松华坝流域土地利用和气候变化对水资源的影响及生态补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是生命之源,是人类赖以生存的物质条件和自然资源。随着世界人口增长和工业化的发展,水量短缺、水源污染和洪涝灾害等水资源危机正越来越严重地影响着人类生命健康和社会持续发展。因此研究和保护水资源己成为当今社会各国政府和科学家的重要课题。水资源危机的本质是水资源管理问题,其解决方法必然是在对水资源规律理解基础上的管理方法研究。已有研究发现,气候和土地利用变化是影响水资源的主要原因。而山地区域是水资源供应的重要源泉,其独特的生态脆弱性和气候敏感性,使水资源更容易受到人类活动和气候变化的影响,进而更大程度地改变时空分布和自然属性。因此,在山地流域进行土地利用和气候变化对水资源的影响研究,并分析和探讨山地流域的生态补偿机制,对于改善流域管理和应对水资源危机具有重要的科学和实践意义。
     本文选取云南滇池的松华坝流域,综合运用自然科学和社会科学的方法,利用分布式水文模型(SWAT)就气候和土地利用变化对水资源的作用程度进行分析,并结合流域农业生产结构和经济收益探讨流域的生态补偿机制。
     主要的研究成果和结论如下
     1)松华坝流域主要的土地利用类型是林地、耕地和草地,其土地利用类型在时空尺度上发生着较大变化,整体趋势是林地增加(17.8%),耕地减少(11.9%)。1974-1992年间是研究时段内土地利用变化最大的时期,其次是2002-2008时期,最后是1992-2002时期。土地利用变化最快的阶段是2002-2008时期其次是1974-1992时期,最后是1992-2002时期。主要的土地利用类型中耕地的变化幅度最大(500%),其次是林地(33.5%)和草地(7.9%),而在变化速率上,草地的最大(1.8%/a),其次是耕地(1.3%/a)和林地(0.6%/a)。林地、耕地、草地三者之间的转化处在动态变化之中,林地的增加大都来源于耕地的减少(124.4%~103.3%),而耕地的减少主要是转化为林地(62.7%~69.5%)和草地(20.8%~24.2%)。
     2)气候是流域内河道径流变化的主要原因,贡献率为63.1%-96.6%。土地利用对河道径流变化的影响整体上偏小,但是差异较大;在降雨减少或不变时土地利用的贡献率为12.2%~36.9%,在降雨增加时贡献率为3.4%~5.2%。从土地利用类型的变化来看,耕地减少草地增加可能会增加河道(?)流量,反之则减少,而小面积林地增加(6%)和河道(?)流变化的关系不明显。
     3)大面积退耕还林还草(23.46%)可能会通过减少流域蒸发量(4.8%,9.4%)和增加基流(14.1%,20.9%)来增加河道(?)流(4.4%和11.3%)。而退耕还林或者还草对于地表(?)流也有不同影响,还林减少地表(?)流10.3%,还草增加地表(?)流10.2%。退耕还林效果还跟流域林地的空间分布有关系,坡耕地(>5。)和平耕地(<5。)还林相比,会减少地表(?)流(8.2%),增加壤中流(9.8%)和河道(?)流(4.4%)。
     4)土地利用和气候变化都是影响水体总氮变化的主要原因,贡献率分别为68.5%和68.2%,而两者对水体总氮的影响在不同时期有较大差异。当总氮数量有较大变化时,或者减少量超过40%时,土地利用的贡献率比较大,而当总氮负荷增加或者减小较少时,气候的贡献率比较大。土地利用类型和总氮变化量之间的相关性分析表明耕地、草地和总氮变化具有显著相关性(0.814,-0.895),而林地和总氮变化没有显著相关性。
     5)退耕还林、产业结构调整、水土保持措施可分别减少水体总氮的38.8%、10.0%和14.8%。从不同坡度的耕地还林效果来看,坡地(>5°)还林减少总氮的数量是平地(<5°)还林的1.7倍。对于不同的作物类型,化肥施用量高的作物(蔬菜)总氮排放要远远高于化肥施用量低的作物。
     6)松华坝流域的化肥投入占作物生产投入的39.7%,其中粮食作物的化肥投入比例(61.5%)高于经济作物(44.1%)。不同作物或同一作物的不同区域之间化肥施用量差异较大。教育水平、收入指数、农业收入比重、单位面积劳动力、耕地面积、粪指数与农户氮肥和有机肥的施用没有明显的相关性(R2=0.02)。
     7)生态服务功能价值法计算的生态补偿标准(23185元/hm2)可以作为流域退耕还林生态补偿标准的上限。机会成本法的生态补偿标准核算结果(9118.5元/hm2~21646.1元/hm2)并不是一成不变的,存在着较大的市场风险。意愿调查法可以作为流域生态补偿标准的依据。机会成本法和意愿调查法相结合更有利于生态补偿标准的估算。
     8)在所有生态补偿措施中,平地退耕还林具有最高的补偿标准(13620元/hm2),其次是坡地退耕还林(10110元/hm2)、水土保持(3000元/hm2),种植结构调整不仅不需要补偿,反而具有较高的经济收入(6735元/hm2):而就生态补偿效率来看种植结构调整最高,其次是坡地退耕还林、水土保持和平地退耕还林。
     创新点
     1)综合利用自然科学和社会科学的研究方法,在中国西南地区的山地流域全面探讨了土地利用和气候变化对水资源变化的作用程度,并把分布式水文模型应用到生态补偿的研究中。
     2)对此分析了流域不同坡度耕地退耕还林对河道径流和总氮的影响,并讨论了两种措施的生态补偿标准和效率。
Being the source of lives, water is an essential natural material resource for human beings. However, as a consequence of growing population and expanding industrialization worldwide, water source crisis including water shortage, pollution, and flooding is increasingly threatening human lives and sustainable development of human society. Therefore, water source investigation and protection have become a significant project for both governments and scientists. Since water crisis is virtually caused by water source management problems, effective solutions can only be found through studying management practices with a better knowledge of the nature of water source. Previous studies have shown that climate conditions and land use are the primary factors influencing water resources and water environment. Mountain areas are the source of water resources. However, because of their unique ecological fragility and higher climate sensitivity, mountainous areas are easily impacted by anthropomorphic activity and climate change effects, thus changing the distribution and flow of water resources and the quality of water ecosystems. A better understanding of effects of land use and climate changes on water resources and water environment in mountain watersheds, along with specific analysis of local watershed protection strategies (particularly mechanisms of payment for ecosystem service, known as PES), have scientific as well as practical significance concerning the improvement of watershed management and thus the alleviation of water resource crisis.
