简单的静密封。目前,射流振荡气波制冷机的研究还不成熟,其等熵制冷效率较低,不能满足天然气的工业生产要求。
     本文采用数值模拟和实验测试的手段对以音波振荡器为振荡源的射流振荡气波制冷机进行研究,主要工作和结论如下:
     (1)研究了附壁射流的流动特性,建立了附壁元件的数学模型,模拟了附壁射流的流场,重点分析了元件几何尺寸和操作条件对附壁射流的影响,结果表明:增大膨胀比和喷嘴宽度、减小位差等不利于射流附壁,改变入口压力和控制管长度对射流附壁的影响较小,设置分流劈有利于射流附壁。
     (2)研究了射流振荡气波制冷机的振荡过程,分析了气波机振荡过程中的流场以及控制管、振荡管内的压力变化,指出射流对中间振荡管的射气时间最短,提出了附加反馈腔结构,研究了操作条件和几何参数对射流振荡的影响,得出射流只在一定的几何尺寸和操作条件范围内才能稳定振荡。喷嘴过宽,位差过小和过大,控制管过长、过短、过宽和过窄,操作压力过大,射流均不能稳定振荡。射流在固定几何尺寸的条件下,存在最大可振荡膨胀比。膨胀比相同时,射流的振荡频率随入口压力的增大而增大,可振荡尺寸范围也增大。
     (3)研究了控制管长度和膨胀比对射流的振荡频率和制冷效率的影响,分析了控制管、振荡管内压力波幅变化,得到的结论有:射流的振荡频率随控制管长度的增加而减小,随膨胀比的增加而增加,增加的趋势逐渐变缓。控制管和振荡管内的波幅随着膨胀比的增加均增大,因此气波机的等熵制冷效率逐渐增大。中间振荡管的压力幅值小于两侧振荡管的幅值,附加反馈腔结构能增大射流射入中间振荡管的压力波强度,但与其它振荡管的波强度相比仍有一定的差距。
Jet oscillating gas wave refrigerator, a kind of gas expansion refrigeration equipment, can separate the gas into hot and cold part by the motion of the shock wave and expanding wave using the jet oscillator to generate oscillation jet's periodical injection into oscillating tube with one-closed end. So the refrigeration can be realized. The prominent advantage of this facility is that it doesn't need extra energy supply and there is no moving part, just a simple static seal. At present, the isentropic refrigeration efficiency of the jet oscillating refrigerator is at a low level and could not satisfy requirement of natural gas's industrial production.
     The performance of the jet oscillating gas wave refrigerator, using a sonic oscillator, is investigated by numerical simulation and experiments in the current paper. The main research work and achievements are as following:
     (1) The properties of wall-attaching jet flow are studied. The mathematical model is established to numerical simulate the flow field of wall-attaching jet flow. Emphasis is placed on analysis of effects on the wall-attaching jet flow of the element's geometrical sizes and operating conditions. It is concluded that it is conducive to jet flow wall-attached to set the splinter, not conducive to increase the expansion ratio, the width of the nozzle and decrease the potential difference, of small effect to change the parameters (e.g. the inlet pressure and the length of the controlling tube).
     (2) The oscillating process of gas wave refrigerator is studied. The flow field of gas wave refrigerator in oscillating process and the pressure changes of the controlling tube and the oscillating tube are analyzed. The time of jet flow injecting to the middle pipe is shortest. So the jet flow oscillator with reaction cavity is proposed. Effects on the jet flow oscillating of the element's geometrical sizes and operating conditions are studied. As a conclusion, the jet flow oscillates only in a certain range of geometrical sizes and operating conditions. The jet flow can not be stable oscillation if the geometrical sizes and operating conditions are not appropriate. There is a maximum oscillation expansion ratio of jet flow in the fixed geometrical sizes. At the same expansion ratio, the oscillation frequency of jet flow increases with the increasing inlet pressure, so does the size range of oscillation.
     (3) Effects on the oscillation frequency and the isentropic refrigeration efficiency of jet flow are studied. Pressure amplitude in the controlling tube and oscillating tube is analyzed. As a conclusion, the oscillation frequency of jet flow decreases with the increasing length of controlling tube and increases with the increasing expansion ratio, but the trend increases slowly. Pressure amplitude in the controlling tube and the oscillating tube increases with the increasing expansion ratio. Therefore the isentropic refrigeration efficiency of gas wave refrigerator increases gradually. Pressure amplitude in the middle oscillating tube is smaller than that in other oscillating tubes. The pressure wave intensity in the middle oscillating tube is larger while the reaction cavity added to the jet flow oscillator, but there is a certain gap comparing with pressure wave intensity in other oscillating tubes.
