微波辅助热解污泥机理与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波辅助热解污泥可使污泥中的有机物发生化学裂解,生成生物油、合成气和炭基吸附剂,有利于污泥的资源化利用,并且污染物排放可有效控制。本研究构建了一套5 kg处理能力的干化污泥微波装置。基于此装置,开展了试验研究与分析,着重分析了微波辐照条件(如微波加热功率、微波加热时间以及最终加热温度)和催化剂的应用对产物产量和质量的影响,并探讨了微波辅助热解污泥的反应机理。
     微波辐照条件对热解污泥过程分析发现,微波加热功率和最终加热温度是影响微波升温过程的关键因素。微波辅助热解污泥制备生物油主要在150-400°C加热温度区域生成,生物油产率最高的温度范围为250-300°C。合成气产率最大化发生在250°C-320°C,产率在320°C以后开始下降。炭基吸附剂的最佳炭化温度约为600°C,当最终炭化温度达到700°C,会引起剧烈裂解反应,从而引起炭产量和质量的下降。总的来说,微波加热功率的增加有利于生物油和合成气质量的提高。
     催化剂对微波辅助热解污泥实验研究表明,除催化剂FeSO4和ZnCl2的添加能提高合成气的产率外,其他催化剂的添加均降低了生物油、合成气和炭基吸附剂的产率。催化剂的添加对生物油、合成气和炭基吸附剂的质量均有显著性影响。对生物油而言,依据制备的生物油的卡路里值、密度、粘度和C含量分析,催化剂KOH、H2SO4、H3BO3和FeSO4的添加显著提高了生物油的质量,催化剂ZnCl2降低了生物油的质量。对合成气而言,污泥经酸化处理(添加H3PO4和H3BO3)明显降低了CO和CO2的生成,但增加了H2的生成量。对炭基吸附剂而言,催化剂的添加可促进生成炭基吸附剂的孔结构发育。
     考虑到污泥热解过程及影响其过程因素的多种复杂性,分别运用三种统计推断方法(即神经网络、支持向量机、逐步聚类回归)建立基于统计的动力学预测模型,以实现在不同工况条件下分别对温度升高和产油过程的预报。研究结果表明,发现预测效果最好的为支持向量机预测模型,其预测精度的R2值达0.8以上,可以较好地用于污泥热解过程分析,从而实现对温度和产油速率变化的预报。
     微波辅助热解污泥产物质量分配评估得出,炭基吸附剂、生物油和合成气质量分别占污泥原质量的65.0–68.9%、10.1–15.3%和11.8–13.4%。微波辅助热解污泥产物能量分配评估显示,每公斤污泥微波辅助热解产生的炭基吸附剂、生物油和合成气的热值分别为5.21–6.71 MJ、3.70–5.34 MJ和1.35–1.60 MJ。催化剂的添加增加了炭基吸附剂的能量储存,但降低了生物油的能量贮存。
Microwave-heating-based pyrolysis for sewage sludge can produce bio-oil, syngas and carbonaceous adsorbent, which is beneficial to resource recovery of wastes and emission mitigation of pollutants. In this study, a pilot-scale microwave heating equipment with the processing capacity of 5 kg solid waste was constructed. Using the equipment, the effects of important microwave-related processing parameters were investigated such as heating rate, final pyrolysis temperature and radiation time, as well as catalyst usage on the yield and quality of bio-oil, syngas and carbonaceous adsorbent. Moreover, the mechanisms and kinetics of resources recovery from sewage sludge pyrolysis using microwave heating was explored by analyzing the components and properties of resultant products.
     By analyzing the impacts of microwave heating conditions on sewage sludge pyrolysis, it was found that microwave power and final temperature are the crucial factors during the temperature rising process. The generation of bio-oil occurred mainly in the range of 150-400°C, and the maximum bio-oil generation rate was researched at the temperature between 250-300°C. The syngas generation rate occurred at the temperature between 250°C-320°C. However, it decreased when the temperature was higher than 320°C. During the process of carbonaceous adsorbent production, the optimum carbonization temperature was approximately 600°C. When the temperature reached 700°C, violent pyrolysis reactions took place, leading to the decrease of carbon quantity and quality. In general, an increase in the microwave power was beneficial to enhancement of the bio-oil and syngas quality.