     In this research, a case study in Songhuaba Watershed, a vital part of Dianchi (the largest freshwater lake in Yunnan) was earried out to investigate the water resource protection issues in a typical agriculture-based mountainous watershed. With a synthesized natural science and social science methodology, we focused on the influence of climate conditions and land use on the water resources of Songhuaba Watershed. Furthermore, a questionnaire investigation on PES mechanisms in the watershed was also conducted. On the basis of our findings, water resource protection policies in Songhuaba Watershed were assessed and discussed.
     The main results and conclusions of this research are as follows:
     1) Forest, cropland and grassland are the main land use types in Songhuaba Watershed. During the past decades, land use in this watershed has undergone dramatic changes both spatially and temporally, with overall trends of an increase in forest (17.8%) while a decrease in cropland (11.9%). From1974to1992, the watershed saw the vastest changes in land use over the whole research time range, followed by period2002-2008and1992-2002. In terms of rate of change in land use, period2002-2008was the fastest, followed by1974-1992and1992-2002. Of all the land use types, cropland went through the largest change in scale (50.0%), followed by forest (33.5%) and grassland (7.9%). However, grassland ranked the first in terms of rate of change (1.8%/a), then cropland (1.3%/a) and forest (0.6%/a). Transformations among the three land use types have been a dynamic process. Generally, increase in forest resulted from a decrease in cropland (124.4%-103.3%), while decrease in cropland was often accounted by transformation into forest (62.7%-69.5%) and grassland (20.8%-24.2%).
     2) Climate change was the most important factor impacting river runoff in Songhuaba Watershed, accounting for63.1%-96.6%of the total value. Land use had little impact on river runoff change as a whole, but different land use types had significantly different impacts. When rainfall was decreasing or constant, the impact of land use on a river's runoff flow was12.2%-36.9%, whereas when rainfall increased, the impact of land use was only3.4%-5.2%. In terms of land use types, decrease in cropland or increase in grassland could lead to an increase in river runoff, while increase in cropland or decrease in grassland could result in a decrease in river runoff. However, no obvious correlation between change of forest area and river runoff was detected.
     3) The conversion of cropland to forest or grassland each functioned to increase river runoff (4.4%and11.3%respectively), due to decrease in water evaporation (4.8%,9.4%) and increase in base flow (14.1%,20.9%). Also, the conversion of cropland to forest and grassland affected surface runoff, but with different effects. While the conversion of croplands to forests decreased surface runoff by10.3%, the conversion to grasslands increased the value by10.2%. Our results showed that spatial pattern of forest had a direct influence on the efficiency of conversion to forest. Compared with those cropland with a slope less than5degree, conversion of cropland with a slope above5degree could significantly increase interflow (9.8%) and river runoff (4.4%) but decrease surface runoff (8.2%).
