大气激光通信中光强闪烁及其抑制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气激光通信(ALC)是以激光光束为载体,以大气空间作为传输媒介的一项通信技术。与射频(RF)通信相比,由于采用了更高频率(更短波长)的光波作为载波,ALC能够提供更高的传输速率、更好的隐蔽性(波束宽度非常窄)以及体积更小重量更轻的设备组件,而且它还无需频率许可、不受电磁干扰影响、对人体无辐射。与光纤通信相比,由于采用大气作为信道,ALC系统不用预先铺设传输线路,机动性好,建立迅速,成本低廉。这些优点使得ALC技术在宽带接入、局域网互连、城域网扩展、航空航天、军事通信、应急通信等领域有着广阔的应用前景,是当前通信领域研究的热点之一。
     但一直以来,大气信道的各种不利影响难以克服,阻碍了ALC技术的实用化发展。例如恶劣天气(如雾霾)条件会引起显著的光功率衰减。即使在天气晴朗时,大气信道也并不友善。这时大气折射率的随机变化(大气湍流)引起了光强闪烁、光束漂移和光束扩展等效应。其中光强闪烁是指在大气湍流的影响下光强在时间和空间上出现随机起伏,这种随机起伏又称为信道衰落,会导致接收信号的光强下降至可检测的门限之下,造成误比特率上升,甚至通信中断。
     空间分集和孔径平均是两种被普遍认可的光强闪烁抑制技术,但在推广应用之前仍非常有必要详尽地探讨和评估其性能。本论文首先综述了国内外在这方面的研究进展。关于空间分集,迄今已取得较为丰富的研究成果,但已有工作大多是局限在弱湍流或强湍流环境下进行的,这些环境下的信道衰落分别用Lognormal分布和K分布、Negative Exponential分布来描述。事实上,Gamma-Gamma衰落模型尽管相对复杂,但是它能够代表更为广泛(从弱至强湍流)的实际信道情形。关于孔径平均,近期的研究发现Gamma-Gamma模型虽然在点接收(接收孔径无限小)的情况下能够与实验数据完美匹配,但并不适合描述有限接收孔径条件下的光强起伏,在这种背景下,新的可准确描述孔径平均光强闪烁的衰落信道模型——Exponentiated Weibull模型被提出,但基于Exponentiated Weibull模型的ALC系统性能分析却未见报道。Lognormal和Gamma-Gamma信道模型的参数与光强闪烁系数有关。现有关于光强闪烁系数的理论结果大多是基于传统的Kolmogorov幂律谱得到的,但最新的实验结果表明在中高层大气中,湍流需要用非Kolmogorov幂律谱来描述。根据国内外的研究现状,本论文做了如下工作。
     1.研究了在Gamma-Gamma衰落环境下采用等增益合并(EGC)分集接收技术的ALC系统的性能。对于光强度调制/直接检测(IM/DD)系统,首次推导出各分集支路经历的衰落独立非同分布条件下开关键控(OOK)调制的平均误比特率(BER)闭合表达式,该表达式对信道参数的取值无限制,与已有结果相比更具一般性。对于光强度调制加光前置放大的直接检测系统,基于光放大器自发辐射(ASE)噪声主导光接收机噪声的假设,首次推导出了独立非同分布衰落下二元制脉位调制(BPPM)的平均误比特率闭合表达式。为了获得对系统性能更为深入的了解,还推导出了高发射光功率条件下的渐近误比特率闭合表达式。依据推导出的理论公式,讨论了系统所能获得的分集增益。此外,对于外差式相干检测系统,推导出了系统中断概率(OP)和二进制相移键控(BPSK)平均误比特率的闭合上界,仿真验证了界的紧致性。
     2.基于Exponentiated Weibull衰落信道模型研究了孔径平均技术的抗湍流效果。利用高斯拉盖尔数值积分方法首次推导出了Exponentiated Weibull衰落下OOK调制的平均误比特率近似表达式。设计了相应的计算机仿真程序,并用仿真结果验证了理论推导的正确性。所提数值方法可用于快速评估不同湍流强度条件下孔径平均效应对系统误比特性能的改善程度。
     3.基于非Kolmogorov幂律谱和扩展的Rytov理论研究了水平路径上的光强闪烁及其对ALC系统信号衰落特性的影响。基于非Kolmogorov幂律谱之一的广义vonKármán谱,首次推导出了从弱至强任意湍流强度下平面波和球面波的光强闪烁系数数学表达式。依据获得的理论公式,分析了非Kolmogorov湍流中湍流内尺度和外尺度对光强闪烁系数的影响。基于非Kolmogorov幂律谱之一的广义修正大气谱首次推导出了任意湍流强度下平面波和球面波的光强闪烁系数数学表达式。考虑了高波数处幂律谱“突起”对光强闪烁的贡献,并依据光强闪烁系数与Gamma-Gamma模型参数的关系,分析了非Kolmogorov湍流对ALC系统衰落特性的影响。
     4.研究了地对卫星上行激光通信链路通过非Kolmogorov湍流信道后的性能。采用最新提出的三层高度谱模型描述近地处大气边界层中的Kolmogorov湍流和中高层大气中的非Kolmogorov湍流,分析了弱湍流条件下准直高斯光束在接收机处的光强闪烁,考虑了光束漂移对光强闪烁的贡献。根据获得的光强闪烁系数和适用于弱湍流条件的Lognormal衰落模型研究了ALC系统的信号中断概率。研究结果表明存在一个最优的发射光束束腰半径使得光强闪烁系数最小,从而使得中断概率最小。分析了最优发射光束束腰半径存在的原因,并与Kolmogorov湍流下得到的结果进行了比较。
Atmospheric laser communications (ALC) uses laser beams as the modulated carrierto establish a wireless link between two outdoor sites through the atmospheric channel.Compared with conventional radio frequency (RF) systems, there are severalsignificant advantages offered by ALC systems that are the direct consequence of thehigher frequencies (shorter wavelengths) associated with optical waves. Among theseadvantages are higher data rates, higher security (very narrow beam), smaller size andweight of the components. Moreover, ALC is also no need for frequency licensing,immune to electromagnetic interference, and no radiation on the human body. Ascompared with fiber optics systems, ALC systems are quickly deployable and morecost-and time-efficient due to its wireless connection property. With these advantages,ALC can find wide applications in the field of broadband access, local area networkinterconnection, metropolitan area network extension, aerospace, militarycommunication, and emergent communication. Currently, ALC becomes a researchhotspot in the communication field.