     The impacts of catalysts on the pyrolysis process were further examined. Results showed that catalysts had significant impacts on the generation of bio-oil, syngas and carbonaceous adsorbent.The catalysts decreased the quantity of resultant products except that FeSO4 and ZnCl2 increased the quantity of syngas.KOH、H2SO4、H3BO3和FeSO4 significantly increased the quality of bio-oil, while ZnCl2 decreased. For the syngas, acidified sewage sludge added with H3PO4 or H3BO3 decreased CO and CO2 production rate, but increased the generation rate of H2.Regarding carbonaceous adsorbent, the catalysts can stimulate the formation of porous structure of SBAs. There is much complexity existing in the process of sewage sludge pyrolysis as well as its impact factors. This leads to the difficulty in investigating the mechanisms and kinetics of the pyrolysis process using traditional first-principle models. Therefore, three statistical inference methods were employed instead for modeling and forecasting of temperature-rise and bio-oil production processes. The results revealed that support vector machine achieved the best forecasting performance, with their R-square values higher than 0.8. Despite the first attempt, it was desired that further studies be undertaken to improve the accuracy of the statistical methods and extend them for modeling the kinetics of other processes such as gas synthesis and carbonaceous adsorption.
     Moreover, energy and mass balance analysis was conducted. The results showed that the mass of the carbonaceous adsorbent, bio-oil and syngas accounts for 65–68.9%、10.1–15.3%, and 11.8–13.4% of the sewage sludge mass, respectively. The heat values of the carbonaceous adsorbent, bio-oil and syngas produced from each kilogram sewage sludge were 5.21 MJ–6.71 MJ、3.70 MJ–5.34 MJ和1.35 MJ–1.60 MJ, respectively. In addition, it was found that the addition of catalyst increased energy storage capacity of the carbonaceous adsorbent, but lowered that of the bio-oil.
引文
[1]中华人民共和国环境保护部(2010).中国环境状况公报. http://jcs.mep.gov.cn/hjzl/zkgb/2010zkgb/.
    [2]韩振宇.中国2020年城市生活污水排放量预测及淡水资源财富GDP指标的建立.环境科学研究, 2005,18(5):88-90.
    [3]王雅婷.城市污水厂污泥的处理处置与综合利用.环境科学与管理,2011,36(1):90-94.
    [4]李海波,柳青,孙铁珩,徐新阳.中国城市污泥资源化利用研究进展.三峡环境与生态, 2008,1(2):42-47.
    [5]林云琴,周少奇.我国污泥处理处置与利用现状.能源环境保护,2004,18(6):15-18.
    [6]马娜,陈玲,何培松,赵建夫.城市污泥资源化利用研究.生态学杂志,2004,23(1):86-89.
    [7]张幸涛.城市污泥的减量化和资源化研究,硕士,2005.
    [8]邱兆富,周琪.国内城市污水污泥的特点及处理处置对策.中国沼气, 2004,22(2):22-25.
    [9]周少奇.城市污泥处理处置与资源化.华南理工大学出版社,2002.
    [10]张永吉.污泥浓缩脱水干化的机理及方法评述.工业用水与废水, 1981,1:25-61.
    [11]胡祝英,康泽龙.污泥浓缩工艺的应用现状和发展对策.榆林学院学报, 2008,18(4):73-75.
    [12]何品晶,顾国维,李笃中.城市污泥处理与利用.科学出版社,2011.
    [13]孟建平,刘瑾.国内外气浮法浓缩活性污泥研究综述.环境污染与防治, 1994,16(2):32-35.
    [14]王昭君,闫洪坤.我国城市污水处理厂污泥处理工艺及现状.辽宁工程技术大学学报, 2009,Suppl. 28:119-121.
    [15]武海霞,刘永德,赵继红.污泥好氧消化预处理方法研究进展.中国资源综合利用, 2010,28(11):38-40.
    [16] De Baere L. Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology ,2000,41(3):283-290.
    [17]曹秀芹,陈爱宁,甘一萍,常江,周军.污泥厌氧消化技术的研究与进展.环境工程, 2008,Suppl. 26:215-217.
    [18]陈苏,孙丽娜,孙铁珩,晁雷.城市污泥处理处置技术与资源化利用研究.生态科学, 2006, 25(4):375-378.
    [19]王涛.污泥焚烧技术现状存在问题与发展趋势.西南给排水, 2007,29(1):7-11.
    [20]余兰兰,钟秦.城市污泥的处置及资源化展望.环境监测管理与技术, 2006,18(2):32-34.
    [21] Nakasaki K, M Shoda and H Kubota. Effect of Temperature on Composting of Sewage-Sludge. Applied and Environmental Microbiology 1985,50(6):1526-1530.