     4) Both land use and climate changes were primary factors influencing total nitrogen load in Songhuaba Watershed, contributing68.5%and68.2%respectively. However, our results showed that rainfall had no significant influence on total nitrogen load. Relative contribution of land use and climate changes to nitrogen load varied under different circumstances. Land use had a higher determination coefficient on total nitrogen when a dramatic change happened in the total nitrogen value (changes above40,0%); otherwise climate changes had a higher determination coefficient. Based on the correlation analysis between land use and total nitrogen load, significant correlation (0.814,-0.895) between the area of cropland and grassland and total nitrogen load was found, while no obvious correlation between forest area and total nitrogen load was detected.
     5) Conversion of cropland to forest, adjustment of industry structure, and water and soil protection practices could reduce total nitrogen load by38.8%,10%, and14.8%respectively. In terms of the efficiency of conversion of cropland to forest, conversion of slope cropland (with a slope more than5degree) reduced1.7times total nitrogen load than that of flat cropland (with a slope less than5degree). With regard to crop types, growing crops with high fertilization requirement generally resulted in higher nitrogen load than those with low fertilization requirement.
     6) In Songhuaba Watershed, investment in fertilizer took up39.7%of the total crop input. Moreover, the proportion of investment in fertilizer for food crops (61.5%) is much higher than for cash crops (44.1%). Fertilizer application varied in terms of crop types and different areas growing the same crop. According to our analysis, the following parameters tested had no significant correlation with application of nitrogen and organic fertilization of a household(R2=0.02):education level, income index, proportion of agricultural income, people force per unit cropland, area of cropland, and manure index.
     7) Standard (23185Yuan/hm2) for payment for ecosystem services calculated using an ecosystem service function evaluation method could be used as the upper bound of PES for conversion of cropland to forest in Songhuaba Watershed. However, PES standard (9118.5Yuan/hm2-21646.1Yuan/hm2) calculated merely by opportunity cost was not consistent and thus risky. On the other hand, data (12753.2Yuan/hm2) from the questionnaire investigation on willingness of PES could serve as reliable reference for determination of standards for PES. In Songhuaba Watershed, opportunity cost of conversion of cropland to forest (1.92×108Yuan/a) was very close to the questionnaire investigation result (2.12×108Yuan/a). By this token, a combination of these two methods could be used to make a better decision on determination of PES standard.
     8) Of all the PES mechanisms studied, conversion of flat cropland to forest was the most costly, with the highest PES standard (13620Yuan/hm2) and the highest payment for ecosystem services per unit (1826Yuan/kg). Conversion of slope cropland to forest had the greatest ecosystem service profit (20.1kg Nitrogen/hm2). Adjustment of industry structure did not require any payment for ecosystem services, but resulted in higher profit instead (6735Yuan/hm2). Water and soil protection practices had an advantage in terms of PES standard, which was only next to the adjustment of industry structure. However, with regard to payment for ecosystem services per unit, water and soil protection practices were only slightly better than conversion of flat cropland to forest.
     Novelty:
     1) With a synthesized natural science and social science methodology, effects of land use and climate changes on water resource were investigated. Also, distributed hydrologic model was applied to PES studies.
     2) The efficiency of conversion of different croplands (slope land vs. flat land) to forest was compared in terms of their influence on river runoff and total nitrogen load. PES standards and efficiency of these two practices were discussed as well.
引文
Ake S, Lorin E R, Reinhold C. A GIS method to aid in non-point source critical area analysis [J]. International Journal of Geographical Information Science,1988,2(4):365-378.
    Alcamo J, Florke M, Marker M. Future long-term changes in global water resources driven by socioeconomic and climatic changes [J]. Hydrological Sciences Journal-Journal des Sciences Hydrologiques,2007,52,247-275.
    Andersen J, Refsgaard J C, Jensen K H. Distributed hydrological modelling of the Senegal River Basin-model construction and validation [J]. Journal of Hydrology,2001,247: 200-214.
    Barlund I, Kirkkala T, Malve O, et al. Assessing SWAT model performance in the evaluation of management actions for the implementation of the water framework directive in a Finnish catchment [J]. Environmental Modelling & Software,2007,22:719-724.
    Batelaan O. Smedt F D, Triest L. Regional groundwater discharge:phreatophyte mapping, groundwater modelling and impact analysis of land-use change[J]. Journal of Hydrology, 2003,275:86-108.
    Becker A, Bugman H. Global Change and Mountain Regions-an IGBP initiative for collaborative research [J]. Global Change and Protected Areas,2001,9:3-9.
    Boers P C. Nutrient emissions from agriculture in Netherlands:causes and remedies [J]. Water Science and Technology,1996,33:1983-1990.
    Borah D K, Bera M. Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases.Transaction of the ASAE, American society of agriculture engineers,2003,46(6):1553-1566.
    Bouraoui F, Benabdallah S, Jrad A, et al. Application of the SWAT model on the Medjerda river basin (Tunisia) [J]. Physics and Chemistry of the Earth,2005,30:497-507.
    Bulas J M. Implementing cost recovery for environmental services in Mexico [J]. Paper presented at World Bank Water Week. Washington. D.C:2004.
