卫星光通信中空间辐射环境对掺铒光纤放大器影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着信息流量需求的迅速增长,以微波为信息载体的卫星通信技术在通信数据率的提高上逐渐显现出局限性。而卫星光通信技术相对卫星微波通信技术而言,具有设备体积小、抗干扰强和保密性高等诸多优点,同时在通信数据率方面更是有着极大的提升空间。自上世纪六十年代以来,美国、欧洲以及日本等研究机构都相继对卫星光通信技术的研究投入了巨大的人力和物力,而目前我国对该领域的关注也在不断的提高。
     目前国际上卫星光通信系统基本都是采用基于半导体激光器的直接调制方式。在保证大输出光功率的前提下,由于卫星光通信链路中无法实现中继放大,在直接调制方式下进一步提高通信系统调制速率的难度越来越大。而采用由半导体激光器和掺铒光纤放大器(EDFA)构成的过渡性调制子系统结构或由半导体激光器、LiNbO3波导调制器以及EDFA组成的下一代主流调制子系统结构可以解决这一难题。
     在上述两种解决方案中都需采用EDFA技术。然而EDFA受到空间辐射后,其光学性能指标会有所下降,这会影响到整个卫星光通信系统的通信质量。因此,本文对EDFA在空间辐射环境下的性能变化进行了理论和实验研究,主要内容包括以下几个方面:
     为解决EDFA辐射影响研究中原有EDFA无法直接测试的难题,在基于掺铒光纤背景损耗的速率方程与传输方程的基础上,通过在无源测试模型中引入有源测试方法给出了一个新的EDFA辐射增益特性测试模型。采用该有源测试模型,只需通过测试EDFA信号光的输出功率随辐射剂量的变化就可以直接得到单波长EDFA的辐射增益特性,这使得在EDFA整机的测试过程中不再像无源测试模型中那样必须测试掺铒光纤辐射背景损耗,从而为卫星光通信系统设计人员提供一个更为便捷的分析方法。
     针对光纤恢复效应所引起的测试时间受限问题,首先对能够描述常规环境下多波长EDFA增益特性的黑匣子模型的本质进行了分析。然后在此基础上将黑匣子模型引入到辐射环境中来描述多波长EDFA辐射增益特性,从而提出一种采用黑匣子模型的多波长EDFA辐射增益特性的测试方法。
     为了对卫星光通信系统优化选择EDFA提供更加全面的参考依据,进一步对EDFA的抗空间辐射性能进行了实验研究。主要通过掺铒光纤的铒离子浓度与辐射剂量的关系、掺铒光纤放大器与铒镱共掺光纤放大器的抗辐射性能对比以及采用电子作为辐射源这三方面对EDFA的抗空间辐射性能进行了研究分析。
     最后,为了研究EDFA在卫星光通信系统中的应用情况,进一步从信噪比以及误码率的角度分析了由辐射引起的EDFA性能变化对通信系统的影响。仿真结果表明受EDFA性能变化的影响,通信系统信噪比都是随辐射剂量的增加而减小,而误码率是随辐射剂量的增加而增大。但是在相同通信系统参数的情况下,采用EDFA作为前置放大器的通信系统的抗辐射性能要优于采用EDFA作为功率放大器的通信系统。
     上述这些研究工作将为采用EDFA技术的卫星光通信系统的设计提供参考依据,并对解决高功率与调制速率这一技术矛盾从而实现卫星光通信系统的高数据率通信传输具有重要意义。
With the rapid growth of information, the limitations of inter-satellite microwave communication technique are gradually exposed in the improvement of the communication data rate in recent years. However, comparing to the technique, the inter-satellite optical communication technique has more advantages, such as smaller volume of equipment, higher anti-interference, better confidentiality, and so on. Especially, considering the potentiality of the communication date rate further, the inter-satellite optical communication technique has become one of the hottest research fields. Enormous human and material resources have been invested in this technique by the United States, Europe, Japan and other major countries since 1960s. For the same reason, our country has also given more concern to this technique.