    [22] Li X D, Y J Cheng, Q Y Feng and L Xiang. Study on the composting process of municipal sewage sludge. Progress in Environmental Science and Technology, Vol(1) 2007:1402-1405.
    [23]张增强.污泥堆肥在园林绿地中的利用.农业环境保护1996,15(1):36-40.
    [24]田葳,城市污水处理厂污泥堆肥技术研究.安徽农业科学, 2010,38(20):10843-10844.
    [25] Nakouzi S M D, Ball J C, Kim B R, Salmeen I T, Bauer D, Narula C K. Novel Approach to Paint Sludge Recycling: Reclaim of Paint Sludge Components as Ceramic Composites and their Applications in Reinforcement of Metal and Polymers. Journal of Materials Research, 1998,53(1):53-60.
    [26] Kato H, Takesue M. Manufacture of artificial fine light-weight aggregate from sewage sludge by multi-stage stream[c]// Kiln International Conference of Recycling, Berlin, Germany, 1984:126-129.
    [27] Khanbilvardi R A S. Sludge ash as fine aggregate for concrete mix. Journal of Environmental Engineering , 1995,121(9):633-638.
    [28]王兴润,金宜英,杜欣,聂永丰.城市污水厂污泥烧结制陶粒的可行性研究.中国给排水, 2007,23(7):11-15.
    [29]李南生.利用粉煤灰陶粒生产工艺处理剩余污泥的技术.粉煤灰, 1995,3:26-30.
    [30]严捍东.生活污泥改性烧制超轻陶粒的研究.环境污染与防治, 2005,27(1):63-66.
    [31]张长飞,葛仕福,赵培涛,黄瑛,葛剑.污泥燃料化技术研究.环境工程, 2010,Suppl. 28:377-380.
    [32]胡光埙,洪云希.城市污泥合成燃料的应用研究.中国给水排水,1996,12(2):13-15.
    [33]陈红英,王红涛.城市污水处理厂污泥的资源化利用研究.浙江工业大学学报, 2007,35(3):337-340.
    [34]唐黎华.活性污泥作为气化用型煤黏结剂的研究.环境科学学报, 1999,19(1):87-90.
    [35] Bridgwater A. Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal ,2003, 91: 87–102.
    [36] Ates F, I?ikda? M A. Evaluation of the role of the pyrolysis temperature in straw biomass samples and characterization of the oils by GC/kbfr4r56MS. Energy & Fuels, 2008, 22:1936–1943.
    [37] Tian Y, Zuo W, Ren Z, Chen D. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresource Technology, 2011, 102:2053–2061.
    [38] Stolarek P, Ledakowicz S. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion. Water Science and Technology, 2001, 44(10):333–340.
    [39] Rulkens W. Sewage sludge as a biomass resource for the production of energy overview and assessment of the various options. Energy & Fuels, 2008,22: 9–15.
    [40] Tsai W T, Lee M K, Chang J H, Su T Y, Chang Y M. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis. Bioresource Technology, 2009,100:2650–2654.
    [41]蔡炳良,辛玲玲.污泥热解技术特性分析.中国环保产业, 2011,8:51-54.
    [42]王琼,邹鹏.污水污泥的热解处理.再生资源研究, 2004,4:38-41.
    [43] Rozada F O M, Morán A, García A I. Adsorption of heavy metals onto sewage sludge-derived materials. BioresourceTechnology, 2008, 99(14): 6332-6338.
    [44] J, P R, B T. Interactions of NO2 with sewage sludge based composite adsorbents. Joumal of Hazardous Materials, 2008,154(1-3):946 953.
    [45]陈春云,王鹏,庄源益.剩余污泥吸附剂的制备及其吸附性能研究.环境科学与技术, 2006,29(8):88 90.
    [46] Bayer E, Kutubuddin M.// Proceedings of the International Recycling Congress .Berlin,West Germany,1982:314–319
    [47] Campbell H. Sewage sludge treatment and use new development. Applied Science , 1989,(18):281-290.
    [48] Bridle T R, Hammerton I, Hertle C K. Control of heavy-metals and organochlorines using the oil from sludge process. Water Science and Technology, 1990,22(12):249-258.
    [49] Shen L, Zhang D K. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidized-bed. Fuel , 2003,84(4):465 472.
    [50]武伟男.污水污泥热解技术研究进展.环境保护与循环经济, 2009,12:50-52.
    [51]何品晶,邵立明,李国建,吴蔚萍.城市污水厂污泥直接热化学液化制油过程研究.同济大学学报, 1995,23(4):382-386.