    Calder I R, Hall R L, Bastable H G, et al. The impact of land use change on water resources in sub-Saharan Africa:a modelling study of Lake Malawi [J]. Journal of Hydrology,1995, 170,123-135.
    Calder I R. Water-resource and land-use issues[C]. SWIM Paper 3. Colombo, Sri Lanka: International Water Management Institute.1998.
    Carpenter S R, Caraco N F, Correll D L, et al. Nonpoint pollution of surface waters with phosphorus and nitrogen [J]. Ecological Applications,1998,8:559-568
    Castillo M M, Allan J D, Brunzell S. Nutrient concentrations and discharge in a Midwestern Agricultural Catchment[J]. Journal Environmental Quality,2000,29(4):1142-1151
    Chaves J, Neill C. Elsenbeer H, et al. Land management impacts on runoff sources in small Amazon watersheds [J]. Hydrological Processes,2008,22,1766-1775.
    Coe M T, Costa M H, Soares-Filho B S. The influence of historical and potential future deforestation on the stream flow of the Amazon River-land surface processes and atmospheric feedbacks [J]. Journal of Hydrology,2009,369,165-174.
    Crooks S, Davies H. Assessment of land use change in the Thames catchment and its effect on the flood regime of the river [J]. Physics and Chemistry of the Earth (B),2001,26: 583-591.
    Daly G L, Wania F. Organic contaminants in mountains [J]. Environmental Science & Technology,2005,39 (2):385-398.
    DeFries R, Eshleman K N. Land-use change and hydrologic processes:A major focus for the future. Hydrological Processes,2004.18:2183-2186.
    Deninis L C, Keith L, Timothy R E. GIS-based modelling of non-point in the vadose zone [J]. Soil and Water Conservation,1998,53 (1):34-38.
    Echevarrla M. Water user associations in the Cauca valley:a voluntary mechanism to promote upstream-downstream cooperation in the protection of rural watersheds[C]. Land-water linkages in rural watersheds case study series. Rome, Italy:Food and Agriculture Organization (FAO),2002.
    Eehevarrla M. Financing watershed conservation:the FONAG water fund in Quito, Ecuador[C]. In S. Pagiola, J. Bishop,, N. Landell-Mills eds. Selling Forest Environmental Services:Market-based Mechanisms for Conservation and Development. London. UK: Earth scan.2002.
    Ekaterini V, Eleni G. Quantity and quality integrated catchment modeling under climate change with use of soil and water assessment tool model [J]. Journal of Hydrologic Engineering,2002,7(3):228-245.
    Elkaduwa W K B, Sakthivadivel R.1998. Use of historical data as a decision support tool in watershed management:a case study of the Upper Nilwala basin in Sri Lanka.Research Report 26. International Water Management Institute, Colombo, Sri Lanka.
    Farley, K A, Jobbagy E G Jackson R B. Effects of afforestation on water yield:a global synthesis with implications for policy[J]. Global Change Biology,2005,11:1565-1576.
    Forest Trends and The Katoomba Group,UNEP. Payments for ecosystem services getting started:A primer,2008. Available on line http://www.katoombagroup.org/documents/publications/GettingStarted.pdf.
    Gaas S I. Decision-aiding models:validation, assessment, and related issues in policy analysis [J]. Operations Research,1983,31:603-631.
    Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions and potential solutions [J]. Science,2008,320 (5878):889-892.
    Granger S J, Hawkins J M B, Bol R, et al. High temporal resolution monitoring of multiple pollutant responses in drainage from an intensively managed grassland catchment caused by a summer storm. Water Air and Soil Pollution,2010,205,377-393.
    Green, W H. and Ampt G A. Studies on soil physics,1. The flow of air and water through soils. Journal of Agricultural Sciences,1911,4:11-24.
    Hall J, Murphy C. Vulnerability analysis of future public water supply under changing climate conditions:a study of the Moy Catchment, Western Ireland [J]. Water Resource Management,2010,24,3527-3545.
    Hamilton S K. Biogeochemical implications of climate change for tropical rivers and floodplains [J]. Hydrobiologia,2010,657,19-35.
    He D, Cai J M, Zhou J, et al. The analysis of land use dynamic change and driving force in the Olympic Village periphery area [J]. Joint Urban Remote Sensing Event,2009,1-3, 70-76.
    IPCC.关于评估气候变化影响和适应对策的技术指南[M].WMO, UNEP,1994.
    IPCC. Climate change 1995:Impacts, Adaptations and Mitigation of Climate change: scientific-technical analyses:contribution of working group to the second assessment report of the intergovernmental panel on climate change [M].Cambridge University Press, 1996.
    IPCC. Climate Change 2001. In:Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X. Maskel K, Johnson CA (Eds.) The Scientific Basis. Cambridge Cambridge University Press.2001.
    IPCC. Climate Change 2007:The physical Science Basis. Summary for Policymakers. Cambridge:Cambridge University Press,2007.