     But all the time, the deleterious atmospheric effects on ALC links is difficult tomitigate, and thus limits the widespread deployment of ALC systems. For instance,inclement weather (e.g. heavy fog) imposes severe optical power losses. Even in theclear weather conditions, the atmosphere is not entirely benign. Refractive-indexrandom fluctuations, also known as optical turbulence, leads to intensity scintillation,beam wander and beam spread. Scintillation represents turbulence-induced irradiancefluctuations in temporal and spatial domain. This random fluctuation leads to fading ofthe received signal below a detectable threshold, and even causing communicationinterruption.
     Spatial diversity and aperture averaging are the two well accepted techniques formitigating scintillation. But it is still necessary to discuss and evaluate the performanceimprovement by these two techniques before their wide application in practicalsystems. Firstly, this paper introduces the research progress in this field. As for spatialdiversity, there have been obtained a number of theorectical results. However, most ofthe previous results were limited to Lognormal (weak turbulence), K distribution andNegative Exponential (strong turbulence) fading environments. In fact, althoughGamma-Gamma model is more mathematically complex, it can cover a wide range of turbulence conditions (from weak to strong). As for aperture averaging, recent researchindicated that although the Gamma-Gamma channel model matches well with theexperimental data for a pointer receiver, it deviates from the experimental results of thefinite aperture receiver. In this context, a new and accurate channel model for thereceiver-aperture-averaging scintillation, named Exponentiated Weibull model, wasproposed. However, to the best of our knowledge, the evaluation of the ALC systemperformance based on this model has not been documented. The channel parameters inLognormal and Gamma-Gamma model are related to scintillation index. Previousresults for scintillation index were obtained by using Kolmogorov power-lawsprectrum. But recent experimental results showed that upper atmosphere exhibitsnon-Kolmogorov properties. To this end, the main research works are listed as follows:
     1. Under Gamma-Gamma fading, the performance of ALC systems employing equalgain combining (EGC) diversity reception technique is investigated. For the intensitymodulation/direct detection (IM/DD) system, the exact closed-form expression for theaverage bit error rate (BER) of on-off keying (OOK) is firstly derived for independent,but not necessarily identically distributed (i.n.i.d) fading. The obtained expression hasno constraints on the values of the channel parameters. For the intensity modulationand optical preamplification reception system, the exact closed-form BER expressionfor binary pulse position modulation (BPPM) over i.n.i.d fading is firstly developedunder the assumption that the amplifier sponsetanous emission (ASE) noise dominatesthe receiver noise. To gain more insight, a closed-form asymptotic BER formula is alsoderived at high transmitted optical power. With the derived formula, the diversity gainof the considered system is analyzed. For the heterodyne coherent detection system,closed-form upper bounds for the outage probability (OP) and the average BER ofbinary phase shift keying (BPSK) are derived. The computer simulations verify thetightness of the bounds.
     2. The effects of aperture averaging on mitigating irradiance scintillation areinverstigated based on the Exponetiated Weibull fading model. A computationallyefficient and approximated expression is presented for evaluating the average BER ofOOK modulation by use of the Gauss–Laguerre quadrature rule. The computersimulation program is designed, and the theoretical results are verified by thesimulation results. The proposed numerical approach can be used for fastly evaluatingthe BER performance improvement by aperture averaging under different turbulenceconditions.
     3. By use of non-Kolmogorov power-law spectrum and the extended Rytov theory, irradiance scintillations for horizontally propagating optical waves and their effects onthe fade statistics of ALC systems are studied. Based on one of the non-Kolmogorovtype spectrums, the generalized von Kármán spectrum, analytical expressions aredeveloped for the scintillation index of a plane wave and spherical wave that are validunder moderate-to-strong irradiance fluctuations. With these general models, theimpacts of finite inner and outer scales on the scintillation index of an optical wave areexamined under various non-Kolmogorov fluctuations conditions. By use of thegeneralized modified atmospheric spectrum that features inner scale parameter andhigh wave number ‘‘bump’’ for non-Kolmogorov atmospheric turbulence, tractableexpressions are developed for the scintillation index of a plane wave and a sphericalwave that are valid under weak and moderate-to-strong irradiance fluctuations. Withthe derived scintillation index and the Gamma–Gamma distribution, fade statistics forALC systems are investigated. The presented numerical results reveal some newdetails about how the inner scale and spectrum exponent values influence thescintillation index and the associated fade statistics.
     4. Uplink laser satellite-communication system performance is studied based onnon-Kolmogorov spectrum. A newly proposed three-layer attitude spectrum model thatexhibits Kolmogorov properties in boundary layer and non-Kolmogorov properties inportions of the upper troposphere and stratosphere is adopted. Using this spectrum inweak turbulence, the scintillation index for an uplink collimated untracked Gaussianbeam that is subject to scintillation and beam wander impairments is analyzed. Basedon the obtained scintillation index and the Lognormal channel model, the outageprobability of the considered system is examined. It is shown that there exists anoptimum transmitter beam radius that can minimize the scintillation index, andtherefore minimizes the outage probability. The physical interpretion for the existenceof optimum transmitter beam radius is provided, and the results are compared with theconventional Kolmogorov results.
引文
[1] Z. Xu and B. M. Sadler,“Ultraviolet communications: potential andstate-of-the-art,” IEEE Commun. Mag,2008, vol.46, pp.67–73.
    [2] G. Chen, Z. Xu, H. Ding, and B. M. Sadler,“Path loss modeling andperformance trade-off study for short-range non-line-of-sight ultravioletcommunications,” Opt. Express.,2008, vol.17, pp.3929–3940.
    [3] H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu,“Modeling ofnon-line-of-sight ultraviolet scattering channels for communication,” IEEE J.Select. Areas Commun.,2009, vol.27, pp.1535–1544.
    [4] H. Elgala, R. Mesleh, and H. Haas,“Indoor broadcasting via white LEDs andOFDM,” IEEE Trans. Consumer Electron.,2009, vol.55, pp.1127–1134.
    [5] J. Vu i, C. Kottke, S. Nerreter, A. Büttner, K. D. Langer, and J. W. Walewski,“White light wireless transmission at200+Mb/s net data rate by use of discretemultitone modulation,” IEEE Photon. Technol. Lett.,2009, vol.21, pp.1511–1513.
    [6] J. Vu i, C. Kottke, S. Nerreter, K. D. Langer, and J. W. Walewski,“513Mbit/svisible light communications link based on DMT-modulation of a white LED,” J.Lightwave Technol.,2010, vol.28, pp.3512–3518.
    [7] I. E. Lee, M. L. Sim, and F. W. L. Kung,“A dual-receiving visible-lightcommunication system under time-variant non-clear sky channel for intelligenttransportation system,” networks and optical communications (NOC),2011,pp.153–156.