     At present, the direct modulation technique, which is based on the semiconductor lasers, has been used in the most of the inter-satellite optical communication systems in overseas. However, there is no relay to amplify the signal in inter-satellite optical communication links. Therefore, with the growth of transmission data rate, it is more difficult to meet the requirements of high modulation rate under the condition of high output optical power. Usually, there are two good methods to solve the problem. One is the transitional modulation subsystem composed of semiconductor laser and eribium-doped fiber amplifier (EDFA). And the other is the next modulation subsystem composed of semiconductor lasers, LiNbO3 waveguide modulator and EDFA.
     It is clear that both methods indicate the EDFA has to be used as the key component in next inter-satellite optical communication systems. However, since the optical characteristics of EDFA will deteriorate after the radiation, the radiation effect on the EDFA will affect the communications quality of the inter-satellite optical communication systems. Therefore, in this dissertation, the space radiation effect on the EDFA has been investigated both in theory and experiment. The main contents of the dissertation include the following aspects:
     Since it is impossiable to measure the radiation characteristic of EDFA directly, an active measured method has been introduced to the passive measured model based on the rate equation and the transfer equation of radiation environment. The new active measured model can describe the gain characteristics of EDFA in the radiation environment, only by measuring the variation of optical signal output power with the dose. In this way, it can avoid measuring the deterioration of eribium-doped fiber (EDF) to get the gain characteristics of EDFA like the passive measured model. Therefore, it provides a more convinent method to the designers of the inter-satellite optical communication systems.
     In order to overcome the restriction of the measured time which caused by the recovery characterstics of EDF, a black box model (BBM) is introduced to describe the multi-wavelength gain characteristics of EDFA in the radiation environment successfully based on the analysis on the nature of the black box model. Then a method based on the BBM has been proposed to measure multi-wavelength gain characteristics of EDFA in radiation environment.
     In order to introduce the EDFA to the actual inter-satellite optical communication system better, the anti-radiation characteristics of EDFA has been further analyzed in three viewpoints. These are the relationship between the concentration of Er3+ in erbium-doped fiber and the radiation dose, the comparison of anti-radiation performance between the EDFA and the erbium-ytterbium co-doped fiber amplifier (EYDFA), and the the electron radiation effect on the EDFA.
     Finally, in order to understand the application of EDFA in satellite optical communication systems better, the radiation effect on the EDFA has been investigated in the communication viewpoints of signal to noise ratio and bit error rate. The calculation results indicate that the signal to noise ratio decreases with the increasement of radiation dose. And the bit error rate increases with the increasement of radiation doise. Especially, the anti-radiation performance of communication systems, in which the EDFA is used as the preamplifier, is better than the case in which the EDFA is used as the power amplifier.