引文
[1]张忠卿,卢慧.天然气:二十一世纪中国最大的商机[J].科技和产业,2004,.4(5):13-14.
    [2]孙岩冰.天然气谋夺石油王位[J].中国石油石化,2004,(11):37—43.
    [3]许光华.透平膨胀机[M].北京:机械工业出版社,1982.
    [4]Coanda H. Device for deflecting a stream of elastic fluid projected into an elastic fluid:US,2052869[P].1936-09-01.
    [5]邵件,包裕弟.转动喷嘴膨胀机的实验研究[J].浙江大学学报,1984,3(18):52-54.
    [6]方曜奇,郑洁,刘润杰等.气波制冷效率影响因素的实验研究[J].气动试验与测量控制,1993,7(3):15-18.
    [7]李学来.管长对振荡管冷效应影响的实验研究[J].制冷,1996,(2):15-17.
    [8]高明.激波能量的改变对制冷效率及管内波系的影响研究[J].制冷,2004,23(1):19-22.
    [9]代瑞国,刘学武.旋射流型式气波制冷机实验研究[J].安徽化工,2003,6:45-47.
    [10]黄志达,黄钟岳,方曜奇等.新型节能装置-透平式热分离机的研究[J].大连工学院学报,1983,22(3):115-119.
    [11]黄志达,唐山椒.RFT-2000型透平式热分离机原理及应用[J].大连工学院学报,1985,24(4):123-124.
    [12]刘学武,邹久朋,朱彻等.反冲膨胀式波制冷机制冷特性[J].天然气工业,2005,25(2):176-180.
    [13]Knauff, R. Converting Pressure of Liberated Gas Energy into Mechanical Work. British Patent[P].1906
    [14]Knauff, R. Converting Internal Gas Energy into Mechanical Work. British Patent[P]. 1906
    [15]刘虎.压力交换制冷机结构参数优化研究[D].大连:大连理工大学,2006.
    [16]丁美霞.压力交换制冷机参数对性能的影响[D].大连:大连理工大学,2007.
    [17]徐烈,熊炜,孙恒.脉管式气波制冷的实验研究[J].低温工程,1999,4:136.
    [18]熊炜,徐烈,张涛.脉管制冷与气波之比较[J].低温工程,1998,5:45-48.
    [19]李兆慈,徐烈,赵兰萍.脉管制冷与气波制冷耦合的研究[J].低温与超导.2000(2):1-5.
    [20]David M, Marechal J C, Simon Y and Gupin C. Theory flow in orifice pulse tube refrigerator[J]. Cryogenics,1993,33:154-159.
    [21]Kittel P. Ideal orifice pulse tube refrigerator performance[J].Cryogenics, 1996,36:849.
    [22]李学来.振荡管管壁轴向传热的研究[D].大连:大连理工大学,1996.
    [23]李兆慈.脉管式气波制冷机耦合特性的研究[D].上海:上海交通大学,2001.
    [24]黄齐飞.热分离机振荡管内激波的行为与控制[D].福州:福州大学,2003.
    [25]黄廷夫.脉动射流对压力波制冷机性能的影响[D].福州:福州大学,2006.
    [26]Fang Y Q, Zheng J, Liu R J,Zhu C,Fan J, Hu D P. Experimental study of gas wave refrigeration. In:TakayamaK (ed) Proc.18th Int Symp on Shock Waves. Springer-Verlag Berlin Heidelberg II[J].1991:1335-1338
    [27]Rott R, Thomann H.Finite-amplitude and diffuse effect in acoustics report on EURO-MECH23. J Fluid Mech[J].971 (49):391-397
    [28]Sprenger H. Thermal effects in resonance tubes. Milleilungen aus dem institutfur Aerodymamik[J].1954(21):18-34
    [29]Rennaz M C. Well head gas refrigerator field strips condensate. World Oil[J].1971,10:60-61.
    [30]Rennaz M C. New French gas cooler recovers 120bpd gasoline. World Oil[J].1973,8:57-59.
    [31]Christian D,Amande J C, Viltard C. Barge-mounted NGL plant boosts recovery from offshore field, World Oil[J].1982,7:105-107.
    [32]日特公开,昭47-10140.
    [33]Thermal separators employing a movable distribute. US No4383423[P].1983,5,17.
    [34]Galyukov.A,Timofeev E. Proceedings of 20th Int Sym(On Shock Waves), Australian[J].1976,3:13-20.
