轻小型航空遥感森林几何参数提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以高精度轻小型航空遥感系统为平台,集激光扫描测距仪、数码相机、POS系统于一体,利用激光探测和测距技术和数字摄影测量技术,获取研究区高密度LiDAR点云数据和高空间分辨率的航空遥感影像,通过对点云数据和航空影像处理和分析,结合地面样地调查数据建立起的林木参数估测模型及航空立木材积表,估测研究区林分因子。主要结论包括:
     (1)根据地面调查数据建立的马尾松胸径估测模型具有较高的精度。
     通过地面样地调查的数据,参考前人研究的5个主要候选的胸径-冠径关系模型、10个胸径-树高关系的模型,建立起商城地区马尾松最优的胸径-冠径、胸径-树高模型,以及胸径-冠径、树高综合模型,实现以冠径、树高估测胸径,其最高决定系数达到0.615。另外,参考了商城地区马尾松树种的一元、二元材积表,建立起马尾松的航空立木一元、二元材积表,作为后期根据轻小型机载LiDAR点云数据及高精度航空影像反演林木参数的依据。
     (2)轻小型机载LiDAR数据能有效提取林分平均高、单木树高、林分密度等林木参数。
     利用GIS的空间分析功能,研究轻小型机载LiDAR点云数据提取林分平均高、单木树高、每公顷株数等林木参数的方法。结果表明,以实地调查数据为真值,轻小型机载LiDAR点云数据提取的林分平均高精度达83%,提取的单木树高精度达88%,LiDAR数据获取的每公顷株数与目视解译的株数相比,精度达84%。
     (3)轻小型航空遥感影像能有效提取林分郁闭度、林木平均冠幅、单木冠幅等林木参数。
     在充分研究轻小型高分辨率航空遥感影像的光谱、纹理特征的基础上,通过面向对象的分类方法,对轻小型航空遥感影像进行多尺度分割。该方法能有效的提取林木与非林木区域,并在此基础上估测林分郁闭度、平均冠幅、单木冠幅等林木参数。其中,轻小型高空间分辨率遥感影像的单木冠幅提取精度为72%,林分平均冠幅精度达到87%。
     (4)综合轻小型机载LiDAR及高分航空数据提取森林几何参数。
     综合轻小型机载LiDAR数据以及其同步的高分航空数据两者的优势,以具有空间三维坐标的LiDAR数据提取林木树高、林分密度,以空间分辨率达到0.05m的航空影像提取的林木冠幅、郁闭度,估测单木材积,并建立起林分蓄积量的估测模型。由高分辨率影像估算的单木冠幅,通过查一元航空立木材积表估算的单木材积精度为51%,再结合LiDAR数据获取的单木树高,查二元航空立木材积表得到的单木材积精度为57%。建立平均树高、样地林木株数、平均冠幅、林分郁闭度与样地蓄积量的多元线性回归模型,其相关系数为0.583,决定系数0.34。
     综上所述,轻小型机载LiDAR数据和高分航空影像,提取的样地尺度的林分平均高、平均冠幅,以及单木尺度的树高和冠幅等参数时,精度能达到72%-88%,而估测单木材积时精度较低,一元、二元航空立木材积表精度分别为51%和57%。根据轻小型机载LiDAR数据及航空影像获取的样地参数建立起的林分蓄积多元线性估测模型,其相关系数不高,为0.583。由于数据的限制,该模型能在多大范围内推广应用,还需要更多的地面调查和验证试验。如何通过数据挖掘,充分利用轻小型机载LiDAR数据及其同步的高空间分辨率航空遥感影像,提高其单木尺度和样地尺度的林木参数估测精度,有待下一步研究。
As a new remote sensing platform, Combining Laser scanning rangefinder, digital camera and POS (Posture Observation System) together, light and small airborne remote sensing system can obtain high density LiDAR point cloud data and high spatial resolution aerial remote sensing image of study area with laser detection and ranging technology and digital photogrammetry technology. The purpose of this study is to model and estimate forestry parameters by building aerial stem volume table with ground survey data, processing and analyzing point cloud data and aerial image of light and small airborne remote sensing system. The main conclusions include:
     (1) The DBH(diameter at breast height) estimated model of Chinese red pine (Pinus massoniana) base on filed survey data has high precision.
     Base on sample plot survey data,5candidate DBH-K(Crown diameter) and10candidated DBH-H(tree height) were chosen to build the optimal DBH-K, DBH-H, and DBH-K, H model to estimated DBH from crown diameter and tree height of Chinese red pine, the highest determination coefficient was0.615. In addition, one and two variable timber volume table of Chinese red pine in Shangcheng area were referenced to build one and two variable timber volume aerial table, which will help to estimate forestry parameters base on LiDAR data and high spatial resolution aerial images from light and small airborne remote sensing.
     (2) The light and small airborne LiDAR data can extract forestry parameters such as average stand high, individual tree high and stand density effectively.
     With the spatial analysis function of GIS, airborne LiDAR point cloud data were used in extracting the average stand high, individual tree high and stand density, and compare with filed survey data, the estimated accuracy of average stand high and individual tree high are83%and88%respectively, and compared with visual interpretation the accuracy of tree number extracted from LiDAR data is84%.
     (3) The high spatial resolution aerial image of light and small airborne remote sensing can extract forestry parameters such as crown density, stand average tree crown and individual tree crown effectively.
     In the full study of spectral and texture features of high-resolution aerial remote sensing image of light and small airborne remote sensing, base on object-oriented classification method and multi-scale segmentation, forest and non-forest area can be extracted firstly, and then forestry parameters such as crown density, stand average tree crown and individual tree crown can be extracted effectively. The accuracy of individual tree crown is72%, while the average tree crown reaches87%.