     The research work mentioned above will be a good reference for the design of inter-satellite optical communication systems which contain the EDFAs. Especially, it is also really significant to solve the contradiction between the high output power and high modulation rate radically, and achieve the high transmission data rate for the inter-satellite optical communication eventually.
引文
1 G. S. Mecherle and M. Horstein. Comparison of Radio Frequency and Optical Architectures for Deep-Space Communications via a Relay Satellite. Proc. SPIE. 1994, 2123: 36~53
    2 R. G. Marshalek, G. S. Mecherle, and P. R. Jordan. System Level Comparison of Optical and RF Technologies for Space-to-Space and Space-to-Ground Communication Link scirca 2000. Proc. SPIE. 1996, 2699: 134~145
    3 M. Joindot and S. Gosselin. Optical Fiber Transport Systems and Networks: Fundamentals and Prospects. Comptes Rendus Physique. 2008, 9(10): 914~934
    4 G. Veith, E. Lach, and K. Schuh. 100 Gigabit-Per-Second: Ultra-High Transmission Bitrate for Next Generation Optical Transport Networks. Comptes Rendus Physique. 2008, 9(10): 1002~1011
    5 Y. Mochida, N. Yamaguchi, and G. Ishikawa. Technology-Oriented Review and Vision of 40-Gb/s-Based Optical Transport Networks. Journal of Lightwave Technology. 2002, 20(12): 2272~2281
    6 A. Banerjee, Y. Park, F. Clarke, H. Song, S. H. Yang, G. Kramer, K. Kim, and B. Mukherjee. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) Technologies for Broadband Access: a Review. Journal of Optical Networking. 2005, 4(11): 737~758
    7 D. L. Fried. Scintillation of a Ground-to-Space Laser Illuminator. J. Opt. Soc. Am. 1967, 57(8): 980~983
    8 K. Klesaleh and T. Y. Yan. A Statistical Model for Evaluating GOPEX Uplink Performance. TDA Progress Report. 1992, 42(111): 325~333
    9 K. E. Wilson, J. Schwartz, and J. R. Lesh. GOPEX: A Deep Space Optical Communications Experiment with the Galileo Spacecraft. Proc. SPIE. 1991, 1417: 22~26
    10 E. Korevaar, R. J. Hofmeister, J. Schuster, et al.. Design of Satellite Terminal for BMDO Lasercom Technology Demonstration. Proc. SPIE. 1995, 2381: 60~71
    11 R. Ruigrok, P. Adhikari, and R. Stieger. Preliminary Tracking Performance of the STRV-2 Lasercom Transceiver. Proc. SPIE. 1996, 2699: 198~209
    12 J. Schusterm, H. Hakakha, and E. Korevaar. Optomechanical Design of STRV-2 Lasercom Transceiver Using Novel Azimuth/Slant Gimbal. Proc. SPIE. 1996, 2699: 227~239
    13 E. Korevaar, J. Schuster, P. Adhikari, and H. Hakakha. Description of STRV-2 Lasercom Experimental Operations. Proc. SPIE. 1997, 2990: 60~69
    14 J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, and R. G. Hay. The Space Technology Research Vehicle (STRV) -2 Program. Proc. SPIE. 2000, 4136: 36~47
    15 I. I. Kim, B. Riey, N. M. Wong, et al.. Lessons Learned from the STRV-2 Satelitte-to-Ground Lasercom Experiment. Proc. SPIE. 2001, 4272: 1~15
    16 M. Jeganathan, M. Toyoshimaa, K. Wilson, J. Jamesb, G. Xuc, and J. Lesh. Data Analysis Results from the GOLD Experiments. Proc. SPIE. 1997, 2990: 70~81
    17 M. Jeganathan, K. E. Wilson, and J. R. Lesh. Preliminary Analysis of Fluctuations in the Received Uplink-Beacon-Power Data Obtained from the GOLD Experiments. TDA Progress Report. 1996, 42(124): 20~32
    18 K. Wilson, M. Jeganathan, and J. R. Lesh. Results From Phase-1 and Phase-2 GOLD Experiments. TDA Progress Report, 1997, 42(128): 1~11
    19 K. E. Wilson. An Overview of the GOLD Experiment between the ETS-VI Satellite and the Table Mountain Facility. TDA Progress Report. 1996, 42(124): 8~19