    [35]Saito T, Voinovich P, Zhao W etc. Experimental and numerical study of pressure wave refrigerator performance. Shock Wave[J].2003,13:253-259.
    [36]高金林.热分离机制冷机理的研究-气体工质的热力过程[D].杭州:浙江大学,1988.
    [37]包裕弟,沈永年.回收气体压力能的转动喷嘴膨胀机的实验研究[J].能源工程,1982,2:27-30.
    [38]沈永年,王洪明.影响热分离机等熵效率的主要因素及改进方法[J].低温工程.1999,5:13-16.
    [39]张朝涵,周国勇.提高旋转式热分离机热力性能的实验研究[J].低温与超导,2002,30(4):54-58.
    [40]Shao J, Bao Y D,Shen Y N etc. Experimental Investigation of an new type expander. Advances in Cryogenic Engineering[J].1986,31.
    [41]Shao J,Shen Y N, Feng Y P etc. Thermodynamic analysis and experimental study on petroleum gas separation system incorporating RJE. Proceeding of ICESR[J].1986,9.
    [42]方曜奇,胡志敏.振荡管结构对热分离机制冷的影响[J].流体工程,1987,17(3):15-18.
    [43]胡大鹏.静止式气波制冷机的研制[D].大连:大连理工大学,1989.
    [44]胡大鹏.第四届高校化机专业教学科研交流会论文[C].1991:152-158.
    [45]李力.气波制冷机接受管内不定常流数值模拟[D].大连:大连理工大学,1994.
    [46]代玉强,胡大鹏,刘伟,朱彻.含有复合阻尼结构的压力波制冷机振荡管内流动分析[J].低温与特气,2003,21(2):23-25.
    [47]胡志敏,方曜奇等.刚直管在脉动压力作用下表面泵热的实验研究[C].全国化工机械专业教育指导委员会成立大会及第二届校际学术交流会.
    [48]李学来.振荡管冷端传热分析[J].制冷,1998,1:28-31.
    [49]李学来,朱彻,方曜奇.振荡管最佳隔热位置[J].化工学报,2001,52(9):757-760.
    [50]李学来.压力波制冷机工作管开口端处的流动分析[J].福州大学学报(自然科学版),第2001,29(5):108-110.
    [51]李学来,黄齐飞,朱彻.反射激波的吸收对热分离器性能的影响[J].化工学报,2003,54(2):170-175.
    [52]朱彻,刘润杰,李洪安.气波制冷技术在天然气脱水净化工程中的应用[J].制冷,1985,50(1):10-15.
    [53]朱彻,李洪安,邹久朋等.一项新兴的天然气脱水净化技术[J].天然气工业,1995,15(5):57-61.
    [54]尹荣辅.川中油气田轻烃资源回收的问题和讨论[J].石油和天然气化工,1994,24(1):19-22.
    [55]蒋洪,朱聪.轻烃回收技术的现状及发展方向[J].石油规划设计,2000,11(2):15-16.
    [56]孙以岑.利用余压的节能技术-用热分离机回收氨厂放空气的探讨[J].石油化工设备,1986,15(6):13-18.
    [57]俞鸿儒.用于低温风洞的新颖制冷方法[J].力学学报,1999,31(6):645—651.
    [58]胡大鹏.SB416航空发动机高空模拟试验气波制冷系统研究与开发,2003.
    [59]俞鸿儒.热分离机内的流动[J].大连工学院学报,1984,23(4):1-7.
    [60]熊炜.脉管式气波制冷机的实验研究[D].上海:上海交通大学,1999.
    [61]刘光宗,方杭安.压力谐振管的数值计算[J].应用力学学报,1988,15(2):53-64.
    [62]Fang Y Q, Hu D P. Proc of the 10th Int Heat Transfer Conf [C]. Bmighton U K, 1994:54-56.
    [63]朱雪琴.气波制冷机振荡管最佳管长的研究[J].无锡轻工业学院学报,1993,2:135-140.
    [64]于伟.利用多孔板阻尼提高热分离器效率[C].青年力学协会第二届年会文流论文,1992:111-134.
    [65]YuWei. Study on the factors effect on refrigeration efficiency of thermal separator[M]. Beijing:Institute of Mechanics, Chinese Academy of Sciences,1988.
    [66]李学来,朱彻.振荡管复合阻尼陷波[J].化工学报,2001,52(5):379-380.
    [67]邹久鹏,刘学武,陈淑花.削弱振荡管内反射激波能量的实验研究[J].低温工程,2001,3:48-53.