    [52] Itoh S, Nakamura T, Yokoyama S Production of heavy oil from sewage sludge by direct thermochemical liquefaction. Desalination , 1994,98:127-133.
    [53]贺利民.炼油厂废水处理污泥热解制油技术研究.湘潭大学自然科学学报, 2001,23(2):74-76.
    [54]王鹏.环境微波化学技术.北京:化工出版社, 2003.
    [55] Ren G, Chen F. Drying of American Ginseng (Panax quinquemoluim) roots by microwave-hot air combination. Food Engineering, 1998,35:433–443.
    [56] Drouzas A E, Tsemi B, Saravacos G D. Microwave/vacuum drying of model fruit gels. Food Engineering , 1999,39:117–122.
    [57] Demirbas A. Pyrolysis mechanisms of biomass materials. Energy Sources, 2009, 31:1186-1193.
    [58] Demirbas A, Kucuk M M. Kinetic study on the pyrolysis of hazelnut shell. Cellulose Chemistry & Technology, 1994,28:85–94.
    [59] Demirbas A, Akdeniz F, Erdogan Y, Pamuk V. Kinetic for fast pyrolysis of hazelnut shell. Fuel Science & Technology International, 1996, 14: 405–417.
    [60] Shafizadeh F, Stevenson T T. Saccharification of Douglas-fir wood by a combination of prehydrolysis and pyrolysis. Journal of Applied Polymer Science, 1982,27: 4577–4585.
    [61] Lin Y C, Cho J, Tompsett G A., Westmoreland P R, Hubber G W. Kinetic and mechanism of cellulose pyrolysis. Journal of Physical Chemistry, 2009,113: 20097–20107.
    [62] Kawamoto H, Murayama M, Saka S. Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation. Journal of wood Science, 2003,49: 469–473.
    [63] Mamleev V, Bourbigot S, Yvon J. Kinetic analysis of the thermal decompositionof cellulose: The change of the rate limitation. Journal of Analytical and Applied Pyrolysis, 2007,80:141–150
    [64] Mamleev V, Bourbigot S, Yvon J. Kinetic analysis of the thermal decomposition of cellulose: The main steps of mass loss. Journal of Analytical and Applied Pyrolysis, 2007, 80:151–156.
    [65] Diebold J P. A unified. global-model for the pyrolysis of cellulose. Biomass & Bioenergy, 1994,7:75–85.
    [66] Roni C R, Jensen K A, Houtman C J, Hamel K E. Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. FEBS Lett, 2002,531:483–488.
    [67] Sandermann W, Augustin H. Chemical investigations on the thermal decomposition of wood. Holz. Roh-Werks, 1963,12:256–265.
    [68] March J. Advanced Organic Chemistry: Reactions, Mechanisms and Structure. New York: McGraw-Hill, 2007:20.
    [69] Bridle T R, Pritchard D. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science and Technology, 2004,50(9):169–175.
    [70] Bohlmann J T, Lorth C M, Drews A, Buchholz R. Microwave high pressure thermo-chemical conversion of sewage sludge as an alternavtive to incineration. Chemical. Engineering & Technology , 1999, 21:404–409.
    [71] Menéndez J A, Inguanzo M, Pis J J. Microwave-induced pyrolysis of sewage sludge. Water Research , 2002,36:3261–3264.
    [72] Menéndez J A, Domínguez A, Inguanzo M, Pis J J. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue. Journal of Analytical and Applied Pyrolysis , 2005,74:406–412.
    [73] Domínguez A, Menéndez J A, Inguanzo M, Pis J J. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge. Fuel Processing Technology , 2005,86:1007–1020.
    [74] Mennéndez J A, Domínguez A, Inguanzo M, Pis J J. Microwave pyrolysis of sewage sludge: Analysis of the gas fraction. Journal of Analytical and Applied Pyrolysis, 2004,71:657–667.
    [75] Fernández Y, Mennéndez J A. Influence of feed characterisstics on microwave-assisted pyrolysis used to produce syngas from biomass wastes. Journal of Analytical and Applied Pyrolysis , 2011,91:316–322.
    [76] Domínguez A, Mennéndez J A, Inguanzo M, Pis J J. Production of bio-fuels byhigh temperature pyrolysis of sewage sluge using convntional and microwave heating. Bioresurce Technology , 2006,97:1185–1193.
    [77] Domínguez A, Fernández Y, Fidalgo B, Pis J J, Mennéndez J A. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere, 2008,70:397–403.
