重型直升机旋翼桨叶加筋薄壁结构设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加筋薄壁结构是指用一系列沿纵向、横向及任意角度布置的加强筋对薄壁进行加强的结构。这种结构不仅具有良好的抗破坏、分层及裂纹扩展的能力,更重要的是具有较高的刚度质量比。在航空航天领域,加筋薄壁结构虽然已经广泛地应用于机身结构、机翼及航天飞行器等方面,但是在旋翼桨叶结构中尚未使用。
     重型直升机旋翼桨叶尺寸大、桨叶受载严重、刚度质量比要求高,常用的桨叶结构形式已不适用。因此,研究新型的具有较高刚度质量比的桨叶结构形式对发展重型直升机具有重要的意义。根据加筋薄壁结构的优点,本文采用有限元素法研究了将加筋薄壁结构应用于重型直升机旋翼桨叶结构的设计方法。首先,通过采用通用有限元软件Patran,建立了铺层加强、轴向加筋及螺旋加筋的重型直升机旋翼桨叶D型梁的有限元模型;然后,利用Nastran分析解算器,计算了其在轴向、弯曲及扭转载荷作用下的结构响应以获得相应的刚度质量比;最后,对采用不同方式设计的重型直升机旋翼桨叶D型梁的刚度质量比进行了比较分析。研究结果表明,采用加筋的桨叶结构形式,可以提高重型直升机旋翼桨叶的剖面刚度,并获得较高的刚度质量比。
Stiffened thin-walled Structures are characterized by shells which are integrally stiffened by a series of ribs or stiffeners arranged in combinations of lateral, longitudinal and angular patterns. Such configurations possess excellent resistence to damage, delamination and crack propagation while exhibiting high stiffness to weight ratio. In aerospace, though the stiffened thin-walled Structures are commonly used in fuselage structures, wing structures and space vehicle structures, they are not used in conventional rotorblade structures.
     The large size, heavy load and high stiffness to weight requirement make it impractical to employ the conventional monocoque spar designs to the heavy-lift helicopter rotorblades. Thus it is very important for the development of heavy-lift helicopters to study new rotorblade structures with high stiffness to weight ratios. Considering the potential advantages of stiffened thin-walled Structures, by means of the finite element method,the design method of using stiffened thin-walled Structures for heavy-lift helicopter rotorblades is investigated in the present study. At first, the general purpose finite element code Patran is employed to creat the models of D spars of heavy-lift helicopter rotorblades with stiffened lays, axial stiffeners and helical stiffeners; Then, the analytical solution code Nastran is used to calculate the structural behaviors of these D spars under axial, bending and torsional loads to get their stiffness to weight ratios; Finally, the stiffness to weight ratios of these D spars are compared and analyzed. It is demonstrated that the stiffened thin-walled Structures can be used for heavy-lift helicopter rotorblades and increase the stiffness to weight ratios of rotorblades effectively.
引文
[1] Johnson, W., Yamauchi, K. G.., and Watts, E. M.,“NASA Heavy Lift Rotorcraft Systems Investigation,”NASA/TP-2005-213467.
    [2]《飞机设计手册》总编委会,“直升机设计,”航空工业出版社,2005.
    [3]肯.格林那,“直升机设计,”南京航空学院直升机研究所, 1992.
    [4]孙之钊,萧秋庭,徐桂祺,“直升机强度,”航空工业出版社, 1989.
    [5] Nampy, N. S., and Smith, C. E.,“Structural Behavior of Grid-stiffened Tubes under Axial, Bending, and Torsion Loads,”AIAA-2008-2169.
    [6] Darooka, K. D., and Jensen, W. D.,“Advanced Space Structure Concepts and Their Development,”AIAA-2001-1257.
    [7] Huybrechts, S., and Meink, T. E.,“Advanced Grid Stiffened Structures for the Next Generation of Launch Vehicles,”Aerospace Conference Proceedings, IEEE, Vol. 1, Issue, 1-8, Feb. 1997, pp: 263– 270.
    [8] Collier, C., Yarrington, P., and West, B. V.,“Composite, Grid-Stiffened Panel Design for Post Buckling Using Hypersizer,”AIAA-2002-1222.