     (4) Estimating forest parameters by integrated application of the LiDAR data and high spatial resolution aerial images data.
     Integrated the advantages of airborne LiDAR data and its synchronization high spatial resolution aerial image, tree high and forest density can be extracted from LiDAR data which contain the three-dimensional coordinates, tree crown diameter, canopy density can be extracted from aerial image with a0.05m high spatial resolution, then individual tree volume and forestry stand volume can be estimated and modeled with the parameters come from light and small airborne remote sensing system. The estimated accuracy of individual tree volume base on one variable timber volume aerial table is51%, and57%while base on two variables timber volume aerial table. A multiple linear regression model estimated forestry stand volume with average tree high, forest density, average crown and canopy density as dependent variables has a correlation coefficient of0.583, and the determination coefficient is0.34.
     Above all, the accuracy of forestry stand and individual tree parameters such as average tree height, average crown diameter, individual tree high and crown diameter estimated from airborne LiDAR data and high spatical resolution aerial images are between72%-88%, the accuracy of individual stem volume are51%and57%respectively base on one and two variable timber volume aerial tables. The multiple linear regression model estimated forestry stand volume base on the forestry parameters estimated from light and small airborne remote sensing data has a correlation coefficient of0.583. As the limit of modeling data, more filed survey and verification test needed to find the application area. Further research need to be done to find out how to make full use of the light and small airborne remote sensing data, dig the inner knowledge of LiDAR data and high spatial resolution aerial images, and improve the estimated accuracy of individual tree and forestry stand parameters.
引文
1 蔡文峰,李凤日.基于VirtuoZo系统对林木冠幅信息的提取[J].森林工程,2010,26(2):4-7.
    2 陈柏海.基于SPOT5影像的杉木胸高断面积估测研究[D],长沙:中南林业科技大学,2012.
    3 陈灿,洪伟,吴承祯.东南沿海湿地松防护林胸径树高关系研究[J],农学学报,2012,2:35-21.
    4 崔要奎,赵开广,范闻捷,等.基于机载Lidar数据的农作物覆盖度反演[J],遥感学报,2011,15(6):1276-1288.
    5 戴福,贾炜玮.帽儿山十种主要阔叶树冠径和干径的关系[J].林业科技情报.2009,41(1):1-3.
    6 狄颖辰,陈云坪,陈莹莹,等.无人机图像拼接算法综述[J],计算机应用,2011,31(1):170-174.
    7 丁贵杰.马尾松人工林标准树高曲线模型的研究[J],浙江林学院学报,1997,14(3):225-230.
    8 冯益明,李增元,邓广.不同密度林分冠幅的遥感定量估计[J].林业科学,2007,43(1):90-94.
    9 冯益明,李增元,张旭.基于高空间分辨率影像的林分冠幅估计[J].林业科学,2006,42(5):110-113.
    10 冯仲科,殷嘉俭,贾建华,等.数字近景摄影测量用于森林固定样地测树的研究(J).北京林业大学学报,2001,23(5):15-18.
    11 高祥斌,刑柱东.聊城市主要行道树国槐胸径与树高关系研究[J].北方园艺,2010(10):128-130.
    12 宫鹏.遥感生态测量学进展[J].自然资源学报.1999,10:313-317.
    13 巩晓东,李秀.利用航空遥感象片量算面积的精度分析[J].测绘工程,2000,1:42-46.
    14光增云.材积表使用手册[M],郑州:中原农民出版社,2000.
    15 何洪良.无人机在气象情报侦察中的应用[J].无线电工程,1997,27(2):36-38.
    16洪宇,龚建华,胡社荣,等.无人机遥感影像获取及后续处理探讨[J].遥感技术与应用,2008,23(4):462-466.
    17胡波,钟全林,程栋梁,等.刨花楠树高与胸径异速生长的关系[J],沈阳大学学报(自然科学版).2012,24(3):9-14.
    18 黄建文,陈永富,鞠洪波.基于面向对象技术的退耕还林树冠遥感信息提取研究[J],林业科学,2006,42(增刊1):68-71.
    19黄建文,鞠洪波,陈永富:等.基于高空间分辨率遥感影像的树冠信息提取方法和系统:中国,201010164550.6[P].2010-08-27.
    20 黄建文,鞠洪波,张强,等.面向对象的遥感影像树冠轮廓及参数自动提取方法及系统:中国,201 110033961.9[P].2011-01-31.
    21 惠凤鸣,田庆久,李应成ASTER数据的DEM生产及精度评价[J].遥感信息,2004(1):14-20.
    22贾秀鹏,焦伟利,李丹.基于SPOT5异轨立体像对提取DEM试验与精度评估[J],测绘信息与工程,2006,31(2):32-34.
    23 蒋艳,李任波,李玻.云南松树高胸径生长关系模型[J],内蒙古林业调查设计,2010,33(1):57-59.
    24康文发,李永杰.卫星航片在大兴安岭林区森林调查中的应用[J],林业科技,1997,22(5):22-24.
    25 雷添杰,宫阿都,李长春,等.无人机遥感系统在低温雨雪冰冻灾害监测中的应用[J],安徽农业科学,2011,39(4):2417-2419.
    26 雷添杰,李长春,何孝莹.无人机航空遥感系统在灾害应急救援中的应用[J],自然灾害学报,2011,20(1):178-182.
    27 李崇贵,蔡体久.森林郁闭度对蓄积量估测的影响规律[J],东北林业大学学报,2006,34(1):15-17.