    [78] Domínguez A, Mennéndez J A, Inguanzo M,Bernad P L, Pis J J. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges. Journal of Chromatography A , 2003,1012:193-206.
    [79] Zuo W, Tian Y, Ren N Q. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge. Waste Management ,2011,31:1321-1326.
    [80] Tian Y, Zuo W, Ren Z R, Chen D D. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresource Technology, 2011,102:2053-2061.
    [81]方琳,田禹,武伟男,曹长玉.微波高温热解污水污泥各态产物特性分析.安全与环境学报, 2008,8(1):29–33.
    [82]蔺丽丽,蒋文举,金燕,杨丽君.微波法制备污泥活性炭研究.环境工程学报, 2007,1(4):119–122.
    [83]杨丽君,蒋文举.磷酸微波法制污水污泥活性炭的研究.中国资源综合利用, 2004,12:15–18.
    [84] Piskorz J D, Scott D S, Westerbeg I B. Flash pyrolysis of sewage-sludge. Industrial and Engineering Chemistry Process Design and Development, 1986, 25:265–270.
    [85] Stammbach M R, Kraaz B, Hagenbucher R, Richarz W. Pyrolysis of sewage sludge in a fluidized bed. Energy & Fuels, 1989,3:255–259.
    [86] Shen L, Zhang D K. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidized-bed. Fuel , 2003,82:65–472.
    [87] Fonts I, Juan A, Gea G, Murillo M B, Sanchez J L. Sewage sludge pyrolysis in fluidized bed, 1: Influence of operational conditions on the product distribution. Industrial & Engineering Chemistry Research, 2008,47:5376–5385.
    [88]贾相如,金保升,李睿学.污水污泥在流化床中快速热解制油.燃烧科学与技术, 2009, 15:528–534.
    [89] Bridle T R, Pritchard D. Enrergy and nutrient recovery from sewage sludge viapyrolysis. Water Science and Technology, 2004,50(9):169–175.
    [90] Domínguez A, Menéndez J A, Inguanzo M, Pis J J. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge. Fuel Processing Technology, 2005,86:1007–1020.
    [91] Kwak T H, Maken S, Lee S, Park J W, Min B R, Yoo Y D. Environmental aspects of gasification of korea municipal soil waste in a pilot plant. Fuel, 2006,85: 2012–2017.
    [92] Sanchez M E, Menéndez J A, Domínguez A. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass & Bioenergy, 2009,33:933–940.
    [93] Jones D A, Lelyveld T P, Mavrofidis S D, Kingman S W, Miles N J. Microwave heating applications in environmental engineering—a review. Resources, Conservation and Recycling, 2002,34:75–90.
    [94] Budarin V L, Clark J H, Lanigan B A, Shuttleworth P, Macquarrie D J. Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresource Technology , 2010,101:3776–3779.
    [95] Menéndez J A, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo E G, Bermúdez J M. Microwave heating processes involving carbon materials. Fuel Processing Technology , 2010,91:1–8.
    [96] Robinson J P, Kingman S W, Barranco R, Snape C E, Al-Sayegh H. Microwave pyrolysis of wood pellets. Industrial & Engineering Chemistry Research , 2010, 49:459–463.
    [97] Koberg M, Cohen M, Ben-Amotz A, Gedanken A. Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultasound radiation. Bioresource Technology, 2011,101:4265–4269.
    [98] Zhao X, Zhang J, Son Z, Liu H, Li L, Ma C. Microwave pyrolysis of straw bale and energy balance analysis. Journal of Analytical Applied Pyrolysis, 2011, in press.
    [99] Domínguez A, Menéndez J A, Inguanzo M, Bernad P L, Pis J J. Gas chromatograghic-mass spectrometric study of the oils fractions produced by microwave-assisted pyrolysis of different sewage sludges. Journal of Chromatography A, 2003,1012:193–206.
    [100] Huang Y F, Kuan W H, Lo S L, Lin C F. Total recovery of resources and energy from rice straw using microwave-induced pyrolysis. Bioresource Technology,2008,99:8252–8258.
    [101] Bohlmann J T, Lorth C M, Drews A, Buchholz R. Microwave high pressure thermo-chemical conversion of sewage sludge as an alternavtive to incineration. Chemical Engineering & Technology, 1999,21:404–409.
    [102] Zuo W, Tian Y, Ren N. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage slduge. Waste Management , 2011,31:1321–1326.
    [103] Chen M Q, Wang J, Zhang M X, Chen M G, Zhu X F, Min F F, Tan Z C. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 2008,82:145–150.