    20 A. Biswas and M. W. Wright. Mountain-Top-to-Mountain-Top Optical Link Demonstration: Part I. IPN Progress Report. 2002, 42(149): 1~2
    21 A. Biswas and M. W. Wright. Mountain-Top-to-Mountain-Top Optical Link Demonstration: Part II. IPN Progress Report. 2002, 42(151): 1~16
    22孙兆伟,吴国强,孔宪仁,赵丹.国内外空间光通信技术发展及趋势研究.无线光通信. 2005, 9: 61~64
    23 K. B. Doyle. Design Optimization of a Dual Mode Multi-Axis Passive Isolation Configuration for MLCD. Proc. SPIE. 2007, 6665: 66650G-1~66650G-12
    24 B. G. Patrick, P. Gierow, D. Sheikh, and W. T. Roberts. Solar Filter for the Mars Laser Communication Demonstration Optical Receiver. Proc. SPIE. 2004, 4606: 336~343
    25 K. B. Doyle. Structural Line-of-Sight Jitter Analysis for MLCD. Proc. SPIE. 2007, 6665: 66650I-1~66650I-12
    26 A. Biswas, M. W. Wright, J. Kovalik, and S. Piazzolla. Uplink Beacon Laser for Mars Laser Communication Demonstration (MLCD). Proc. SPIE. 2005, 5712: 93~100
    27 H. Hemmati, A. Biswas, and D. M. Boroson. 30-dB Data Rate Improvement for Interplanetary Laser Communication. Proc. SPIE. 2008, 6877: 687707-1~687707-8
    28马惠军,朱小磊.自由空间激光通信最新进展.激光与光电子学进展. 2005, 42(3): 7~10
    29 D. M. Boroson, A. Biswas, and B. L. Edwards. MLCD: Overview of NASA’sMars Laser Communications Demonstration System. Proc. SPIE. 2004. 5338: 16~28
    30 B. Laurent and O. Duchmann. The Silex Project: The First European Optical Intersatellite Link Experiment. Proc. SPIE. 1991, 1417: 2~12
    31 R. P. Mathur, C. I. Beard, and D. J. Puril. Analysis of SILEX Tracking Sensor Performance. Proc. SPIE. 1990, 1218: 129~141
    32 R. Birkl and S. Manhart. Back Reflection Measurements on the SILEX Telescope. Proc. SPIE. 1991, 1552: 252~258
    33 D. Buvat, G. Muller, and P. Peyrot. The Coarse Pointing Assembly for SILEX Program or How to Achieve Outstanding Pointing Accuracy with Simple Hardware Associated with Consistent control Laws. Proc. SPIE. 1991, 1417: 251~261
    34 B. Menke and R. Loffler. Comparative Life Test of 0.8μm-Laser Diodes for SILEX under NRZ and QPPM Modulation. Proc. SPIE. 1991, 1417: 316~327
    35 R. Craig, B. Li, and B. Chan. Laser Qualification for the SILEX Program. Proc. SPIE. 1994, 2123: 238~242
    36薛琳生,王岩.空间光通信技术的发展与展望.电子器件. 2003, 26(3): 287~290
    37翟旭华,张洪涛,姜威远.国外空间激光链路通信技术进展.无线光通信. 2004, 1: 42~45
    38 T. Nielsenetal. In Orbit Test Results of the First SILEX Terminal. Proc. SPIE. 1999, 3615: 31~42
    39刘克超.卫星通信的发展趋势.信息技术. 2002, 11: 82~84
    40 M. Reyes, S. Chueca, A. Alonso, et al.. Analysis of the Preliminary Optical Links between ARTEMIS and the Optical Ground Station. Proc. SPIE. 2002, 4821: 33~43
    41 M. Reyes, J. A. Rodriguez, T. Viera, et. al.. Design and Performance of the ESA Optical Ground Station. Proc. SPIE. 2002, 4635: 248~260
    42 M. Reyes, S. Checa, A.l Alonso, et al.. Analysis of the Preliminary Optical Links between ARTEMIS and the Optical Ground Station. Proc. SPIE. 2002, 4821: 33~43
    43 M. Reyes, Z. Sodnik, P. Lopez, et al.. Preliminary Results of the In-Orbit Test of ARTEMIS with the Optical Ground Station. SPIE, 2002, 4635: 38~49
    44 A. Alonso, M. Reyes, Z. Sodnik. Performance of Satellite-to-Ground Communications Link between ARTEMIS and the Optical Ground Station. Proc. SPIE. 2004, 5572: 372~383
    45徐峰.欧空局光学地面站(OGS)十年回顾.科学研究动态监测快报. 2008, 5:16~19
    46谭立英,马晶,林维秋,黄波.国际卫星光通信技术发展.激光技术. 1999,23(5):299~303
    47 G. Oppenhauser, M. Wittig, and A. Popesce. The European SILEX Project and other Advanced Concepts for Optical Space Communications. Proc. SPIE. 1991, 1522: 2~13