    28 李崇贵,赵宪文.森林郁闭度定量估测遥感比值波段的选择[J].林业科学,2005,4(41):72-77.
    29李春明,李利学.基于非线性混合模型的栓皮栎树高与胸径关系研究[J].北京林业大学学报.2009,31(4):7-12.
    30 李丹.利用航片信息提取林分调查因子自动化的探讨[D].哈尔滨:东北林业大学:1991.
    31 李桂君,吴燕,左焕发.红松阔叶人工天然混交林主要树种胸径与冠幅的相关分析[J].林业勘查设计,2005(1):68-70.
    32 李海奎,法蕾.基于分级的全国主要树种树高—胸径曲线模型[J].林业科学,2011,47(10):83-90.
    33 李留瑜.林业调查技术的回顾与思考[J],林业资源管理,1999,(5):50-57.
    34李树人,赵勇.树冠遮光数学模型的研究[J].河南农业大学学报,1994,28(4):361-366.
    35 李小文,王锦地.植被光学遥感模型郁植被结构参数化[M].北京:科学出版社,1995.
    36 李宇昊.无人遥感飞机在林业调查中的应用研究[D],北京:北京林业大学,2008.
    37 李宇昊.无人机在林业调查中的应用实验[J],林业资源管理,2007,8(4):69-73.
    38 梁瑞龙,杨章旗,蒙福祥.广西马尾松人工林生长过程表的编制[J],广西林业科学,1996,25(1): 57-59.
    39 梁欣廉.机载激光雷达数据滤波及建筑物模型重建[D].北京:中国测绘科学研究院,2005.
    40 林辉,童显德,黄忠义.遥感技术在我国林业中的应用与展望[J].遥感信息,2002,17(1):39-44.
    41 林征,陈健飞.基于ASTER立体像对提取广州地区数字高程模型[J],广州大学学报(自然科学版),2008,7(4):73-79.
    42 林宗坚,宣文玲,孙杰,等.由小面阵CCD组合构成宽角航空相机[J],测绘科学,2005,30(1):94-98.
    43 刘敏,张日升,徐贵军,等.辽宁樟子松人工林树木胸径与树高、材积的相关关系[J],防护林科技,2010,(1):36-41.
    44 刘清旺,李增元,陈尔学,等.利用机载激光雷达数据提取单株木树高和树冠[J],北京林业大学学报,2008,30(6):83-89.
    45 刘清旺.机载激光雷达森林参数估测方法研究[D].北京:中国林业科学研究院.2009.
    46刘晓双,黄建文,胡洪波.高空间分辨率遥感的单木树冠自动提取方法与应用[J],浙江林学院学报,2010,27(1):126-133.
    47 卢昌泰,李吉跃,康强,等.马尾松胸径与根径和冠径的关系研究[J],北京林业大学学报,2008,30(1):58-63.
    48 陆博迪,孟迪文,陆鸣,等.无人机在重大自然灾害中的应用与探讨[J],灾害学,2011,26(4): 122-126.
    49 马龙,杜道生.GIS中DEM产品精度的分析和评价[J].测绘信息与工程,2003,28(3):4-6.
    50 马瑞兰.基于RS和GIS技术的火地塘林场森林蓄积量估测[D],杨凌:西北农林科技大学,2011.
    51 马瑞升,马舒庆,王利平,等。微型无人驾驶飞机火情监测系统及其初步试验[J],气象科技,2008,36(1):100-104.
    52 毛家好,无人机遥感影像快速无缝拼接[D],成都:电子科技大学,2010.
    53 蒙印,李成名,林宗坚,等.基于无人驾驶飞行器的三维数字城市建筑物建模技术[J].测绘科 学,2004,29(3):58-70.
    54 孟宪宇.测树学(3版)[M]一北京:中国林业出版社,2006.
    55庞勇,李增元.基于机载激光雷达的小兴安岭温带森林组分生物量反演[J],植物生态学报2012,36(10):1095-1105.
    56庞勇,李增元,谭炳香,等.点云密度对机载激光雷达林分高度反演的影响[J],林业科学研究2008,21(增刊):14-19.
    57邱赞富,阳德胜.再次改正LIDAR点云高程的方法[J],测绘工程,2011,20(4):18-21.
    58饶君,李云鹏,陈立涛.浅谈无人机低空摄影技术在城市绿化遥感测定中的应用[J],江西测绘,2012(2):16-23.
    59覃先林,李增元,易浩若. 高空间分辨率卫星遥感影像树冠信息提取方法研究[J].遥感技术与应用,2005,20(2):228-232.
    60谭炳香,李增元, 陈尔学,等.Hyperion高光谱数据森林郁闭度定量估测研究[J],北京林业大学学报,2006,28(3):95-101.
    61 唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(1): 19-27.
    62万红梅,李霞,董道瑞,等,塔里木河下游林地树冠QuickBird影像信息提取与分析[J],西北植物学报,2011,31(9):1878-1885.
    63王二丽,李凤日,王敏,郭志英.基于大比例尺航片的针叶树种冠幅的提取[J],森林工程,2011,27(6):16-22.
    64王利,丰震,白世红,等.麻栎树高与胸径相关关系的研究[J].山东林业科技,2005,4:33-34.
    65 王利,李建华,乔勇进,等.药乡林场赤松树高与胸径相关关系的研究[J],山东林业科技,2002,(1):9-10.
    66王茹雯,彭道黎,吴涛,徐定.利用面向对象的技术进行树冠信息、提取研究[J],中国农学通报2010,26(15):128-134.