    Jennifer A G, Alain D J, Elisabeth S. The role of deforestation risk and calibrated compensation in designing payments for environmental services. Environment and Development Economics,2008,13:375-394.
    Jones J A, Grant G E. Peak flow responses to clear-cutting and roads in small and large basins, western Cascades, Oregon [J]. Water Resources Research,1996,32(4):959-974.
    Keppeler E T, Ziemer R R. Logging effects on streamflow:water yield and summer low flows at caspar creek in northwestern California [J]. Water Resources Research,1990, 26(7):1669-1679.
    Kiersch B. Land use impacts on water resources:a literature review[C].In:Land-Water Linkages in Rural Watersheds. Electronic Workshop, Discussion Paper No.1. FAO. Rome: 2000.
    Lahmer W, Pfutzner B, Becker A. Assessment of Land Use and Climate Change Impacts on the Mesoscale [J].phys. Chem. Earth (B),2001,26(7-8):565-575.
    Landell-Mills N, Porras I. Silver bullet or fools'gold-a global review of markets for forest environmental services and their impact on the poor London, UK:International Institute for Environment and Development (IIED):2002.
    Lebo M E, Herrmann R B. Harvest impacts on forest outflow in coastal North Carolina [J]. Journal of environmental quality,1998,27(6):1382-1395.
    Lee S I. Nonpoint soil pollution [J]. Fisheries,1979 (2):50-52.
    Legesse D, Vallet-Coulomb C, Gasse F. Hydrological response of a catchment to climate and land use changes in tropical Africa:case study south central Ethiopia [J]. Journal of Hydrology,2003,275:67-85.
    Li L Q, Yin C Q, He Q C, et al. First flush of storm runoff pollution from an urban catchment in China[J]. Journal of Environmental Sciences-China,2007,19:295-299.
    Lindstrom E S, Bergstrom A K. Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time[J]. Limnol Oceanogr,2004,49: 125-136.
    Liu J Y, Zhang Z X, Xu X L, et al. Spatial patterns and driving forces of land use change in China during the early 21st century [J]. Journal of Geographical Sciences,2010,20, 483-494.
    Liu J, Buheoser B. Study of the space-time characteristics of land use variations based on remote sensing data [J]. Quaternary Research,2000,20:229-239.
    Loerup J K, Refsgaard J C, Mazvimavi D. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling:case studies from Zimbabwe [J]. Journal of Hydrology,1998,205:147-163.
    Long H L, Tang G P, Li X B, et al. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China [J]. Journal of Environmental Management,2007,83:351-364.
    Ma X, Xu J C, Luo Y, et al. Response of hydrological processes to land-cover and climate changes in Kejie watershed, south-west China[J]. Hydrological Processes,2009, 23(8):1179-1191.
    Messerli B, Viviroli D, Weingartner R.2004. Mountains of the world:vulnerable water towers for the 21st century [J]. Ambio,2007,13:30-34.
    Mimikou M A. Baltas E. Varanou E, et al. Regional impacts of climate change on water resources quantity and quality indicators [J]. Journal of Hydrology,2000,234:95-109.
    Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations [J]. Transactions of the AS ABE,2007, 50(3):885-900.
    Mountain Agenda. Mountains of the World-Mountains, Energy and Transport[C]. Centre for Development and Environment (CDE), University of Berne, Switzerland:2001.
    Mustard J, Fisher T. Land Use and Hydrology[J]. Land change sicience,20046:257-276.
    Napton D E, Auch R F, Headley R, et al. Land changes and their driving forces in the Southeastern United States [J]. Regional Environmental Change,2010,10,37-53.
    Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part Ⅰ-A discussion of principles [J]. Journal of Hydrology,1970,10(3):282-290.
    Neitsch S L, Arnold J G, Kiniry J R, et al. soil and water assessment tool user's manual(version 2000) Published 2002 by Texas Water Resources Institute, College Station, Texas TWRI Report TR-192.
    Neitsch S L, Arnold J G, Kiniry J R. et al. Soil and water assessment tool theoretical documentation,2005.
    Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and Water Assessment Tool theoretical documentation version 2000. Agriculture Research Service and Blackland Research Center:2001. Available at:http://www.brc.tamus.edu/swat/doc.html. Accessed 10 November 2004
    Niehoff D, Fritsch U, Bronstert A. Land-use impacts on storm-runoff generation:scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany [J]. Journal of Hydrology,2002,267:80-93.
    Pagiola S, Gunars P. Payment for environmental services:from theory to practice [J]. Washington D.C., The World Bank:2007.
    Piao S, Friedlingstein P, Ciais P, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends[J]. PNAS,2007,104(39): 15242-15247.
    Reungsang P, Kanwar R S, Jha M, et al. Calibration and validation of SWAT for the upper Maquoketa river watershed [C]. Working paper 05-WP 396. Center for Agricultural and Rural Development, Iowa State University:2005.