    [8] Deok-Rae Kim, Se-Hoon Yang, Hyun-Seung Kim, Yong-Hwan Son, andSang-Kook Han,“Outdoor visible light communication for inter-vehiclecommunication using controller area network,”2012Fourth InternationalConference on Communications and Electronics (ICCE), pp.31–34.
    [9] Kaiyun Cui, Gang Chen, Zhengyuan Xu, and R. D. Roberts,“Traffic light tovehicle visible light communication channel characterization,” Applied Optics,2012, pp.6594–6605.
    [10] J. M. Kahn and J. R. Barry,“Wireless infrared communication,” Proc. of IEEE,1997, vol.85, pp.265–298.
    [11] H. Hashemi, G. Yun, M. Kavehrad, F. Behbahani, and P. Galko,“Indoorpropagation measurements at infrared frequencies for wireless local areanetworks applications,” IEEE Trans. Veh. Technol.,1994, vol.43, pp.562–576.
    [12] M. R. Pakravan, M. Kavehrad, and H. Hashemi,“Indoor wireless infraredchannel characterization by measurements,” IEEE Trans. Veh. Technol.,2001,vol.50, pp.1053–1073.
    [13] D. Killinger,“Free space optics for laser communication through the air,” Opticsand Photonics News,2002, vol.13, pp.36-42.
    [14] V. Ramasarma,“Free space optics: a viable last-mile solution,” BechtelTelecomm. Tech. J.,2002, pp.22–30.
    [15] D. Kedar and S. Arnon,“Urban optical wireless communication networks: themain challenges and possible solutions,” IEEE Commun. Mag.,2003, vol.41,pp.2–7.
    [16] Q. C. Liu, C. M. Qiao, G. Mitchell, and S. Tanton,“Optical wirelesscommunication networks for first-and last-mile broadband access,” J. Opt.Netw.,2005, vol.4, pp.807–828.
    [17] T. Rokkas, T. Kamalakis, D. Katsianis, D. Varoutas, and T. Sphicopulos,“Business prospects of wide-scale deployment of free space optical technologyas a last-mile solution: a techno-economic evaluation,” J. Opt. Netw.,2007, vol.6, pp.860–870.
    [18] J. Akella, M. Yuksel, S. Kalyanaraman et al.,“Multi-channel communication infree-space optical networks for the last-mile,” Proc. of the15th IEEE Workshopon Local and Metropolitan Area Networks.,2007, pp.43-48.
    [19] P. Mandl, P. Schrotter, E. Leitgeb,“Wireless synchronous broadband last mileaccess solutions for multimedia applications in license free frequencyspectrums,” Communication Systems, Networks and Digital Signal Processing,2008., pp.110-113.
    [20] K. Wakamori, K. Kazaura et al.,“Experiment on regional broadband networkusing free-space-optical communication systems,” J. Lightwave Technol.,2007,vol.25, pp.3265-3273.
    [21] P. T. Dat, A. Bekkali, and K. Kazaura,“Studies on characterizing thetransmission of RF signals over a turbulent FSO link,” Opt. Express,2009, vol.17, pp.7731–7743.
    [22] P. T. Dat, A. bekkali, K. Kazaura, K. Wakamori, and M. Matsumoto,“Auniversal platform for ubiquitous wireless communications using radio overFSO system,” J. Lightwave Technol.,2010, vol.28, pp.2258–2267.
    [23] A. Bekkali, C. B. Naila, K. Kazaura, K. Wakamori, and M. Mastumoto,“Transmission analysis of OFDM-based wireless services over turbulentradio-on-FSO links modeled by Gamma-Gamma distribution,” IEEE PhotonicsJ.,2010, vol.2, pp.510–520.
    [24] C. B. Naila, A. Bekkali, K. Wakamori, and M. Matsumoto,“Performanceanalysis of CDMA-based wireless services transmission over a turbulentRF-on-FSO channel,” J. Opt. Commun. Netw.,2011, vol.3, pp.475–486.
    [25] C. B. Naila, K. Wakamori, M. Matsumoto, A. bekkali, and K. Tsukamoto,“Transmission analysis of digital TV signals over a radio-on-FSO channel,”IEEE Commun. Mag.,2012, vol.50, pp.137–144.
    [26] N. Vaiopoulos, H. G. Sandalidis, and D. Varoutas,“WiMAX on FSO: outageprobablility analysis,” IEEE Trans. Commun.,2012, vol.60, pp.2789–2795.
    [27] J. C. Juarez, A. Dwivedi, A. Roger Hammons, et al.,“Free-space opticalcommunications for next-generation military networks,” IEEE Commun. Mag.,2006, vol.44, pp.46-51.
    [28] B. Nakhkoob, M. Bilgi, M. Yuksel, and M. Hella,“Multi-transceiver opticalwireless spherical structures for MANETs,” IEEE J. Select. Areas Commun.,2009, vol.27, pp.1612–1622.
    [29] D. Y. Zhou, P. G. LoPresti, and H. H. Refai,“Enlargement of beam coverage inFSO mobile network,” J. Lightwave Technol.,2011, vol.29, pp.1583–1589.
    [30] M. Jeganathan, M. Toyoshima, K. Wilson, J. James, et al.,“Data analysis resultsfrom the GOLD experiments,” Proc. SPIE,1997, vol.2990, pp.70–81.
    [31] H. P. Lutz,“Optical communications in space-twenty years of ESA effort,” ESABulletin Nr.91,1997, vol.1, pp.25–31.
    [32] M. Knapek, J. Horwath, and N. Perlot,“The DLR ground station in the opticalpayload experiment (STROPEX)-results of the atmospheric measurementinstruments,” Proc. SPIE,2006, vol.6304, pp.6304lU-I–6304lU-11.
    [33] Y. Takayama, T. Jono, M. Toyoshima, and et al.,“Tracking and pointingcharacteristics of OICETS optical terminal in communication demonstrationswith ground stations,” Proc. SPIE,2007, vol,6457, pp.6457-07–6457-15.
    [34] T. Jono, Y. Takayama, K. Shiratama, and et al,“Overview of the inter-orbit andorbit-to-ground laser communication demonstration by OICETS,” Proc. SPIE,2007, vol.6457, pp.6457-02–6457-06.
    [35] E. Leitgeb, J. Bregenzer, M. Gebhart, P. Fasser, and A. Merdonig,“Free spaceoptics–broadband wireless supplement to fiber-networks,” LASE,2003, vol.4975, pp.57-68.
    [36] E. Leitgeb, M. Gebhart, U. Birnbacher, P. Schrotter, A. Merdonig, and A. Truppe,“Hybrid wireless networks for civil-military-cooperation (CIMIC) and disastermanagement,” Proc. SPIE,2004, vol.5614, pp.140-145.