    [68]刘学武,陈淑花.新型气波制冷机的节能效果[J].节能和环保,2001,9:34-35.
    [69]刘学武,金良安,李志义,胡大鹏.气波管内波系影响因素的实验研究与数值模拟[J].化工学报,2004,55(2):177-181.
    [70]刘伟,冀晓辉.新型气波制冷机的结构设计及性能研究[J].流体机械,2004,32(4):63-65.
    [71]李学来.两种管外传热型式对振荡管性能的影响[J].化工学报,2000,51(1):12-16.
    [72]李学来.压力波制冷机的研究及工业开发[J].制冷,1997,60(3):6-12.
    [73]李兆慈,徐烈,张存泉,孙恒,赵兰萍.气波制冷机等熵效率影响因素的实验研究[J].低温工程,2000,5:50-54.
    [74]李学来.两种管外传热型式对振荡管性能的影响[J].化工学报,2000,51(1):12-16.
    [75]李学来,黄齐飞,朱彻.有关因素对振荡管最佳射流激励频率的影响[J].化工学报,2002,53(2):194-198.
    [76]赵承庆,姜毅.气体射流动力学[M].北京:北京理工大学出版社,1998.
    [77]董志勇.射流力学[M].北京:科学出版社,2005.
    [78]原田正一,尾崎省太郎编.射流工程学[M].北京:科学出版社,1977.
    [79]Brown G B. On vortex motion in gaseous jets and the origin of their sensitivity to sound. Proc[J].Phys Soc.1935,47:702-732.
    [80]Crow S C, Champagne F H. Orderly structure in jet turbulence[J]. J Fluid Mech. 1971,43:547-591.
    [81]刘伟.静止式气波制冷机振荡特性研究[D].大连:大连理工大学,2003.
    [82]Turkowski M.Progress towards the optimisation of a mechanical oscillator flowmeter[J]. Flow Measurement and Instrumentation,2003,14:13-21.
    [83]Gebhard U, Hein H, Just E, Ruther P. Combination of a Fluidic Micro-Oscillator and Micro-Actuatorin LIGA-Technique for Medical Application[J]. lnternafional Conference on SoliOCStafe Sensors and Acfuafom, Chicago,1997:16-19.
    [84]Zipser L, Wachter F, Franke H. Acoustic gas sensors using airborne sound properties[J].Sensors and Actuators B,2000,68:162-167.
    [85]Yang J T,Chen C K, Tsai K J etc. A novel fluidic oscillator incorporating step-shaped attachment walls[J]. Sensors and Actuators A,2007,135:476-483.
    [86]Wang H, Priestman S B, Beck S B M, Boucher R F. Development of fluidic flowmeters for nonitoering crude oil production[J]. Flow Meas Instrum,1996,7(2):91-98.
    [87]Tesar V, Hung C H, William B Z. No-moving-part hybrid-synthetic jet actuator[J]. Sensors and actuators A(PHYSICS),2006,125:159-169.
    [88]Morris G J, Jurewicz J T, Palmer G M. Gas-Solid Flow in a Fluidically Oscillating Jet[J]. Fluids Engineering,1992,114:362-366.
    [89]Wada T, and Shimizu A. Mechanism and Design of Sonic Oscillator[J]. Fluidic Q,1976,4: 1~33.
    [90]射流振荡器[J].仪表技术与传感器.1971年.s1期:42-47.
    [91]陈祖志.射流振荡制冷机性能和机理研究[D].大连:大连理工大学,2008.
    [92]陈圣涛.静止式气波制冷机振荡与制冷特性的研究[D].大连:大连理工大学,2008.
    [93]杨军.正反馈式射流振荡器性能研究及应用[D].大连:大连理工大学,2008.
    [94]Parneix S, et al. Predictions of turbulent heat transfer in an axisymmetric jet impinging on a heated pedestal[J]. ASME J Heat Transfer,1999 121(2):43-49.
    [95]Speziale C G, Thangam S. Analysis of an RNG based turbulence model for separated flows[J].Int J Engng Sci,1992,30(10)1379-1388
    [96]王少平,曾扬兵,沈孟育等.用RNG k-ε模型数值模拟180°弯管内的湍流分离流动[J].力学学报.1996,28(3):257—262.
    [97]马铁犹等.计算流体力学[M].北京:北京航空航天大学出版社,1987.
    [98]黄敦.复杂激波的数值模拟[J].现代流体力学进展.1992,1:60~72.
    [99]黄国平,梁德旺.块结构的MUSCL算法求解三维进气道流场[J].空气动力学学报,2000,18(2):194-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700