    Rojas M, Aylward B. The case of La Esperanza:a small,private,hydropower producer and a conservation NGO in Costa Rica. Land-water linkages in rural watersheds case study series. Rome, Italy:Food and A culture Organization (FAO):2002.
    Romanowicz A A, Vanclooster M, Rounsevell M, et al. Sensitivity of the SWAT model to the soil and land use data parameterization:a case study in the Thyle catchment, Belgium [J]. Ecological Modelling,2005,187:27-39.
    Sahin V, Hall M J. The effects of afforestation and deforestation on water yields[J]. Journal of Hydrology,1996,178:293-309.
    Sandstrom K. Forests and Water-Friends or Foes:Hydrological Implications of Deforestation and Land Degradation in Semi-arid Tanzania. Linkoeping Studies in Arts and Science-120. Department Theme Research, University of Linkoeping:Sweden.1995.
    SCS (Soil Conservation Service). Urban hydrology for small watersheds [M], TR 55, Soil Conservation Service, Washington, D.C:1986
    Seibert J. Conceptual runoff models-fiction or representation of reality [D]. Uppsala:the Faculty of Science and Technology, Uppsala University:1999.
    Serneels S. Priority of questions for land-use/cover change research in the next couple of years [J]. LUCC Newsletter No.7:2001.
    Sharpley A N, Williams J R. EPIC-erosion productivity impact calculator,1. model documentation[M]. Washington, D.C, Agricultural Research Service, USDA:1990.
    Shi P J, Gong P, Li X B, et al. Method and practice of land use/land cover [M]. Beijing: Science Press,2000.
    Smith R E, Scott D F. The effects of afforestation on low flows in various regions of South Africa. Water SA,1992,18:185-194.
    Soil Conservation Service. Section 4:Hydrology In National Engineering Handbook. SCS, 1972.
    Stefano P, Agustin A, Gunars P. Can payments for environmental services help reduce poverty-an exploration of the issues and the evidence to date from Latin America [J]. World Development,2005,33(2):237-253.
    Sven W. The Efficiency of Payments for Environmental Services in Tropical Conservation[J]. Conservation Biology,2007,21(1):48-58.
    Tibby J, Tiller D. Climate-water quality relationships in three Western Victorian (Australia) lakes 1984-2000 [J]. Hydrobiologia,2007,591:219-234
    Tim U S, Jolly R. Evaluating agriculture non-point-source pollution using integrated geographic information and hydrologic/water quality model [J]. Journal of Environmental Quality,1994,23(1):25-35.
    Tolson BA, Shoemaker CA. Cannonsville reservoir watershed SWAT2000 model development, calibration and validation [J]. Journal of Hydrology,2007,337:68-86.
    Tong S T Y, Chen W. Modelling the relationship between land use and surface water quality [J]. Journal of Environment Management,2002,66:377-393.
    Tota-Maharaj K, Scholz M. Efficiency of permeable pavement systems for the removal of urban runoff pollutants under varying environmental conditions [J]. Environmental Progress and Sustainable Energy,2010,29,358-369.
    UN, Earth Summit, Agenda 21. The United Nations programme of action from Rio,the final text of agreements negotiated by governments at the United Nations conference on environment and development (UNCED) [C]. Rio de Janeiro, Brazil,1992:294.
    Van Vliet M T H. Zwolsman J J G. Impact of summer droughts on the water quality of the Meuse River [J]. Journal of Hydrology,2008.353,1-17.
    Varanou E, Gkouvatsou E. Quantity and quality integrated catchment modelling under climate change with use of soil and water assessment tool model [J]. Journal of Hydrologic Engineering,2002,7(3):228-245.
    Veijalainen N, Dubrovin T, Marttunen M, et al. Climate change impacts on water resources and lake regulation in the Vuoksi Watershed in Finland [J]. Water Resource Management, 2010,24,3437-3459.
    Vieira S R, Hatfield J L, Nielsen D R, et al. Geostatistical theory and application to variability of some agronomic properties[J]. Hilgardia,1983,51,1-75.
    Wang G X, Liu J Q, Kubota J, et al. Effect of land-use changes on hydrological processes in the middle basin of the Heihe River, northwest China [J]. Hydrological Processes,2007. 21:1370-1382.
    Whitehead P G, Wilby R L. Impacts of climate change on in stream nitrogen in a low land chalk stream:An appraisal of adaptation strategies [J]. Science of the Total Environment. 2006,365:260-273.
    Wilk J, Andersson J, Plermkamon V. Hydrololgical impacts of forest conversion to agriculture in a large river basin in northeast Thailand [J]. Hydrological Processes,2001. 15:2729-2748.
    Williams, J R. Chapter 25:The EPIC model, p.909-1000. In V.P. Singh (ed.).Computer models of watershed hydrology. Water Resources Publications.1995.