    67王汝笠.用航空像片估算林木株数的新方法[J].林业科学.1985,21(3):298-304.
    68王志力.利用大比例尺航片判读森林蓄积的一种新途径[J],林业勘查设计,1989,9:43-51.
    69魏晓慧,孙玉军,黄冬辉.马尾松人工林树冠结构研究[J].西北农林科技大学学报(自然科学版),2012,.40(11):125-130.
    70吴见,彭道黎.基于面向对象的QuickBird影像退耕地树冠信息提取[J].光谱学与光谱分析,2010,30(9):2533-2536.
    71 吴明宇,基于航片估测乌兰布和沙漠地上生物量的研究[D],哈尔滨:东北林业大学,2010.
    72 武爱彬.基于高分辨率遥感图像获取与优化林分空间结构研究[D],北京:北京林业大学,2012.
    73 肖兴彦,郑美丽,魏淑兰.卫片与航片联合判读的森林调查方法[J],林业调查规划,1984,(2):4-5.
    74熊轶群,吴健平.基于高分辨率遥感图像的树冠面积提取方法[J].地理与地理信息科学,2007,23(6):31-33.
    75徐毓恩.在中比例尺航片上如何判读地类和林分[J],江西林业科技,1980,9:43-51.
    76许晓东,张小红,程世来.航空Lidar的多次回波探测方法及其在滤波中的应用[J],武汉大学学报(信息科学版),2007,32(9):778-781.
    77 于显利,刘顺安,刘佳琳.无人机在地球物理探测中的应用[J],中国矿业,2012,21(7):107-109.
    78张国江.利用航片信息获取林分平均胸径[J],华东森林经理,1988,2(3):26-30.
    79张娟,张小叶,曹海春.基于Terrasolid系列软件的机载LiDAR数据后处理[J].科技情报开发与经济,2009,19(26):90-92.
    80张齐勇.城区LIDAR点云的树木提取[D],成都:西南交通大学,2009.
    81 张琼,刘芳,范文义,等.基于机载LIDAR数据及大比例尺航片反演林木参数[J],东北林业大学学报,2011,39(11):25-28.
    82 张文渊.关于航片在林业调查中有关应用问题的探讨[J],测绘工程,1999,8(4):58-62.
    83 张小全,徐德应.人工同龄纯林冠层辐射场模拟模型[J].植物生态学报,2001,26(5)609-615.
    84张学权,喻朝阳.西昌大警林场尔舞点云南松树高—胸径生长关系分析[J],西昌农业高等专科学校学报,2000,14(1):33-35.
    85 张玉柱,曹志伟,闫敦梁,等.嫩江沙地樟子松人工林各测树因子数量关系的研宄[J],防护林科技,2006,1(70):7-9.
    86 张园,陶萍,梁世祥,等.无人机遥感在森林资源调查中的应用[J],西南林业大学学报,2011,31(3):49-53.
    87 赵峰.机载激光雷达数据和数码相机影像林木参数提取研究[D].北京:中国林业科学研究院,2007.
    88 赵彤堂,李凤鸣,刘清玉,等.几种测定郁闭度方法的比较[J],中南林业调查规划,1995,(2):42-44.
    89 赵宪文.参照密度值进行目视解译估测一个县的森林分布及蓄积量方法的研究[J],国土资源遥感,1991,(4):46-50.
    90 赵宪文,李崇贵.基于“3S”的森林资源定量估测[M].北京:中国科学技术出版社,2001.42-69.
    91 赵宪文,尹关聪,汤伟,等.大比例尺航空照片测高估测森林蓄积量的研究[J],林业科学研究,1991,4(2): 122-127.
    92赵宪文.用航片和样地双重抽样法提高森林蓄积量估测精度[J],林业科技通讯,1988,(9):9-12.
    93 郑传英.四川桤木林分各主要生长因子间相关性研究[J].安徽农学通报,2010,16(17):161-162.
    94周成虎,骆剑承,等.高分辨率卫星遥感影像地学计算[M].北京:科学出版社,2009.
    95周淑芳.基于机载LIDAR与航空像片的单木树高提取研究[D],哈尔滨:东北林业大学,2007.
    96周晓敏,赵力彬,张新利.低空无人机影像处理技术及方法探讨[J],测绘与空间地理信息.2012,35(2):182-184.
    97 Aardt Jan A.N. van, Wynne Randolph H., Scrivani John A.. Lidar-based Mapping of Forest Volume and Biomass by Taxonomic Group Using Structurally Homogenous Segments[J], Photogrammetric Engineering & Remote Sensing, Vol.74, No.8, August 2008, pp.1033-1044.
    98 ADAME P, RIO M D, CANELLAS I. A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.) [J]. Forest Ecology and Management,2008,256:88-98.
    99 ALVES L F, SANTOS F A M. Tree allometry and crown shape of four tree species in Atlantic rain forest, southeast, Brazil [J]. J Trop Ecol,2002,18:245-260.
    100 Andersen, H.E., R.J. McGaughey, W.W. Carson, et al. A comparison of forest canopy models derived from LIDAR and INSAR data in a Pacific Northwest conifer forest [J], International Archives of Photogrammetry and Remote Sensing,2004,34:211-217.
    101 Andersen, H.E., S.E. Reutebuch, and G. Schreuder. Automated individual tree measurement through morphological analysis of a LIDAR-based canopy surface model [J], Proceedings of the First International Precision Forestry Symposium,2001,18-19 June, Seattle, Washington, pp. 11-22.
    102 B.Morris.Forest Service Improves Efficiency of Forest Inventories [J]. LeicaGeosystems GIS & Mapping,2005,29(19):42-49.