    48 K. Pribil and J. Flemmig. Solacos-System Implemen. Proc. SPIE. 1995, 2381: 143~150
    49 K. Pribil, C. Serbe, B. Wandernoth, and C. Rapp. SOLACOS YKS-an Optical High Datarate Communication System for Intersatellite Link Applications. Proc. SPIE. 1995, 2381: 83~88
    50 K. Pribil and J. Flemmig. SOLACOS High Datarate Satellite Communication System Verification Program. Proc. SPIE. 1994, 2210: 39~48
    51 K. Pribil, U. Johann, and H. Sontag. SOLACOS: a Diode-Pumped Nd: YAG Laser Breadboard for Coherent Space Communication System Verification. Proc. SPIE. 1991, 1522: 36~47
    52 J. Flemmig and K. Pribil. SOLACOS PAT Subystem Implementation. Proc. SPIE. 1994, 2210: 164~172
    53侯丽,杨帆.法国国防采购局开展实时LOLA示范验证.科学研究动态监测快报. 2008, 5: 27~28
    54杨帆.现代通信领域新热点:天基激光通信系统及技术发展.科学研究动态监测快报. 2008, 5: 3~11
    55 M. Shikatani, M. Toyoda, H. Takami, K. Araki, M. Isogai, Y. Suzuki, and T. Aruga. Ground System Development for the ETS-VI/LCE Laser Communications Experiment. Proc. SPIE. 1993, 1866: 21~29
    56 K. Araki, Y. Arimoto, M. Shikatani, M. Toyoda, M. Toyoshima, and T. Takahashi. Performance Evaluation of Laser Communication Equipment Onboard the ETS-VI Satellite. Proc. SPIE. 1996, 2699: 52~59
    57 M. Toyoda, M. Toyoshima, T. Takahashi et. al.. Ground to ETS-VI Narrow Beam Transmission. Proc. SPIE. 1996, 2699: 71~80
    58王佳,俞信.自由空间光通信技术的研究现状和发展方向综述.光学技术. 2005, 31(2): 259~261
    59 M. Toyoshima, S. Yamakawa, T. Yamawaki, el at.. Ground-to-Satellite Optical Link between Japanese Laser Communications Terminal and European Geostationary Satellite ARTEMIS. Proc. SPIE. 2004, 5338: 1~15
    60 M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. Reyes, A. Alonso, Z. Sodnik, and B. Demelenne. Long-Term Statistics of Laser Beam Propagation inan Optical Ground-to-Geostationary Satellite Communication Link. IEEE Transactions on Antennas and Propagation. 2005, 53(2): 842~850
    61 T. Jono, Y. Takayama, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, Z. Sodnik, B. Demelenne, A. Brid, and K. Arai. OICETS On-Orbit Laser Communication Experiments. Proc. SPIE. 2006, 6105: 1~11
    62 T. Jono, M. Toyoda, K. Nakagawa, and A. Yamamoto. Acquisition, Tracking and Pointing System of OICETS for Free Space Laser Communications. Proc. SPIE. 1999, 3692: 41~50
    63 M. Toyoshima, T. Jono, T. Yamawaki, K. Nakagawa, and A. Yamamoto. Assessment of Eye Hazard Associated with an Optical Downlink in Free-Space Laser Communications. Proc. SPIE. 2001, 4272: 129~216
    64 Y. Suzuki, K. Nakagawa, T. Jono, and A. Yamamoto. Current Status of OICETS Laser Communication Terminal Development of Laser Diodes and Sensors for OICETS Program. Proc. SPIE. 1997, 2990: 31~37
    65 T. Jono, M. Toyoshima, N. Takahashi, and T. Yamawaki. Laser Tracking Test under Satellite Microvibrational Disturbances by OICETS ATP System. Proc. SPIE. 2002, 4714: 97~104
    66 K. Nakagawa, A. Yamamoto, and Y. Suzuki. OICETS Optical Link Communications Experiment in Space. Proc. SPIE. 1996, 2886: 172~180
    67 T. Araki, S. Nakamori, Y. Hisada and T. Fukuda. Present and Future of Optical Intersatellite Communication Research at NASDA. Proc. SPIE. 1994, 2123: 2~13
    68 K. Nakagawa and A. Yamamoto. Performance Test Result of LUCE (Laser Utilizing Communications Equipment) Engineering Model. Proc. SPIE. 2000, 3932: 68~76
    69 M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, and K. Shiratama. Ground-to-OICETS Laser Communication Experiments. Proc. SPIE. 2006, 6304: 1~8