    Zhu Z Q, Liu L M, Chen Z T, et al. Land-use change simulation and assessment of driving factors in the loess hilly region-a case study as Pengyang County [J]. Environmental Monitoring and Assessment,2010,164,133-142.
    鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,16(1):66-71.
    蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域上壤侵蚀量的研究[J].水上保持学报,2000.14(2):19-22.
    曹明德.对建立我国生态补偿制度的思考明[J].法学.2004.3:40-43.
    陈军锋,陈秀万.SWAT模型的水量平衡及其在梭磨河流域的应用[J].北京大学学报(自然科学版).2004,40(2):265-270.
    陈军锋,李秀彬,张明.模型模拟梭磨河流域气候波动和上地覆被变化对流域水文的 影响[J].中国科学D辑地球科学,2004,34(7):668-674.
    陈军锋,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,16(5):474-480.
    陈利顶,傅伯杰,赵文武.“源”“汇”景观理论及其生态学意义[J].生态学报,2006,26(5):1444-1449.
    陈瑞莲,胡熠.我国流域区际生态补偿:依据、模式与机制[J].学术研究,2005,9:71-74.
    程红光,郝芳华,任希岩,等.不同降雨条件下非点源污染氮负荷入河系数研究[J].环境科学学报,2006,26(3):392-397.
    邓慧平,唐来华.托江流域水文对全球气候变化的响应[J].地理学报,1998,53(1):42-48.
    丁一汇.人类活动与全球气候变化及其对水资源的影响[J].气候变化观测事实,2008,(2):20-27.
    傅伯杰,陈利顶,马克明,等.景观生态学原理及其应用[M].北京:科学出版社,2000.
    傅国斌.全球变暖对华北水资源影响的初步分析[J].地理学与国土研究,1?91,7(4):22-26.
    郭旭东,陈利顶,傅伯杰.土地利用/土地覆被变化对区域生态环境的影响[J].环境科学进展,1999,7(6):66-75
    韩瑞光,冯平.流域下垫面变化对洪水径流影响的研究[J].干旱区资源与环境,2010,24(8):27-30.
    郝秀平,夏军,王蕊.气候变化对地表水环境的影响研究与展望[J].水文,2010,30(1):67-72.
    何浩然,张林秀,李强.农民施肥行为及农业面源污染研究[J].农业技术经济,2006,6:1-10
    贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,19(5):87-91.
    黄金良,洪华生,张珞平,等.基于GIS和USLE的九龙江流域上壤侵蚀量预测研究[J].水上保持学报,2004,18(5):75-79.
    黄清华,张万昌.SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报(自然科学版),2004,28(2):22-26.
    金洋,李恒鹏,李金莲.太湖流域土地利用变化对非点源污染负荷量的影响[J].农业环境科学学报,2007,26(4):1214-1218.
    昆明市环境保护局.昆明市松华坝水源保护区多学科综合考察报告[R].1989.
    李爱年.关于征收生态效益补偿费存在的立法问题及完善建议[J].中国软科学,2001.(1):10-15.
    李俊然,陈利顶,郭旭东,等.上地利用结构对非点源污染的影响[J].中国环境科学,2000,20(6):506-510.
    李磊.我国流域牛态补偿机制探讨[J].软科学,2007121(3):85-87.
    李文华.生态服务补偿:世界自然资金会的看法与实践[J].资源科学,2006,4:1.
    李秀彬.全球环境变化的核心领域——土地利用/覆被变化的国际研究动向.地理学报,1996,51(6):553-557.
    李宗逊,丁宏伟.昆明市松华坝水库氮、磷主要来源的间接证据[J].西南农业学报,2007,20(3):430-434.
    梁博,王晓燕,曹利平.我国水环境非点源污染负荷估算方法研究[J].吉林师范大学学报(自然科学版),2004,(3):58-62.
    梁涛,王浩,章申,等.西苕溪流域不同上地类型下磷素随暴雨径流的迁移特征[J].环境科学,2003,24(2):35-40.
    刘昌明,傅国斌.气候变化对中国水文情势影响的若干分析[M].北京:气象出版社,1993,pp 20-213.
    刘楚文.松华坝水库水源区面源污染的防治[J].水利规划与设计,2006,6:12-14,49.
    刘春蓁.关于气候变化与水资源的评述[J].地球科学进展,1989,(3):65-60
    刘纪远,刘明亮,庄大方,等.2002.中国近期土地利用变化的空间格局分析[J].中国科学:D辑地球科学.2000,32(12):1031-1040.
    刘青.江河源区牛态系统服务价值与生态补偿机制[D].南昌:南昌大学,2007.
    刘瑞民,杨志峰,丁晓雯.土地利用/覆盖变化对长江上游非点源污染影响研究[J].环境科学,2007,27(12):2408-2414.
    马骥.农户粮食作物化肥施用量及其影响因素分析—以华北平原为例[J].农业技术经济,2006,6:36-42.