    [37] R. Gagliardi and S. Karp,“M-ary Poisson detection and opticalcommunications,” IEEE Trans. Commun. Technol.,1969, vol.17, pp.208–216.
    [38] J. Pierce,“Optical channels: Practical limits with photon counting,” IEEE Trans.Commun.,1978, vol.26, pp.1819–1820.
    [39] R. McEliece,“Practical codes for photon communication,” IEEE Trans. Inf.Theory,1981, vol.27, pp.393–397.
    [40] J. Li, J. Q. Liu, and D. P. Taylor,“Optical communication using subcarrier PSKintensity modulation through atmospheric turbulence channels,” IEEE Trans.Commun.,2007, vol.55, pp.1598–1606.
    [41] W. O. Popoola and Z. Ghassemlooy,“BPSK subcarrier intensity modulatedfree-space optical communications in atmospheric turbulence,” J. LightwaveTechnol.,2009, vol.27, pp.967–973.
    [42] K. P. Peppas and C. K. Datsikas,“Average symbol error probability ofgeneral-order rectangular Quadrature Amplitude modulation of optical wirelesscommunication systems over atmospheric turbulence channels,” J. Opt.Commun. Netw.,2010, vol.2, pp.102–110.
    [43] A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE Press,Piscataway, New Jersey,1997;[previously published as Vols I&II by Academic,New York,1978].
    [44] M. Matsumoto, K. Kazaura, P. Dat, A. Shah, K. Omae, T. Suzuki, K. Wakamori,T. Higashino, K. Tsukamoto and S. Komaki,“An alternative access technologyfor next generation networks based on full-optical wireless communicationlinks,” in Innovations in NGN: Future Network and Services, First ITU-TKaleidoscope Academic Conference on,2008, pp.221-228.
    [45] L. A. Chernov, Wave Propagation in a Random Medium, McGraw-Hill, NewYork,1960, trans. by R. A. Silverman.
    [46](a) V. I. Tatarskii, Wave Propagation in a Turbulent Medium, McGraw-Hill, NewYork,1961, trans. by R. A. Silverman.(b) V. I. Tatarskii, The Effects of theTurbulent Atmosphere on Wave Propagation, trans. from the Russian and issuedby the National Technical Information Office, U.S. Dept. of Commerce,Springfield,1971.
    [47] R. S. Lawrence and J. W. Strohbehn,“A survey of clear-air propagation effectsrelevant to optical communications,” Proc. IEEE,1970, vol.58,pp.1523–1545.
    [48] A. M. Prokhorov, F. V. Bunkin, K. S. Gochelashvily, and V. I. Shishov,“Laserirradiance in turbulent media,” Proc. IEEE,1975, vol.63, pp.790–809.
    [49] R. L. Fante,“Electromagnetic beam propagation in turbulent media,” Proc.IEEE,1975, vol.63, pp.1669–1692.
    [50] R. L. Fante,“Electromagnetic beam propagation in turbulent media: an update,”Proc. IEEE,1980, vol.68, pp.1424–1443.
    [51] V. E. Zuev, Laser Beams in the Atmosphere, Consultants Bureau, New York,1982, trans. by S. Wood.
    [52] S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii,“Principles of statisticalradiophysics,” in Wave Propagation Through Random Media, Springer, Berlin,1989, Vol.4.
    [53] V. I. Tatarskii, A. Ishimaru, and V. U. Zavorotny, eds., Wave Propagation inRandom Media (Scintillation)(SPIE Optical Engineering Press, Bellingham,Wash.; Institute of Physics Pub., Techno House, Bristol, England,1993).
    [54] R. J. Sasiela, Electromagnetic Wave Propagation in Turbulence, Springer, NewYork,1994.
    [55] L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation withApplications, SPIE Press, Bellingham,2001.
    [56] A. D.Wheelon, Electromagnetic Scintillation I. Geometrical Optics, CambridgeUniversity Press, Cambridge, UK,2001.
    [57] A. D. Wheelon, Electromagnetic Scintillation II. Weak Scattering CambridgeUniversity Press, Cambridge, UK,2003.
    [58] L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through RandomMedia,2rd ed., SPIE Optical Engineering Press, Bellingham,2005.
    [59] W. B. Miller, J. C. Ricklin, and L. C. Andrews,“Log-amplitude variance andwave structure function: a new perspective for Gaussian beams,” J. Opt. Soc.Am. A,1993, vol.10, pp.661–672.
    [60] W. B. Miller, J. C. Ricklin, and L. C. Andrews,“Effects of the refractive indexspectral model on the irradiance variance of a Gaussian beam,” J. Opt. Soc. Am.A,1994, vol.11, pp.2719–2726.
    [61] L. C. Andrews, M. A. Al-Habash, C. Y. Hopen, and R. L. Phillips,“Theory ofoptical scintillation: Gaussian-beam wave model,” Waves Random ComplexMedia,2001, vol.11, pp.271–291.
    [62] L. C. Andrews,“An analytical model for the refractive index power spectrumand its application to optical scintillations in the atmosphere,” J. Mod. Opt.,1992, vol.39, pp.1849–1853.
    [63] L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash,“Theory ofoptical scintillation,” J. Opt. Soc.Am. A,1999, vol.16,1417–1429.
    [64] K. J. Mayer, Effect of Inner Scale Atmospheric Spectrum Models onScintillation in All Optical Turbulence Regimes, Ph.D. dissertation, Universityof Central Florida,2007.
    [65] D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop,“Measurement of optical turbulence in the upper troposphere and lowerstratosphere,” Proc. SPIE,1994, vol.2120, pp.43–55.
    [66] M. S. Belen’kii, S. J. Karis, J.M. Brown, and R. Q. Fugate,“Experimental studyof the effect of non-Kolmogorov stratospheric turbulence on star image motion,”Proc. SPIE,1997, vol.3126, pp.113–123.
    [67] A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y.Shtemler,“Lidar study of aerosol turbulence characteristics in the troposphere:Kolmogorov and non-Kolmogorov turbulence,” Atmos. Res.,2008, vol.88, pp.66–77.
    [68] I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero,“Free-space opticalsystem performance for laser beam propagation through non-Kolmogorovturbulence,” Proc. SPIE,2007, vol.6457,64570T–1–11.
    [69] I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero,“Angle of arrivalfluctuations for free space laser beam propagation through Non-Kolmogorovturbulence,” Proc. SPIE,2007, vol.6551,65510E–1–12.