    103 Banskota Asim, Wynne Randolph H., Johnson Patrick, et al. Synergistic use of very high-frequency radar and discrete-return lidar for estimating biomass in temperate hardwood and mixed forests [J], Annals of Forest Science,2011,68:347-356. DOI 10.1007/s13595-011-0023-0
    104 BECHTOLD W A. Largest-crown-width prediction models for 53 species in the western United States [J]. Western J Appl For,2004,19(4):245-251.
    105 BI H, FOX J C, LI Y, et al. Evaluation of nonlinear equations for predicting diameter from tree height[J]. Can. J. For. Res.2012,42:789-806.
    106 Bortolota Zachary J., Wynne Randolph H.. Estimating forest biomass using small footprint LiDAR data:An individual tree-based approach that incorporates training data [J]. Journal of Photogrammetry & Remote Sensing,2005:(59):342-360.
    107 Brandtberg T, Walter F. Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis[J]. Machine Vision and Applications,1998,11(1):64-73.
    108 BRANDTBERG T, WARNER T A, LANDENBERGER R E, et al. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America [J]. Remote Sens Environ,2003,85 (3):290-303.
    109 BROWN S, GILLESPIEA J R, LUGO A E. Biomass of tropical forests of south and southeast Asia [J]. Can J For Res,1991,21:111-117.
    110 CALAMA R, MONTERO G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain [J]. Can. J. For. Res.2004,34:150-163.
    111 CHANG A J, KIM Y M, KIM Y et al. Estimation of individual tree biomass from airborne Lidar data using tree height and crown diameter [J]. Disaster Advances,2012,5 (4):360-365.
    112 Chasmer Laura, Hopkinson Chris, Treitz Paul. Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar [J], Can. J. Remote Sensing,2006,32, (2):116-125.
    113 CLARK D B, CLARK D A. Landscape-scale variation in forest structure and biomass in a tropical rain forest [J]. For Ecol Manage,2000,137 (1-3):185-198.
    114 CLARK M L, CLARK D B, ROBERTS D A. Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape [J]. Remote Sens Environ, 2004,91(1):68-89.
    115 COHEN W B, SPIES T A. Semivariograms of digital imagery for analysis of conifer canopy structure [J]. Remote Sens Environ,1990,34(3):167-178.
    116 CULVENOR D S. TIDA:An algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery [J]. Comput Geosci,2002,28(1):33-44.
    117 Curtis Edson and Michael G. Wing. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements, Remote Sens.2011,3,2494-2528; doi:10.3390/rs3112494
    118 D.J.Nowak,R.A.Rowntree,E.G.Mcpherson. Measuring and Analyzing Urban Tree Cover [J]. Landscape and Urban Planning,1996,36:49-57.
    119 DUPORT B G. WaveMergr a multiresolution software for merging SPOT panchromatic and SPOT multispectral data [J].Environ Mod Software,1997,12 (1):85-92.
    120 Edson C, Wing MG. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements [J]. Remote Sensing.2011; 3(11):2494-2528.
    121 Falkowski Michael J., Evans Jeffrey S., Martinuzzi Sebastian, et al. Characterizing forest succession with lidar data:An evaluation for the Inland Northwest, USA [J], Remote Sensing of Environment 113 (2009) 946-956.
    122 FRANKLIN J, STRAHLER A H. Invertible canopy reflectance modeling of vegetation structure in semi-arid woodland [J]. IEEE Trans Geosci Remote Sens,1988,26:809-825.
    123 GITAS I Z, MITRI G H, VENTURA G. Object-based image classification for burned area mapping of Creus Cape, Spain, using NOAA-AVHRR imagery [J]. Remote Sens Environ,2004, 92 (3):409-413.
    124 GONG Peng, MARCEAU D, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use mapping with SPOT HRV data [J]. Remote Sens Environ,1992,40(2): 137-151.
    125 Gougeon F A. A crown-follow ing approach t o the automatic delineation of individual tree crowns in high spatial resolution aerial images [J]. Canadian Journal of Remote Sensing,1995(21): 274-282.
    126 Gougeon, Franeois. Automatic Individual Tree Crown Delineation Using a valley-following Algorithm and a Rule-based System. Pacific Forestry Centre, In Proceedings of the International Foresty. Victoria B.C.,1998. In Hill and Leckie,eds,1998.
    127 Gupta S., Koch B., Weinacker H.. Tree species detetion using full waveform LIDAR data in a complex forest [J], ISPRS TC VII Symposium-100 Years ISPRS, Vienna, Austria, July 5-7,2010, IAPRS, Vol. XXXVIII, Part 7B,249-254.
    128 HAY G J, CASTILLA G, WULDER M A, et al. An automated object-based approach for the multiscale image segmentationof forest scenes [J]. Int J Appl Earth Obs Geoinform,2005,7 (4): 339-359.
    129 HEMERY G E, SAVILL P S, PRYOR S N. Applications of the crown diameter-stem diameter relationship for different species of broadleaved trees [J]. Forest Ecology and Management,2005, 215:285-294.
    130 HIRSCHMUGL M, OFNER M, RAGGAM J, et al. Single tree detection in very high resolution remote sensing data [J]. Remote Sens Environ,2007,110(4):533-544.
    131 Holmgren, J., and A. Persson, Identifying species of individual trees using airborne laser scanner [J], Remote Sensing of Environment,2004,90(4):415-550.
    132 Holmgren, J., M. Nilsson, and H. Olsson. Estimation of tree height and stem volume on plots using airborne laser scanning, Forest Science,2003,49(3):419-428.