    [104] Budarin V L, Clark J H, Lanigan B A, Shuttlewirth P, Breeden S W,Wilson A J, Macquarrie D J, Milkowski K, Jones J. The preparation of high-grade bio-oils through the controlled, low temperature microwave activation of wheat straw. Bioresource Technolgy , 2009,100:6064–6068.
    [105] Wan Y W, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R. Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. Journal of Analytical and Applied Pyrolysis, 2009,86:161–167.
    [106] Chen G, Andries J, Spliethoff H. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Conversion and Management, 2003,44: 2289–2296.
    [107] Iwasaki W. A consideration of the econimoc efficiency of hydrogen production from biomass. International Journal of Hydrogen Energy , 2003,28:939–944.
    [108] Domínguez A, Mennéndez J A, Fernández Y, Pis J J, Valente Nabais J M, carrott P J M, Ribeiro carrott M M L. Conventional and microwave induced pyrolysis of coffe hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 2007,79:128–135.
    [109] Fernández Y, Arenillas A, Diez M A, Bermúdez J M, Mennéndez J A. Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst. Journal of Analytical and Applied Pyrolysis, 2010,88:155–159.
    [110] Du Z, Li Y, Wang X, Wan Y, Chen Q, Wang C, Lin X, Liu Y, Chen P, Ruan R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresurce Technology , 2011,102:4890–4896.
    [111] Huang Y F, Kuang W H, Lo S L, Lin C F. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresurce Technology, 2010,101:1968–1973.
    [112] Zhao X, Song Z, Liu H, Li Z, Li L, Ma C. 2010. Microwave pyrolysis of corn stalk bale: A promising method for direct utilization of large-sized biomass and syngas production. Journal of Analytical and Applied Pyrolysis, 2010, 89:87–94.
    [113] Mennéndez J A, Domínguez A, Inguanzo M, Pis J J. Microwave pyrolysis of sewage sludge: Analysis of the gas fraction. Journal of Analytical and Applied Pyrolysis , 2004,71:657–667.
    [114] Fernández Y, Mennéndez J A. Influence of feed characterisstics on microwave-assisted pyrolysis used to produce syngas from biomass wastes. Journal of Analytical and Applied Pyrolysis, 2011,91:316–322.
    [115] Domínguez A, Mennéndez J A, Inguanzo M, Pis J J. Production of bio-fuels by high temperature pyrolysis of sewage sluge using convntional and microwave heating. Bioresurce Technology, 2006,97:1185–1193.
    [116] Domínguez A, Fernández Y, Fidalgo B, Pis J J, Mennéndez J.A. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere, 2008,70:397–403.
    [117] Smith K M, Fowler G D, Pullkey S, Graham N J D. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Research , 2009,43:2569–2594.
    [118] Bagreev A, Bandosz T J, Locke D C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 2001,39:1971–1979.
    [119] Zhai Y B, Wei X X, Zeng G M. Effect of pyrolysis temperature and hold time on the characteristic parameters of adsorbent derived from sewage sludge. Journal of Environmental Science-China , 2004,16:683–686.
    [120] Rio S, Faur-Brasquet C, Le Coq L,Le Cloirec P. Structure characterization and adsorption properties of pyrolyzed sewage sludge. Environmental Science & Technology , 2005,39:4249–4257.
    [121] Ros A, Lillo-Ródenas M A, Fuente E, Montes-Morán M A,Martín M J, Linares-Solano A. High surface area materials prepared from sewage sludge-based precursors. Chemosphere , 2006,65:132–140.
    [122] Rio S, Le Coq L, Faur-Brasquet C, Lecomte D, Le Cloirec P. Preparation of adsorbents from sewage sludge by steam activation for industrial emission treatment. Process Safety and Environmental Protection, 2006,84(B4) : 258–264.
    [123] Kang H Y, Park S S, Rim Y S. Preparation of activated carbon from paper mill sludge by KOH-activation. Korean Journal of Chemical Engineering, 2006,23: 948–953.
    [124] Lillo-Ródenas M A, Ros A, Fuente E, Montes-Morán M A, Martín M J, Linares-Solano A. Further insights into activation process of sewage sludge–based precursors by alkaline hydroxides. Chemical Engineering Journal, 2008, 142:168–174.
    [125] Li W, Zhang L, Peng J, Li N, Zhu X. Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Industrial Crops and Products , 2008,7:41–347.
    [126] Martín M J, Balaguer M D, Rigola M. Feasibility of activated carbon production from biological sludge by chemical activation with ZnCl2 and H2SO4. Environmental Technology , 1996,17(6):667–671.