    [70] L. Y. Cui, B. D. Xue, X. G. Cao, J. K. Dong, and J. N. Wang,“Generalizedatmospheric turbulence MTF for wave propagating through non-Kolmogorovturbulence,” Opt. Express,2010, vol.18, pp.21269–21283.
    [71] B. D. Xue, L. Y. Cui, W. F. Xue, X. Z. Bai, and F. G. Zhou,“Generalizedmodified atmospheric spectral model for optical wave propagating throughnon-Kolmogorov turbulence,” J. Opt. Soc. Am. A,2011, vol.28, pp.912–916.
    [72] I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero,“Free space opticalsystem performance for a Gaussian beam propagating through non-Kolmogorovweak turbulence,” IEEE Trans. Antenn. Propag.,2009, vol.57, pp.1783–1788.
    [73] L. Tan, W. Du, J. Ma, S. Yu, and Q. Han,“Log-amplitude variance for aGaussian-beam wave propagating through non-Kolmogorov turbulence,” Opt.Express,2010, vol.18, pp.451–462.
    [74] L. Y. Cui, B. D. Xue, L. Cao, S. L. Zheng, W. F. Xue, X. Z. Bai, X. G. Cao, andF. G. Zhou,“Irradiance scintillation for Gaussian-beam wave propagatingthrough weak non-Kolmogorov turbulence,” Opt. Express,2011, vol.19, pp.16872–16884.
    [75] J. Cang and X. Liu,“Scintillation index and performance analysis of wirelessoptical links over non-Kolmogorov weak turbulence based on generalizedatmospheric spectral model,” Opt. Express,2011, vol.19, pp.19067–19077.
    [76] L. Cui, B. Xue, W. Xue, X. Bai, X. Cao, and F. Zhou,“Expressions of thescintillation index for optical waves propagating through weak non-Kolmogorovturbulence based on the generalized atmospheric spectral model,” Optics&Laser Technol.,2012, vol.44, pp.2453–2458.
    [77] W. Gappmair and S. S. Muhammad,“Error performance of PPM/Poissonchannels in turbulent atmosphere with gamma-gamma distribution,” Electron.Lett.,2007, vol.43, no.16.
    [78] H. G. Sadalidis and T. A. Tsiftsis,“Outage probability and ergodic capacity offree-space optical links over strong turbulence,” Electron. Lett.,2008, vol.44,no.1.
    [79] H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras,“Performance analysis offree-space optical communication systems over atmospheric turbulencechannels,” IET Commun.,2008, vol.3, pp.1402–1409.
    [80] H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S.Tombras,“Average capacity of optical wireless communication systems overatmospheric turbulence channels,” J. Lightwave Technol.,2009, vol.27, pp.974–979.
    [81]陈纯毅,杨华明,姜会林,冯欣,王辉.大气光通信中大气湍流影响抑制技术研究进展.兵工学报.2009,30(6), pp.800–812.
    [82] X. Zhu and J. M. Kahn,“Performance bounds for coded free-space opticalcommunications through atmospheric turbulence channels,” IEEE Trans.Commun.,2003, vol.51, pp.1233–1239.
    [83] F. M. Davidson and Y. T. Koh,“Interleaved convolutional coding for theturbulent atmospheric optical communication channel,” IEEE Trans. Commun.,1988, vol.36, pp.993–1003.
    [84] M. Uysal and J. T. Li,“Error performance analysis of coded wireless opticallinks over atmospheric turbulence channels,” in Proc. IEEE Wireless Commun.Netw. Conf.(WCNC),2004, vol.4, pp.2405–2410.
    [85] M. Uysal and J. T. Li,“BER performance of coded free-space optical links overstrong turbulence channels,” in Proc. IEEE Veh. Technol. Conf.(VTC spring),Milan, Italy, May2004, pp.168–172.
    [86] M. Uysal and J. T. Li,“Error rate performance of coded free-space optical linksover gamma-gamma turbulence channels,” in Proc. IEEE International Commun.Conf.(ICC’04), Paris, France, June2004, pp.3331–3335.
    [87] M. Uysal, J. T. Li, and M. Yu,“Error rate performance analysis of codedfree-space optical links over gamma-gamma turbulence channels,” IEEE Trans.Wireless Commun.,2006, vol.5, pp.1229–1233.
    [88] F. Xu, M. A. Khalighi, P. Caussé, and S. Bourennane,“Channel coding andtime-diversity for optical wireless links,” Opt. Express,2009, vol.17, pp.872–887.
    [89] F. Xu, M. A. Khalighi, and S. Bourennane,“Coded PPM and multipulse PPMand iterative detection for free-space optical links,” J. Opt. Commun. Netw.,2009, vol.1, pp.404–415.
    [90] J. A. Anguita, M. A. Neifeld, B. Hildner, and B. Vasic,“Rateless coding onexperimental temporally correlated FSO channels,” J. Lightwave Technol.,2010,vol.28, pp.990–1002.
    [91] Y. Q. Han, A. H. Dang, Y. X. Ren, J. X. Tang, and H. Guo,“Theoretical andexperimental studies of turbo product code with time diversity in free spaceoptical communication,” Opt. Express,2010, vol.18, pp.26978–26988.
    [92] M. Czaputa, T. Javornik, E. leitgeb, G. Kandus, and Z. Ghassemblooy,“Investigation of punctured LDPC codes and time-diversity on free-spaceoptical links,” Proc. of the11thConTEL, June,2011, pp.359–362.
    [93] H. E. Nistazakis and G. S. Tombras,“On the use of wavelength and timediversity in optical wireless communication systems over gamma-gammaturbulence channels,” Optics&Laser Technol.,2012, vol.44, pp.2088–2094.
    [94] H. E. Nistazakis,“A time-diversity scheme for wireless optical links overexponentially modeled turbulence channels,” Optik,2012.
    [95] V. W. S. Chan,“Free-space optical communications,” J. Lightwave Technol.,2006, vol.24, pp.4750–4762.
    [96] K. Kiasaleh.“Scintillation index of a multiwavelength beam in turbulentatmosphere,” J. Opt. Am. A,2004, vol.21, pp.1452–1454.
    [97] K. Kiasaleh,“On the scintillation index of a multiwavelength Gaussian beam ina turbulent free-space optical communications channel,” J. Opt. Am. A,2006,vol.23, pp.557–566.
    [98] E. J. Shin and V. W. S. Chan,“Part1: optical communication over the clearturbulent atmospheric channel using diversity,” IEEE J. Select. Areas Commun.,2004, vol.22, pp.1896–1906.
    [99] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels,2rd. ed.,2005, John Wiley&Sons Press.