    133 HUANG S M, MENG S X, YANG Y Q. Using nonlinear mixed model technique to determine the optimal tree height prediction model for Black Spruce[J]. Modern Applied Science.2009, 3(4):3-18.
    134 HYYPPA J, MIELONEN T, HYYPPA H, et al. Using individual tree crown approach for forest volume extraction with aerial images and laser point clouds [J], International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,12-14 September, Enschede, Netherlands, ISPRS (International Society for Photogrammetry and Remote Sensing) WG Ⅲ/3, III/4, V/3 Workshop Laser scanning 2005, Vol. XXXVI, Part 3/W19, pp.144-149.
    135 Hyyppa, J., and M. Inkinen. Detecting and estimating attributes for single trees using laser scanner [J], The Photogrammetric Journal of Finland,1999,16:27-42.
    136 Hyyppa, J., M. Schardt, H. Haggren, et al. HIGH-SCAN:The first European-wide attempt to derive single-tree information from laser scanner data [J], The Photogrammetric Journal of Finland,2001b,18:43-53.
    137 Hyyppa, J., O. Kelle, M. Lehikoinen, et al. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners [J], IEEE Transactions on Geoscience and Remote Sensing,2001,39(5):969-975.
    138 loki Keiko, Imanishi Junichi, Sasaki Takeshi,et al. Estimating stand volume in broad-leaved forest using discrete-return LiDAR:plot-based approach [J], Landscape Ecol Eng (2010) 6:29-36.
    139 JOHANSEN T, JEPPE M. Automatic stem mapping in three dimensions by template matching from aerial photographs [J]. Scandinavian J For Res,2002,17(4):359-368.
    140 KLLIOVIRTA J, TOKOLA T. Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information [J]. Silva Fennica.2005,39(2): 227-248.
    141 Koch Barbara, Heyder Ursula, Weinacker Holger. Detection of Individual Tree Crowns in Airborne Lidar Data [J], Photogrammetric Engineering & Remote Sensing.2006,72(4):357-363.
    142 Korpela, I.,(?)rka, H.O., Maltamo, M., Tokola, T.& Hyyppa, J. Tree species classification using airborne LiDAR-effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type [J]. Silva Fennica.2010,44(2):319-339.
    143 Korpela,I. (2006).Incorporation of Allometry into Single-tree Remote Sensing with LIDAR and Multiple Areal Images [D]. Department of Forest Resource Management. University of Helsinki, Finland, p.6.
    144 Korpela,I., Dahlin,B., Schafe,H. (2007).Single-tree forest inventory using LIDAR and areal images for 3D treetop positioning, species recognition, height and crown widh estimation [D]. Department of Forest Resource Management. University of Helsinki, Finland. Available at: http://www.isprs.org/proceedings/XXXV1/3-W52/final_papers/Korpela_2007.pdf,16 January 2009.
    145 Korpela,I., Tokola,T.,(?)rka,H.O., Koskinen,M. (2004).Small-Footprint Discrete-Return LiDAR in Tree Species Recognition [J]. Environmental Sciences,387, pp.1381-1386.
    146 Koukoulas S, Blackburn G A. Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LiDAR and multi spectral remotely sensed data[J].International Journal of Remote Sensing,2005,26 (3):431-455.
    147 KRISNAWATI H, WANG Y, ADES P K. Generalized height-diameter models for Acacia mangium Willd. Plantations in south Sumatra [J]. Journal of Forestry Research.2010,7(1):1-19.
    148 Kwak Doo-Ahn, Lee Woo-Kyun, Cho Hyun-Kook,et al. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data [J], J Plant Res (2010) 123:421-432.
    149 Kwak Doo-Ahn, Lee Woo-Kyun, Cho Hyun-Kook. ESTIMATION OF LAI USING LIDAR REMOTE SENSING IN FOREST,1SPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14,2007, Finland, I APRS Volume XXXVI, Part 3/W52,2007, pp.248-252.
    150 Kwak Doo-Ahn, Lee Woo-Kyun, Lee Jun-Hak,et al. Detection of individual trees and estimation of tree height using LiDAR data [J], J For Res,2007,(12):425-434.
    151 LALIBERTE A S, RAN GO A, HAVSTAD K M, et al. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico [J]. Remote Sens Environ,2004,93 (1-2):198-210.
    152 LARSEN M, RUDEMO M. Optimizing templates for finding trees in aerial photographs [J]. Pattern Recognition Let,1998,19 (12):1153-1162.
    153 Leckie D G, Gougeon F A, Walsworth N, Paradine D. Stand delineation and composition estimation using semi-automated individual tree crown analysis [J]. Remote Sensing of Environment,2003 (85):355-369.
    154 Leckie Don, Gougeon Francois, Hill David, et al. Combined high-density lidar and multispectral imagery for individual tree crown analysis[J], Can. J. Remote Sensing,2003,29(5):633-649.
    155 LI Xiaowen, STRAHLER A H. Geometric-optical modeling of a conifer forest canopy [J]. IEEE Trans Geosci Remote Sens,1985,23:705-721.
    156 LIU Lijuan, PANG Yong, FAN Wenyi,et al. Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest [J]. Journal of Remote Sensing,2013,17(3): 678-694.
    157 LOCKHART B R, WEIH R C, SMITH K M. Crown Radius and diameter at breast height relationships for six bottomland hardwood species [J]. Journal of the Arkansas Academy of Science,2005,59:110-115.
    158 M.B.Joao,Carreiras,J.M.C.Pereira,J.S.Pereira. Estimation of Tree Canopy Cover in Evergreen Oak Woodlands Using Remote Sensing [J]. Forest Ecology and Management,2006,223:45-53.