    70 L. Y. Tan, Y. Q. Yang, J. Ma, and J. J. Yu. Pointing and Tracking Erors Due to Localized Deformation in Inter-Satellite Laser Communication Links. Optics Express. 2008, 16(17): 13372~13380
    71 Y. Q. Yang, L. Y. Tan, J. Ma, and J. J. Yu. Effects of Localized Deformation Induced by Reflector Antenna on Received Power. Optics Communications. 2009, 282: 396~400
    72马晶,韩琦琦,于思源等.卫星平台振动对星间激光链路的影响和解决方案.激光技术. 2005, 29(3): 228~232
    73于思源,谭立英,马晶等.激光星间链路中振动补偿技术研究.光电子·激光.2004, 15(4): 472~476
    74 L. Y. Tan, J. J. Yu, J. Ma, Y. Q. Yang, M. Li, Y. J. Jiang, and J. F. Liu. Approach to Improve Beam Quality of Inter-Satellite Optical Communication System Based on Diffractive Optical Elements. Optics Express. 2009, 17(8): 6311~6319
    75 J. J. Yu, L. Y. Tan, J. Ma, Q. Q. Han, Y. Q. Yang, and M. Li. Novel Method to Improve the Emission Efficiency of Satellite Optical Communication Terminal. Chinese Journal of Lasers. 2009, 36(3): 581~586
    76陈云亮,于思源,马晶等.一种新型的卫星光通信高速跟瞄探测装置.光电子·激光. 2005, 16(5): 598~600
    77 F. Pan, Q. Q. Han, J. Ma, and L. Y. Tan. Measurement of Scintillation and Link Margin for Laser Beam Propagation on 3.5-km Urbanised Path. Chinese Optics Letter. 2007, 5(1): 1~3
    78 J. Ma, F. Pan, L. Y. Tan, and S. Y. Yu. Measurement of Statistical Properties of Laser Irradiance Scintillation and Link Margin Evaluation over Densely Urbanised Terrain. High Power Laser and Particle Beams. 2007, 19(8): 1257~1260
    79马晶,潘锋,谭立英.星地激光链路中光束发散角与跟瞄误差的最佳比值.强激光与粒子束. 2006, 18(8): 1233~1238
    80潘锋,马晶,谭立英,于思源.星地下行孔径接收闪烁频谱的理论研究.强激光与粒子束. 2006, 18(8): 1253~1256
    81潘锋,马晶,谭立英,于思源.孔径接收下大气闪烁频谱的理论和实验研究.强激光与粒子束. 2006, 18(9): 1457~1459
    82潘锋,马晶,谭立英.下行传输孔径接收光强起伏的统计特性.中国激光. 2006, 33(10): 1371~1374
    83潘锋,马晶,谭立英,于思源.星地下行传输孔径接收闪烁频谱的理论和实验研究.光学学报. 2006, 26(12): 1792~1796
    84 F. Pan, J. Ma, L.Y. Tan, S.Y. Yu, and C. Gao. Scintillation Characterization of Multiple Transmitters for Ground-to-Satellite Laser Communication. Proc. SPIE. 2005, 5640: 448~454
    85高宠,马晶,谭立英,于思源,潘锋.自由空间光通信的最大后验概率检测.光电工程. 2007, 34(3): 54~56
    86 J. Ma, C. Gao, and L. Y. Tan. Angle-of-Arrival Fluctuations in Moderate to Strong Turbulence. Chinese Physics. 2007, 16(5): 1327~1333
    87 J. Ma, C. Gao, and L. Y. Tan. Angle-of-Arrival Fluctuation at Large Zenith Angles. Acta Photonica Sinica. 2007, 36(1): 164~168
    88 J. Ma, Y. J. Jiang, L. Y. Tan, S. Y. Yu, and W. H. Du. Influence of BeamWander on Bit-Error Rate in a Ground-to-Satellite Laser Uplink Communication System. Optics Letters. 2008, 33(22): 2611~2613
    89 Y. J. Jiang, J. Ma, L. Y. Tan, S. Y. Yu, and W. H. Du. Measurement of Optical Intensity Fluctuation over an 11.8 km Turbulent Path. Optics Express. 2008, 16(10): 6963~6973
    90 W. H. Du, S. Y. Yu, L. Y Tan, J. Ma, Y. J. Jiang, and W. Q. Xie. Angle-of-Arrival Fluctuations for Wave Propagation through Non-Kolmogorov Turbulence. Optics Communications. 2009, 282: 705~708
    91肖海桥,张量,汤俊雄.卫星光通信链路新型宽视场角捕捉方案探讨.电子学报. 1999, 21(8): 57~29
    92俞水清,汤俊雄,肖海桥.采用原子滤光器可调谐特性的新型卫星光通信捕捉方案研究.电子学报. 2001, 29(3): 423~425
    93 F. Xiao, W. W. Hu, and A. S. Xu. Optical Phased-Array Beam Steering Controlled by Wavelength. Appl. Opt. 2005, 44(10): 5429~5433
    94 H. J. Yang, Y. Hu, C. H. Li, K. Xie, J. Fu, and H. Wei. Optimum Design for Optical Antenna of Space Laser Communication System. Proc. 4th International Conference on Communications, Circuits and Systems. 2006, Jun., 25~28
    95杨华军,胡渝,谢康.光通信中高精度激光束准直系统优化设计. 2008, 19(6): 724~727
    96陈彦,胡渝.湍流大气对量子密钥分布系统性能的影响.光学学报. 2007, 21(1): 22~25.