    [127] Khalili N R, Campbell M, Sandi G, Golas J. Production of micro- and mesoporous activated carbon from paper mill sludge Effect of zinc chloride activation. Carbon , 2000,38:1905–1915.
    [128] Wang T H, Tan S X, Liang C H. Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon , 2009,47: 1880–1883.
    [129] Zhang F S, Nriagu J O, Itoh H. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research, 2005,39:389–395.
    [130] Seredych M, Bandosz T J. Removal of copper on composite sewage sludge/industrial sludge–based adsorbents: The role of surface chemistry. Journal of Colloid Interface Science , 2006,302:397–388.
    [131] Ji Y B, Li T H, Zhu L, Wang X X, Lin Q. Preparation of activated carbons by microwave heating KOH activation. Applied Surface Science, 2007,254: 506–512.
    [132] Liu Q S, Zheng T, Wang P, Guo L. Preparation and characterization of activated carbon from bamoo by microwave-induced phosphric acid activation. IndustrialCrops and Products, 2010, 31: 233–238.
    [133] Li W, Peng J,Zhang L,Yang K, Xia H, Zhang S, Guo S. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 KW. Waste Management, 2009,29:756–760.
    [134] Duan X, Srinivasakannan C, Peng J, Zhang L, Zhang Z. Preparation of activated carbon from Jatropha hull with microwave heating: Optomization using response surface methodology. Fuel Processing Technology, 2011,92:394–400.
    [135] Yagmur E, Ozmak M, Aktas Z. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel, 2008,87:3278–3285.
    [136] Deng H, Yang L, Tao G H, Dai J L. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution. Journal of Hazardous Materials, 2009,166:1514–1521.
    [137] Kubota M, Hata A, Matsuda H. Preparation of activated carbon from phenolic resion by KOH chemical activation under microwave heating. Carbon, 2009,47: 2805–2811.
    [138] Maldhure A V, Ekhe J D. Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption. Chemical Engineering Journal, 2011,168:1103–1111.
    [139] Foo K Y, Hameed B H. Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methyene blue. Desalination , 2011,275:302–305.
    [140] Menéndez J A, Inguanzo M, Pis J J. Microwave-induced pyrolysis of sewage sludge. Water Research, 2002,36:3261–3264.
    [141] Menéndez J A, Domínguez A, Inguanzo M, Pis J J. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue. Journal of Analytical and Applied Pyrolysis, 2005,74:406–412.
    [142]袁春燕.污泥吸附剂的微波诱导热解法制备与应用.硕士论文.哈尔滨工业大学, 2006.
    [143] Budarin V L, Clark J H, Lanigan B A, Shuttleworth P, Macquarrie D J. Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresource Technology, 2010,101:3776–3779.
    [144] Zhang X K, Ji H M, Fan X D. Study on preparation and decoloration properties of activated carbon from sewage sludge by microwave. Carbon, 2008,134:40–43.
    [145] Bohlmann J T, Lorth C M, Drews A, Buchholz R. Microwave high pressure thermo-chemical conversion of sewage sludge as an alternavtive to incineration. Chemical Engineering & Technology, 1999,21:404–409.
    [146] Domínguez A, Menéndez J A, Inguanzo M, Pis J J. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge. Fuel Processing Technology, 2005,86:1007–1020.
    [147] Domínguez A, Menéndez J A, Inguanzo M, Bernad P L, Pis J J. Gas chromatograghic-mass spectrometric study of the oils fractions produced by microwave-assisted pyrolysis of different sewage sludges. Journal of Chromatography A , 2003,1012:193–206.
    [148] Tian Y, Zuo W, Ren Z, Chen D. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresource Technology, 2011,102:2053–2061.
    [149] Zuo W, Tian Y, Ren N. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage slduge. Waste Management , 2011,31:321–1326.
    [150] Domínguez A, Menéndez J A, Inguanzo M, Pis J J. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge. Fuel Processing Technology, 2005,86:1007–1020.
    [151] Domínguez A, Menéndez J A, Inguanzo M, Bernad P L, Pis J J. Gas chromatograghic-mass spectrometric study of the oils fractions produced by microwave-assisted pyrolysis of different sewage sludges. Journal of Chromatography A, 2003,1012:193–206.
    [152] Yuen F K, Hameed B H. Recent developments in the preparation and regeneration of activated carbons by microwaves. Advances in Colloid Interface Sience, 2009,149:19–27
    [153] Menéndez J A, Domínguez A, Inguanzo M, Pis J J. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue. Journal of Analytical and Applied Pyrolysis, 2005,74:406–412.