    159 M.Erikson. Segmentation of Individual Tree Crowns in Colour Aerial Photographs Using Region Growing Supported by Fuzzy Rules [J]. Canadian journal of forest research,2003,33:1557
    160 Magnussen, S., and P. Boudewyn. Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators [J], Canadian Journal of Forest Research, 1998,28:1016-1031.
    161 Magnussen, S., P. Eggermont, and V.N. LaRiccia. Recovering tree heights from airborne laser scanner data [J], Forest Science,1999,45:407-422.
    162 MALTAMO M, EERIKAINEN K, PITKANEN J, et al. Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions [J]. Remote Sens Environ,2004,90 (3):319-330.
    163 Means, J.E., S.A. Acker, J.F. Brandon, et al. Predicting forest stand characteristics with airborne scanning lidar [J], Photogrammetric Engineering & Remote Sensing,2000,66:1367-1371.
    164 Meng, X., Currit, N., Zhao, K. (2010). Ground Filtering Algorithms for Airborne LiDAR Data:A Review of Critical Issues. Remote Sensing, Vol.2,22 March 2010, p.833-860. ISSN 2072-4292http://dx.doi.org/10.3390/rs2030833
    165 MEYER F, BEUCHER S. Morphological segmentation[J]. J Visual Commun Image Represent, 1990 (1):21-46.
    166 MICHAEL J F, ALISTAIR M S, ANDREW T H, et al. Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of LiDAR data [J]. Can. J. Remote Sensing,2006,32(2):153-161.
    167 MISIR N. Generalized height-diameter models for Populus tremula L. stands [J]. African Journal of Biotechnology.2010,9(28):4348-4355.
    168 Morales R. M, Miura T, Idol T. An assessment of Haw aiian dry forest condition with fine resolution remote sensing[J]. Forest Ecology and Management,2008(255):2524-2532.
    169 MUGO J M, NJUNGE J T, MALIMBWI RE, et al. Models for predicting stem diameter from crown diameter of open grown trees in Sondu-Nyando River catchment, Kenya [J]. Asian Journal of Agricultural Sciences,2011,3(2):119-126.
    170 Naesset, E.,1997. Determination of mean tree height of forest stands using airborne laser scanner data [J], ISPRS Journal of Photogrammetry and Remote Sensing,52:49-56.
    171 Naesset, E., and K.O. Bjerknes. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data [J], Remote Sensing of Environment,2001,78:328-340.
    172 Naesset, E., and R. Nelson. Using airborne laser scanning to monitor tree migration in the boreal-alpine transition zone [J], Remote Sensing of Environment,2007,110(3):357-369.
    173 Nassset, E., and T.(?)kland. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve [J], Remote Sensing of Environment,2002, 79(1):105-115.
    174 Naesset, E., T. Gobakken, J. Holmgren, et al. Laser scanning of forest resources:The Nordic experience [J], Scandinavian Journal of Forest Research,2004,19(6):482-499.
    175 NAJMAN L, COUPRIE M, BERTRAND G. Watersheds, mosaics, and the emergence paradigm [J]. Discrete Appl Math,2005,147(2-3):301-24.
    176 Nelson, R., W. Krabill, and J. Tonelli. Estimating forest biomass and volume using airborne laser data, Remote Sensing of Environment,1988,24:247-267.
    177 Nelson, R.F., P. Hyde, P. Johnson, et al. Investigating RaDAR-LiDAR synergy in a North Carolina pine forest [J], Remote Sensing of Environment,2007,110:98-108.
    178 Nilsson, M. Estimation of tree heights and stand volume using an airborne lidar system [J], Remote Sensing of Environment,1996.56:1-7.
    179 Persson, A., J. Holmgren, and U. Soderman Detecting and measuring individual trees using an airborne laser scanner [J], Photogrammetric Engineering & Remote Sensing,2002.68(8):925-932.
    180 Pitkanen, J. Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods [J]. Canadian Journal of Forest Research,2001,(31):832-844.http://dx.doi.org/10.1139/x01-013
    181 Pitkanen,J., Maltamo,M., Hyyppab,J., Yub,X. Adaptive Methods for Individual Tree Detection on Airborne Laser Based Canopy Height Model. International Archives of Photogrammetry [J], Remote Sensing and Spatial Information Sciences,36-8/W2,2004:187-191.
    182 Pollock R J. The automatic recognition of individual trees in aerial images of forests based on a synthetic tree crow n image model [D].The University of British Colombia, Vancouver, Canada, 1996:172.
    183 Popescu S C, Wynne R H, Scrivani J A. Fusion of small footprint LiDAR and multispectral data to estimate plot-level volume and biomass in deciduous and pine forests in Virginia, USA [J]. Forest Science,2004,50 (4):551-565.
    184 Popescu S C. Estimating plot-level forest biophysical parameters using small footprint airborne LiDAR measurements [D]. Ph. D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.2002.
    185 Popescu, S.C., and R.H. Wynne. Seeing the trees in the forest:Using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height [J], Photogrammetric Engineering & Remote Sensing,2004,70(5):589-604.
    186 Popescu, S.C., R.H. Wynne, and R.F. Nelson. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass [J], Canadian Journal of Remote Sensing,2003,29(5):564-577.
    187 Popescu, S.C., Wynne, R.H., Nelson, R.F.(2002).Estimating plot-level tree heights with lidar:local filtering with a canopy-height based variable window size [J]. Computers and Electronics in Agriculture, Vol.37, Nr.1-3, Dec 2002, p.71-95. ISSN:0168-1699.