    [9] Key, T. C., Garnich, R. M., and Hansen, A.,“Progressive Failure Prediction for Rib-Stiffened Panels Based on Multicolumn Technology,”Composite Structures, Vol. 65, 2004, pp: 357-366.
    [10] Gan, C., Gibson, R. F., and Newaz, M. G.,“Analytical/experimental Investigation of Energy Absorption in Grid-stiffened Composite Structures under Transverse Loading,”Experimental Mechanics, Vol. 44, No. 2, April 2004, pp: 185-194.
    [11] Huybrechts, S., and Tsai, S. W.,“Analysis and Behavior of Grid Structures,”Composites Science and Technology, Vol. 56, No. 9, 1996, pp: 1001-1015.
    [12] Kim, D. T.,“Fabrication and Testing of Composite Isogrid Stiffened Cylinder,”Composite Structures, Vol. 45, 1999, pp: 1-6.
    [13] Wegner, P. M., Ganley, J. M., and Meink, T. E.,“Advanced Grid Stiffened Composite Payload Shroud for the OSP Launch Vehicle,”Aerospace Conference Proceedings, IEEE, Vol. 4, 2000, pp: 359– 365.
    [14] Higgins, J. P., Wegner, P., and Sanford, G.,“Design and Testing of the Minotaur Advanced Grid-Stiffened Fairing,”Composite Structures, Vol. 66, 2004, pp: 339-349.
    [15] Reddy, D. A., Valisetty, R. R., and Rehfield, W. L.,“Continuous Filament Wound CompositeConcepts for Aircraft Fuselage Structures,”Proceedings of the 25th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, May 1984.
    [16] Chen, H., and Tsai, W. S.,“Analysis and Optimum Design of Composite Grid Structures,”Composite Materials, Vol. 30, No. 4, 1996.
    [17] Gendron, G., and Gurdal, Z.,“Optimal Design of Geodetically Stiffened Composite Cylindrical Shells,”AIAA-92-2306-CP.
    [18]胡于进,王璋奇,“有限元分析及应用,”清华大学出版社,2009.
    [19]高秀华,张小江,王欢,“有限单元法原理及应用简明教程,”化学工业出版社,2008.
    [20]施永立,陈福玲,“世界直升机手册,”航空工业出版社, 1994.
    [21]张呈林,张晓谷,郭士龙,“直升机部件设计,”南京航空航天大学.
    [22]约翰逊,“直升机理论,”航空工业出版社, 1991.
    [23]郭俊贤,樊光华,“国产复合材料在直升机旋翼桨叶研制中的应用,”直升机技术, 1998, (3): 6-10.
    [24]沈观林,胡更开,“复合材料力学,”清华大学出版社,2007.
    [25]刘兵山,黄聪,“Patran从入门到精通,”中国水利水电出版社,2003.
    [26] Kidane, S.,“Buckling Analysis of Grid Stiffened Composite Structures,”MS Thesis, Department of Mechanical Engineering, Louisiana State University, Aug. 2002.
    [27]王适存,“直升机空气动力学,”航空专业教材编审组出版,1985.
    [28] Tsai, W. S., and Manne, M. P.,“Composite Grid Structure,”Department of Aeronautics and Astronautics, Stanford University, Aug. 1996.
    [29]张永昌,“MSC.Nastran有限元分析理论基础与应用,”科学出版社,2004.
    [30] Jaunky, N., Knight, N. F., and Ambur, D. R.,“Formulation of an Improved Smeared Stiffener Theory for Buckling Analysis of Grid-stiffened Composite Panels,”Composites Part B: Engineering, Vol. 27, No. 5, 1996, pp: 519-526.
    [31] Vasiliev, V. V., Barynin, V. A., and Rasin, A. F.,“Anisogrid Lattice Structures– Survey of Development and Application,”Composite Structures, Vol. 54, Issue, 2-3, Nov.-Dec. 2001, pp: 361-370.
    [32] Biskner, A., and Higgins, J.,“Design and Evaluation of a Reinforced Advanced-Grid Stiffened Composite Structure,”AIAA-2005-2153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700