    [154] Yang K, Peng J, Srinvasakannan C, Zhang L, Xia H, Duan X. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technology , 2010,101:6163–6169.
    [155] Sabio E, Gonzalez E, Gonzalez J F, Gonzalez-Garcia C M, Ramiro A, Ganan J. Thermal regeneration of activated carbon saturated with p-nitrophenol. Carbon,2004,42:2285–2293.
    [156] Jung M W, Ahn K H, Lee Y, Kim K P, Rhee J S, Park J T, Paeng K J. Adsoption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchemical Journal, 2001,70:1809–1820.
    [157] Gasco G, Cueto M J, Mendez A. The effect of acid treatment on the pyrolysis behavior of sewage sludge. Journal of Analytical and Applied Pyrolysis, 2007,80:96–501.
    [158] Chen M Q, Wang J, Zhang M X, Chen M G, Zhu X F, Min F F,Tan Z C. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 2008,82:145–150.
    [159] Wan Y W, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R. Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. Journal of Analytical and Applied Pyrolysis , 2009,86:161–167.
    [160] Shen W, Guo Q J, Wang H, Yang X P, Liu Y H, Zhang Y L. Product composition of pyrolyzed sewage sludge and adsorption of methylene blue by porous material derived from it. Environmental Engineering Science, 2008,25:99–105
    [161] Chen X, Jeyaseelan S, Graham N. Physical and chemical properties study of the activated carbon made from sewage sludge.Waste Management, 2002,22: 755–760.
    [162] Patnukao P, Kongsuwan A, Pavassant P. Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn bark. Journal of Environmental Science, 2008,20:1028–1034.
    [163] Johns M M, Marshall W E, Toles C A. Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics.Journal of Chemical Technology & Biotechnology, 1998,71 (2):131–140.
    [164] Brown P, Jefcoat I A, Parrish D, Gil S, Graham E. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advancesin Environmental Research, 2000,4:19–29.
    [165] Ong S A, Lim P E, Seng C E. Effects of adsorbents and copper(II) on activated sludge microorganisms and sequencing batch reactor treatment process. Journal of Hazardous Materials, 2003,B103:263–277.
    [166] Kalavathy M H, Karthikeyan T, Rajgopal S, Miranda L R. Kinetic and isothermstudies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid Interface Science, 2005,292:354–362.
    [167] Rao M M, Ramesh A, Rao G P C, Seshaiah K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials, 2006,B129:123–129.
    [168] Imamoglu M, Tekir O. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination , 2008,228:108–113.
    [169] Pan S C, Lin C C, Tseng D H. Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Resources, Conservation and Recycling, 2003, 39:79–90.
    [170] Bouzid J, Elouear Z, Ksibi M, Feki M, Montiel A. A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. Journal of Hazardous Materials, 2008,152:838–845.
    [171] Seredych M, Bandosz T J. Removal of copper on composite sewage sludge/industrial sludge–based adsorbents: The role of surface chemistry. Journal of Colloid Interface Science, 2006,302:397–388.
    [172] Wang L, Zhang J, Zhao R, Li Y, Li C, Zhang C. Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn: Kinetics, isotherms, pH, and ionic strength studies. Bioresurce Technology, 2010,101:5808–5814.
    [173] Zeng G M, Qin X S, He L. A neural network predictive control system for paper mill wastewater treatment. Engineering Applications of Artificial Intelligence, 2003,16(2):121-129.
    [174] Czogaa E, Leski J. Fuzzy and neuro-fuzzy intelligent systems. Heidelberg: Physica-Verlag, 2002.
    [175] He L, Huang G H, Lu H W. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty. Advances in Water Resources, 2008,31(12):1622-1635.
    [176] Smola A J, Schl?kopf B. A tutorial on support vector regression. http://alex.smola.org/papers/2003/SmoSch03b.pdf.
    [177] Huang G H. Stepwise cluster analysis method for predicting air quality in an urban environment. Atmospheric Environment, 1992,26B(3):49-357.
    [178] He L, Huang G H, Lu H W. Health-risk-based groundwater remediation system optimization through clusterwise linear regression. Environmental Science andTechnology, 2008,42(24):9237-9243.
    [179] He L, Huang G H, Lu H W. Optimization of surfactant-enhanced aquifer remediation for a laboratory BTEX system under parameter uncertainty. Environmental Science and Technology, 2008, 42(6):2009-2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700