    [100] B. Vucetic and J. H. Yuan, Space-Time Coding,2003, John Wiley&Sons Press.
    [101] Z. Chen, J. H. Yuan, and B. Vucetic,“Analysis of transmit antennaselection/maximal-ratio combing in Rayleigh fading channels,” IEEE Trans.Vehi. Technol.,2005, vol.54, pp.1312–1321.
    [102] A. Garcia-Zambrana,“Error rate performance for STBC in free-space opticalcommunication through strong atmospheric turbulence,” IEEE Commun. Lett.,2007, vol.11, pp.390–392.
    [103] M. Safari and M. Uysal,“Do we really need OSTBCs for free-space opticalcommunication with direct detection?” IEEE Trans. Wireless Commun.,2008,vol.7, pp.4445–4448.
    [104] S. G. Wilson, M. Brandt-Pearce, Q. Cao, and M. Baedke,“Optical repetitionMIMO transmission with multipulse PPM,” IEEE Trans. J. Select. AreasCommun.,2005, vol.9, pp.1901–1910.
    [105] S. G. Wilson, M. Brandt-Pearce, Q. Cao, and J. H. Leveque-III,“Free-spaceoptical MIMO transmission with Q-ary PPM,” IEEE Trans. Commun.,2005, vol.53, pp.1402–1412.
    [106] S. M. Navidpour, M. Uysal, and M. Kavehrad,“BER performance of free-spaceoptical transmission with spatial diversity,” IEEE Trans. Wireless Commun.,2007, vol.6, pp.2813–2819.
    [107] N. Letzepis, I. Holland, and W. Cowley,“The Gaussian free space opticalMIMO channel with Q-ary pulse position modulation,” IEEE Trans. WirelessCommun.,2008, vol.7, pp.1744–1753.
    [108] N. Cvijetic, S. G. Wilson, and M. Brandt-Pearce,“Receiver optimization inturbulent free-space optical MIMO channels with APDs and Q-ary PPM,” IEEEPhot. Technol.,2007, vol.19, pp.103–105.
    [109] N. Cvijetic, S. G. Wilson, and M. Brandt-Pearce,“Performance bounds forfree-space optical MIMO systems with APD receivers in atmosphericturbulence,” IEEE J. Sel. Areas Commun.,2008, vol.26, pp.3–12.
    [110] T. A. Tsiftsis, H. G. Sandalidis, G. K. Karaginannidis, and M. Uysal,“Opticalwireless links with spatial diversity over strong atmospheric turbulencechannels,” IEEE Trans. Wireless Commun.,2009, vol.8, pp.951–957.
    [111] K. P. Peppas, F. Lazarakis, A. Alexandridis, and K. Dangakis,“Simple, accurateformula for the average bit error probability of multiple-input multiple outputfree-space optical links over negative exponential turbulence channels,” Opt.Lett.,2012, vol.37, pp.3243–3245.
    [112] E. Bayaki, R. Schober, and R. K. Mallik,“Performance analysis of MIMOfree-space optical systems in gamma-gamma fading,” IEEE Trans. Commun.2009, vol.57, pp.3415–3424.
    [113] K. P. Peppas,“A simple, accurate approximation to the sum of gamma-gammavariates and applications in MIMO free-space optical systems,” IEEE Phot.Technol. Lett.,2011, vol.23, pp.839–841.
    [114] N. D. Chatzidiamantis, and G. K. Karagiannidis,“On the distribution of the sumof gamma-gamma variates and application in RF and optical wirelesscommunications,” IEEE Trans. Commun.,2011, vol.59, pp.1298–1308.
    [115] A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A.Hiniesta-Gomez,“Section transmit diversity for FSO links over strongatmospheric turbulence channels,” IEEE Phot. Techn.,2009, vol.21, pp.1017–1019.
    [116] B. Castillo-Vazquez, A. Garcia-Zambrana, and C. Castillo-Vazquez,“Closed-Form BER expression for FSO links with transmit laser selection overexponential atmospheric turbulence channels,” Electron. Lett.,2009, vol.45, pp.1185–1187.
    [117] A. Garcia-Zambrana, C. Castillo-Vazquez, and B. Castillo-Vazquez,“Space-time trellis coding with transmit laser selection for FSO links overstrong atmospheric turbulence channels,” Opt. Express,2010, vol.18,5356–5366.
    [118] A. Garcia-Zambrana, B. Castillo-Vazquez and C. Castillo-Vazquez,“Asymptoticerror-rate analysis of FSO links using transmit laser selection overgamma-gamma atmospheric turbulence channels with pointing errors,” Opt.Express,2012, vol.20, pp.2096–2109.
    [119] A. Belmonte and J. M. Kahn,“Performance of synchronous optical receiversusing atmospheric compensation techniques,” Opt. Express,2008, vol.16, pp.14151-14162.
    [120] A. Belmonte and J. M. Kahn,“Capacity of coherent free-space optical linksusing atmospheric compensation techniques,” Opt. Express,2009, vol.17, pp.2763-2773.
    [121] A. Belmonte and J. M. Kahn,“Capacity of coherent free-space optical linksusing diversity combining techniques,” Opt. Express,2009, vol.17, pp.12601-12611.
    [122] M. B. Niu, J. L. Cheng, J. F. Holzman,“Exact error rate analysis of equal gainand selection diversity for coherent free-space optical systems on strongturbulence channels,” Opt. Express,2010, vol.18, pp.13915-13926.
    [123] M. B. Niu, J. Schlenker, J. L. Cheng, J. F. Holzman, and R. Schober,“Coherentwireless optical communications with predetection and postdetection EGC overgamma–gamma atmospheric turbulence channels,” J. Opt. Commun. Netw.,2011, vol.3, pp.860–869.
    [124] M. Safari and M. Uysal,“Relay-assisted free-space optical communication,”IEEE Trans.Wireless Commun.,2008, vol.7, pp.5441–5449.
    [125] M. Karimi and M. Nasiri-Kenari,“BER analysis of cooperative systems infree-space optical networks,” J. Lightwave Technol.,2009, vol.27, pp.5639–5647.
    [126] M. Karimi and M. Nasiri-Kenari,“Outage analysis of relay-assisted free-spaceoptical communications,” IET Commun.,2010, vol.4, pp.1423–1432.
    [127] C. Abou-Rjeily and A. Slim,“Cooperative diversity for free-space opticalcommunications: transceiver design and performance analysis,” IEEE Trans.Commun.,2011, vol.59, pp.658–663.
    [128] C. Abou-Rjeily and S. Haddad,“Cooperative FSO systems: performanceanalysis and optimal power allocation,” J. Lightwave Technol.,2011, vol.29, pp.1058–1065.