    188 Pouliot D A, King D J, Bell F W, et al. Automated tree crown detect ion and delineation in high-resolution digital camera imagery of coniferous forest regeneration [J]. Remote Sensing of Environment,2002(82):322-334.
    189 Pouliot,D. and King,D. Approaches for optimal automated individual tree crown detection in regenerating coniferous forests [J]. Canadian Journal of RemoteSensing,2005(31):255-267.http://dx.doi.org/10.5589/m05-011
    190 PRIEDITIS G, SMITS I, ARHIPOVA I, et al. Allometric models for predicting tree diameter at breast height [J]. Energy Systems and Sustainability,2012,4:105-110.
    191 QUARTEL S, ADDINK E A, RUESSINK B G. Object-oriented extraction of beach morphology from video images [J]. Int J Appl Earth Obs Geoinform,2006,8(4):256-269.
    192 Rahman,M.Z.A., Gorte,B. (2008).Individual Tree Detection Based on Densities of Heigh Points of Heigh Resolution Airborne LiDAR. Available at:http://www.isprs.org/proceedings/XXXVIII/4-Cl /Sessions/Session 12/6790_Rahman_Proc.pdf,4 January 2012.
    193 RAWERT B. Automatic Tree-crown Segmentation Using LM Filters and Balloons [D]. North Dartmouth:University of Massachusetts,2004.
    194 Read J M, Clark D B, Venticinque E M, et al. Application of merged 1-m and 4-m resolution satellite data to research and management in tropical forests [J]. J Appl Ecol,2003,40 (3): 592-600.
    195 Ritchie J C, Evans D L, Jacobs D, et al. Measuring canopy structure with an airborne laser altimeter [J]. Transact ions of the A SAE,1993(36):1235-1238.
    196 Roberts, S.D., T.J. Dean, D.L. Evans,et al. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurement of height and crown dimensions [J], Forest Ecology and Management,2005.213:54-70.
    197 SANCHEZ-GONZALEZ M, CANELLAS I, MONTERO G. Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain [J]. Sistemasy Recursos Forestales,2007,16(1):76-88.
    198 Smits Ingus, Prieditis Gints, Dagis Salvis, et al. Individual tree identification using different LIDAR and optical imagery data processing methods [J]. Biosystems and Information Technology 2012 (1):19-24.
    199 SONMEZ T. Diameter at breast height-crown diameter prediction models for Picea orientalis [J]. African Journal of Agricultural Research,2009,4 (3):215-219.
    200 Song C. Estimating tree crown size with spatial information of high resolution optical remotely sensed imagery [J]. International Journal of Remote Sensing,2006,28(15):3305-3318.
    201 Sriperumbudur, B.K., Steinwart, I. Consistency and rates for clustering with DBSCAN. In: AISTATS 2012 (International Conference on Artificial Intelligence and Statistics:conference paper. La Palma (Spain),2012:1090-1098.
    202 St-Onge Benoit A. Achaichia Nora. Measuring forest canopy height using a combination of LiDAR and aerial photography data. International Archives of Photogrammetry and Remote Sensing, Volume XXXIV-3/W4 Annapolis, MD,22-24 Oct.2001
    203 T.Nakashizuka, T.Katsuki, H. Tanaka.Forest Canopy Structure Analysed by Using Aerial PhotograPhs [J]. Eeologieal Researeh,1955(10):13-18.
    204 Takahashi Tomoaki, Yamamoto Kazukiyo, Senda Yoshimichi. Predicting individual stem volumes of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR [J], J For Res (2005) 10:305-312. DOI 10.1007/s 10310-005-0150-2
    205 Tomoaki Takahashi, Kazukiyo Yamamoto, Yoshimichi Senda, et al. Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiD AR [J]. The Japanese Forest Society and Springer-Verlag Tokyo 2005, J For Res (2005) 10:135-142.
    206 Utkin a.b., Lavrov a.v., Costa I., et al. Detection of small forest fires by lidar [J], Appl. Phys. B,2002,(74):77-83. DOI:10.1007/s003400100772
    207 WALSWORTH N A, KING D J. Image modeling of forest changes associated with acid mine drainage [J]. Comput Geosci,1999,25 (5):567-580.
    208 Wang Le, Gong Peng, Biging Gregory S. Individual Tree-Crown Delineation and Treetop Detection in High-Spatial-Resolution Aerial Imagery, Photogrammetric Engineering & Remote Sensing,2004,70(3):351-357.
    209 WARNER T A, LEE J Y, MCGRAW J B. Delineation and identification of individual trees in eastern deciduous forest [C]//HILL D A, LECKIE D G. Proc. International Forum.-Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry. Victoria:Canadian Forest Service, Pacific Forestry Centre, February 10-12. BC,1998:81-91.
    210 WIDLOWSKI J L, LAVERGNE T, PINTY B, et al. Towards a high spatial resolution limit for pixel-based interpretations of optical remote sensing data [J]. Adv Space Res,2008,41 (11): 1724-1732.
    211 WU Yecheng, STRAHLER A H. Remote estimation of crown size, stand density and foliage biomass on the Oregon tran-sect [J]. Ecol Appl,1993(4):299-312.
    212 WULDER M, NIEMANN K O, GOODENOUGH D G. Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery [J]. Sens Environ, 2000,73(1):103-114.
    213 YANG Xuhong, JING Zhongliang, LIU Gang et al. Fusion of multi-spectral and panchromatic images using fuzzy rule [J]. Comm Nonlin Sci Numer Simul,2007,12(7):1334-1350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700