    马俊杰,尹怀庭.基于水源保护的黑河水库汇流区乡村发展研究[J].经济地理,2004,24(2):285-288.
    毛显强,钟瑜,张胜.生态补偿的理论探讨[J].中国人口资源与环境,2002,12(4):38-41
    孟庆华,杨林章.三峡库区不同上地利用方式的养分流失研究[J].生态学报,2000, 20(6):1028-1033.
    庞靖鹏.非点源污染分布式模拟——以密云水库水源的保护为例[D].北京师范大学博士学位论文,2007.
    《气候变化国家评估报告》编写委员会.气候变化国家评估报告[M].北京:科学出版社,2007.
    秦丽杰,邱红.松辽流域水资源区域补偿对策研究[J].自然资源学报,2005,20(1):14-20.
    石培礼,李文华.2001.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,16(5):0481-0487.
    史培军,宫鹏,李晓兵,等.上地利用/覆盖变化研究的方法与实践[M].科学出版社,2000.
    世界银行政策研究报告[R].生态有偿服务在中国:以市场机制促进生态补偿2007.
    宋红丽,薛惠锋,董会忠.流域生态补偿支付方式研究[J].环境科学与技术,2008,31(2):144-147.
    万本太,邹首民.走向实践的生态补偿—案例分析与探索[M].中国环境科学出版社,2008.
    王国庆,张建云,刘九夫等.气候变化对水文水资源影响研究综述[J].中国水利,2008(2):47-51.
    王礼先,张志强.干旱地区森林对流域径流的影响[J].自然资源学报,2001,16(5):454-459.
    王鹏,高超,姚琪,等.环太湖典型丘陵区不同上地利用下土壤磷素随地表径流迁移特征[J].农业环境科学学报,2007,26(3):826-830.
    王庆,刘凯,王彦怀,等.我国农业生产结构优化升级问题分析[J].安徽农业科学,2009,37(36):18188-18190.
    王晓燕,张雅帆,欧洋,等.北京密云水库上游太师屯镇非点源污染损失估算[J].生态与农村环境学报,2009,25(04):37-41.
    王晓燕.非点源污染及其管理[M].北京:海洋出版社,2003:69-70.
    王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87.
    王中根,刘昌明,黄友波SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22:79-86.
    胥彦玲.基于土地利用/覆被变化的陕西黑河流域非点源污染研究[D].西安理工大学博士学位论文,2007.
    杨金玲,张甘霖,张华,等.亚热带地区上地利用对磷素径流输出的影响[J].农业环境科学学报,2003,22(1):16-20.
    杨泽生,黄沈发,王敏.黄浦江上游区域可持续发展的水源保护方案[J].环境科学与技术,2006.29增刊:77-79,98.
    姚允龙,吕宪国,王蕾[J].流域土地利用/覆被变化效应研究的方法评述[J].湿地科学,2009,7(1):83-88.
    叶笃正.全球变化与我国未来的生存环境[M].北京:气象出版社,1996.
    云南省环境科学研究院.松华坝水源保护区管理和保护总体规划[R].2006.
    张东,张万昌,朱利,朱求安.SWAT分布式流域水文物理模型的改进及应用研究[J].地理科学,2005,25(4):434-440.
    张建云,章四龙.气候变化对我国淡水资源的影响阈值及综合平均[M].水利部水利信息中心,2003.
    张蕾娜,李秀彬,王兆锋,等.一种可用于表征上地利用变化水文效应的水文模型探讨-SWAT模型在云州水库流域的应用研究[J].水文,2004,24(3):4-8.
    张亮.胡宝清.基于土地利用变化的喀斯特地区生态服务价值损益估算-以广西都安瑶族自治县为例[J].中国岩溶,2008,27(4):335-339.
    张维理.武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策[J].中国农业科学,2004,37(7):1008-1017.
    张素梅,王宗明,张柏,等.三江平原挠力河上游流域水文过程及其驱动力模型研究[J].地球信息科学学报,2010,12(1):143-151.
    赵慧颖,李成才,赵恒和,等.呼伦湖湿地气候变化及对水环境的影响[J].冰川冻上,29(5):765-801.
    郑海霞,张陆彪,封志明.金华江流域生态服务补偿机制及其政策建议[J].资源科学,2006,28(5):30-35.
    郑一,王学军.非点源污染研究的进展与展望[J].水科学进展,2002,13(1):105-110.
    周大杰,董文娟,孙丽英,等.流域水资源管理中的生态补偿问题研究[J].北京师范大学学报(社会科学版),2005,4:31-135.
    庄国泰.经济外部性理论在流域生态保护中的应用[J].环境经济,2006,2:35-38.
    宗臻铃,欧名豪,董元华,等.长江上游地区牛态重建的经济补偿机制探析[J].长江流域资源与环境,2001,10(1):22-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700