    [129] A. Garcia-Zambrana, B. Castillo-Vazquez, C. Castillo-Vazquez, and R.Boluda-Ruiz,“Bit detect and forward relaying for FSO links using equal gaincombining over gamma-gamma atmospheric turbulence channels with pointingerrors,” Opt. Express,2012, vol.20, pp.16394–16409.
    [130] M. A. Kashani, M. Safari, and M. Uysal,“Optimal relay placement and diversityanalysis relay-assisted free-space optical communication systems,” J. Opt.Commun. Netw.,2013, vol.5, pp.37–47.
    [131] A. H. Mikesell, A. A. Hoag, and J. S. Hall,“The scintillation of starlight,” J. Opt.Soc. Am.,1951, vol.41, pp.689–695.
    [132] D. L. Fried,“Aperture averaging of scintillation,” J. Opt. Soc. Am.,1967, vol.57, pp.169–175.
    [133] A. I. Kon,“Averaging of spherical-wave fluctuations over a receiving aperture,”Radiophys. Quantum Electron.,1969, vol.12, pp.122–124.
    [134] R. F. Lutomirski and H. T. Yura,“Aperture-averaging factor of a flucturatinglight signal,” J. Opt. Soc. Am.,1969, vol.59, pp.1247–1248.
    [135] J. H. Churnside,“Aperture averaging of optical scintillations in the turbulentatmosphere,” Appl. Opt.,1991, vol.30, pp.1982–1994.
    [136] L. C Andrews,“Aperture-averaging factor for optical scintillations of plane andspherical waves in the atmosphere,” J. Opt. Soc. Am. A,1992, vol.9, pp.597–600.
    [137] E. L. Bass, B. D. Lackovic, and L. C. Andrew,“Aperture averaging of opticalscintillations based on a spectrum with high wave number bump,” Opt. Eng.,1995, vol.34, pp.26–31.
    [138] L. C. Andrews, R. L. Phillips, and C. Y. Hopen,“Aperture averaging of opticalscintillations: power fluctuations and the temporal spectrum,” Waves RandomMedia,2000, vol.10, pp.53–70.
    [139] H. Yuksel, S. Milner, and C. C. Davis,“Aperture averaging for optimizingreceiver design and system performance on free-space optical communicationlinks,” J. Opt. Netw.,2005, vol.4, pp.462–475.
    [140] M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane,“Fading reductionby aperture averaging and spatial diversity in optical wireless systems,” J. Opt.Commun. Netw.,2009, vol.1, pp.580–593.
    [141] F. S. Vetelino, C. Young, L. Andrews, and J. Recolons,“Aperture averagingeffects on the probability density of irradiance fluctuations in moderate-to-strongturbulence,” Appl. Opt.,2007, vol.46, pp.2099–2108.
    [142] R. Barrios and F. Dios,“Exponentiated Weibull distribution family underaperture averaging for Gaussian beam waves,” Opt. Express,2012, vol.20, pp.13055–13064.
    [143] R. Barrios and F. Dios,“Exponentiated Weibull model for the irradianceprobability density function of a laser beam propagating through atmosphericturbulence,” Optics&Laser Technol.,2012, vol.45, pp.13–20.
    [144] N. S. Kopeika, A. System Engineering Approach to Imaging, SPIE OpticalEngineering Press, Bellingham,1998.
    [145] I. I. Kim, B. McArthur, and E. Korevaar,“Comparison of laser beampropagation at785nm and1550nm in fog and haze for optical wirelesscommunications,” Proc. SPIE,2001, vol.4214, pp.26–37.
    [146] A. N. Kolmogorov,“The local structure of turbulence in an incompressibleviscous fluid for very large Reynolds numbers,” C. R.(Doki) Acad. Sci.U.S.S.R.,1941, vol.30, pp.301–305.
    [147] L. F. Richardson, Weather Prediction by Numerical Process, CambridgeUniversity Press, Cambridge, U.K.,1922.
    [148] A. M. Obukhov,“Some specific features of atmospheric turbulence,” J. FluidMech.,1962, vol.13, pp.77–81.
    [149] V. I. Tatarskii, Wave Propagation in a Turbulent Medium, McGraw-Hill, NewYork,1961, trans. by R. A. Silverman.
    [150] F. H. Champagne, C. A. Friehe, J. C. LaRue, and J. C. Wyngaard,“Fluxmeasurements, flux-estimation techniques, and fine-scale turbulencemeasurements in the unstable surface layer over land,” J. Atmosp. Sci.,1977,vol.34, pp.515–530.
    [151] R. M. Williams and C. A. Paulson,“Microscale temperature and velocity spectrain the atmospheric boundary layer boundary layer,” J. Fluid Mech.,1977, vol.83,pp.547–567.
    [152] R. J. Hill,“Models of the scalar spectrum for turbulent advection,” J. FluidMech.,1978, vol.88, pp.541–662.
    [153] L. C. Andrews,“An analytical model for the refractive index power spectrumand its application to optical scintillations in the atmosphere,” J. Mod. Opt.,1992, vol.39, pp.1849–1853.
    [154] F. Dios, J. A. Rubio, A. Rodríguez, and A. Comerón,“Scintillation andbeam-wander analysis in an optical ground station-satellite uplink,” Appl. Opt.,2004, vol.43, pp.3866–3873.
    [155] J. Ma, Y. Jiang, L. Tan, S. Yu, and W. Du,“Influence of beam wander onbit-error rate in a ground-to-satellite laser uplink communication system,” Opt.Lett.,2008, vol.33, pp.2611–2613.
    [156] H. Guo, B. Luo, Y. Ren, S. Zhao, and A. Dhang,“Influence of beam wander onuplink of ground-to-satellite laser communication and optimization fortransmitter beam radius,” Opt. Lett.,2010, vol.35, pp.1977–1979.
    [157] H. G. Sandalidis,“Performance of a laser Earth-to-satellite link over turbulenceand beam wander using the modulated gamma-gamma rradiance distribution,”Appl. Opt.,2011, vol.50, pp.952–961.
    [158] K. S. Gochelashvili and V. I. Shishov,“Saturated fluctuations in the laserradiation intensity in a turbulent medium,” Sov. Phys. JETP,1974, vol.39, pp.605–609.
    [159] R. L. Fante,“Inner-scale size effect on the scintillations of light in the turbulentatmosphere,” J. Opt. Soc. Am.,1983, vol.73, pp.277–281.
    [160] E. Jakeman and P. N. Pusey,“The significance of K-distributions in scatteringexperiments,” Phys. Rev. Lett.,1978, vol.40, pp.546–550.
    [161] G. Parry and P. N. Pusey,“K distributions in atmospheric propagation of laserlight,” J. Opt. Soc. Am.,1979, vol.69, pp.796–798.
    [162] M. A. Al-Habash, L. C. Andrews, and R. L. Phillips,“Mathematical model forthe irradiance PDF of a laser beam propagating through turbulent media,” Opt.Eng.,2001, vol.40, pp.1554–1562.
    [163] M. Razavi, J. Shapiro,“Wireless optical communications via diversity receptionand optical preamplification,” IEEE Trans. Wireless Commun.,2005, vol.4, pp.975–983.
    [164] Q. Cao, M. randt-Pearce, S. G. Wilson,“Optically amplified wireless infraredMISO systems,” Proc. IEEE GLOBECOM Workshops, Washington DC, USA,Nov.2007, pp.4505–4510.
    [165] S. M. Haas,“Capacity of and coding for multiple-aperture wireless opticalcommunications,” Ph.D. Dissertation, Massachusetts Institute of Technology,2003.
    [166] P. S. Bithas, N. C. Sagias, P. T. Mathiopoulos, G. K. Karagiannidis, and A. A.Rontogiannis,“On the performance analysis of digital communications overGeneralized-K fading channels,” IEEE Commun. Letters,2006, vol.10, pp.353–355.
    [167] V. S. Adamchik, and O. I. Marichev,“The algorithm for calculating integrals ofhypergeometric type functions and its realization in REDUCE system,” in Proc.Int. Conf. Symbolic and Algebraic Computation, Tokyo, Japan,1990, pp.212–224.
    [168] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,7thed., Elsevier,2007.
    [169] A. Mathai, R. K. Saxena, and H. J. Haubold, The H Function:Theory andApplications, Springer,2010.
    [170] G. Einarsson, Principles of lightwave communications, John Wiley&Sons Ltd,1995.
    [171] P. A. Humblet and M. Azizoglu,“On the bit error rate of lightwave systems withoptical amplifiers,” J. Lightwave Technol.,1991, vol.9, pp.1576–1582.
    [172] A. Annamalai and C. Tellambura,“A moment-generating function (MGF)derivative-based unified analysis of incoherent diversity reception of M-aryorthogonal signals over independent and correlated fading channels,”International Journal of Wireless Information Networks,2003, vol.10, pp.41–56.
    [173] A. O. Aladeloba, A. J. Phillips, M. S. Woolfson,“Performance evaluation ofoptically preamplified digital pulse position modulation turbulent free-spaceoptical communication systems,” IET Optoelectron. J.,2012, vol.6, pp.66–74.
    [174] A. J. Phillips, R. A. Cryan, J. M. Senior,“An optically preamplified intersatellitePPM receiver employing maximum likelihood detection,” IEEE PhotonicsTechnol. Lett.,1996, vol.8, pp.691–693.
    [175]刘增基,周洋溢,胡辽林等,光纤通信,西安:西安电子科技大学出版社,2008.
    [176] K. Kiasaleh.,“Performance of coherent DPSK free-space opticalcommunication systems in K-distributed turbulence,” IEEE Trans. Commun.,2006, vol.54, pp.604–607.
    [177] H.G.Sandalidis, T.A.Tsiftsis, and G. K. Karagiannidis,“Optical wirelesscommunications with heterodyne detection over turbulence channels withpointing errors,” J. Lightwave Technol.,2009, vol.27, pp.4440–4445.
    [178] T. A. Tsiftsis.,“Performance of heterodyne wireless optical communicationsystems over gamma-gamma atmospheric turbulence channels,” Electron. Lett.,2008, vol.44.
    [179] M. Abramovitz and I. A. Stegun, Handbook of Mathematical FunctionswithFormulas, Graphs, and Mathematical Tables,9th ed. New York: Dover,1972.
    [180] D. L. Fried,“Optical heterodyne detection of an atmospherically distorted signalwave front,” Proc. IEEE,1967, vol.55, pp.57–67.
    [181] D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop,“Measurement of optical turbulence in the upper troposphere and lowerstratosphere,” Proc. SPIE,1994, vol.2120, pp.43–55.
    [182] J. B. Wang, M. Sheng, X. Y. Song, Y. Jiao, and M. Chen,“Comments on ‘BERperformance of FSO links over strong atmospheric turbulence channels withpointing errors,” IEEE Commun. Lett.16,1, pp.22–23,(2012).
    [183] Wolfram Research, Inc.,“The Wolfram functions site,” URLhttp://functions.wolfram.com.
    [184] W. H. Press, S. A. Teukolsky, W. A. Vetterling, and B. P. Flannery, NumericalRecipies in C: The Art of Scientific Computing.(Cambridge, U.K.: CambridgeUniv. Press,1992).
    [185] Luc Devroye, Non-Uniform Random Variate Generation. New York:Springer-Verlag,1986.
    [186] L. C. Andrews, Special Functions of Mathematics for Engineers,2nd ed., SPIEOptical Engineering Press, Bellingham, Wash.,1998.
    [187] I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero,“Scintillation index ofoptical plane wave propagating through non Kolmogorov moderate-strongturbulence,” Proc. SPIE,2007, vol.6747,67470B.
    [188] P. Deng, X. H. Yuan, and D. X. Huang,“Scintillation of a laser beampropagation through non-Kolmogorov strong turbulence,” Opt. Commun.,2012,vol.285, pp.880–887.
    [189] K. J. Mayer, Effect of Inner Scale Atmospheric Spectrum Models onScintillation in All Optical Turbulence Regimes, Ph.D. dissertation, Universityof Central Florida,2007.
    [190] A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, Y.Shtemler,“Lidar study of aerosol turbulence characteristics in the troposphere:Kolmogorov and non-Kolmogorov turbulence,” Atmospheric Research,2008,vol.88, pp.66–77.
    [191] W. H. Du, Z. M. Yao, D. S. Liu, C. J. Cai, X. F. Du, and R. Ai,“Influence ofnon-Kolmogorov turbulence on intensity fluctuations in laser satellitecommunication,” J. Russ. Laser Res.,2012, vol.33, pp.90-97.
    [192] A. Zilberman, E. Golbraikh, and N. S. Kopeika,“Propagation ofelectromagnetic waves in Kolmogorov and non-Kolmogorov atmosphericturbulence: three-layer altitude model,” Appl. Opt.,2008, vol.47, pp.6385-6391.
    [193] A. Zilberman, E. Golbraikh, and N. S. Kopeika,“Some limitations on opticalcommunication reliability through Kolmogorov and non-Kolmogorovturbulence,” Opt. Commu.,2010, vol.283, pp.1229-1235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700