    97董平,胡渝,付志明.一种卫星光CDMA/WDM混合网络. 2007, 1: 20~22
    98李晓峰,胡渝.影响空地激光通信链路通信时段选择方案的背景光及大气湍流效应因素.激光杂志, 2004, 25(4): 61~63
    99向劲松,胡渝.星地激光通信中分布式接收阵列的特性研究.光学学报. 2006, 26(9): 1297~1302
    100孙新德,胡渝.空间光通信中光束自动跟瞄传感器的灵敏度研究.华东船舶工业学院学报. 2000, 14(3): 60~63
    101罗彤,胡渝,李贤.星间光链路中捕获系统分析与仿真.应用光学. 2002, 23(1): 5~8
    102刘淑华,卢亚雄,罗彤.空间光通信中快速倾斜镜的数字控制研究.激光与红外. 2002, 32(3): 165~167
    103陈纯毅,杨华民,佟首峰,姜会林.飞机对卫星激光通信上行链路建模与功率分析.通信学报. 2008, 29(1): 125~130
    104张景旭.卫星捕获与大气补偿技术.光机电信息. 1999, 16(10): 3~6
    105陈纯毅,杨华民,佟首峰,蒋振刚.空间光通信卫星平台振动实时模拟.系统仿真学报. 2007, 19(16): 3834~3837
    106刘立人.卫星光通信I:链路与终端技术.中国激光. 2007, 34(1): 1~18
    107郭建中,谭莹,艾勇.卫星光通信中的调制技术研究.光通信技术. 2006, (4): 45~46
    108曹阳,艾勇,黎明,谭莹.空间光通信精跟踪系统地面模拟实验.光电子·激光. 2009, 20(1): 40~43
    109王朝晖,赵长政,陈文新,焦斌亮.振动对星间相干激光通信的影响.应用光学. 2007, 28(3): 336~340
    110蒋炜,陈文新.大气闪烁对空间PPM光通信系统性能影响的研究.空间电子技术. 2008, 5(3): 1~4
    111 R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E. A. Whittaker, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho. Free-space Optical Transmission of Multimedia Satellite Data Streams using Mid-Infrared Quantum Cascade Lasers. Electronics Letters. 2002, 38(4): 181~183
    112杨贵平,王普秀.载人航天生命保障技术.北京航空航天大学出版社, 2006
    113陈盘训.半导体器件和集成电路的辐射效应.国防工业出版社, 2005
    114 R. H. West and A. P. Lenham. Characteristics of Light Induced Annealing in Irradiated Optical Fibres. Electronics Letters. 1982, 18(11): 483~484
    115 H. Yashima, H. Mitera, and Y. Itoh. Radiation-Induced Loss and Colour-Centre Concentration in Optical Fibres. Electronics Letters. 1983, 19(1): 11~12
    116 Y. Chigusa, M. Watanabe, M. Kyoto, M. Ooe, and T. Matsubara.γ-Ray and Neutron Irradiation Characteristics of Pure Silica Core Single Mode Fiber and Its Life Time Estimation. IEEE Transactions on Nuclear Science. 1988, 35(1): 894~897
    117 A. A. M. Saleh, R. M. Jopson, J. D. Evankow, and J. Aspell. Modeling of Gain in Erbium-Doped Fiber Amplifiers. IEEE Photonics Technology Letter. 1990, 2(10): 714~717
    118 C. R. Giles and E. Desurvire. Modeling Erbium-Doped Fiber Amplifiers. Journal of lightwave technology. 1991, 9(2): 271~283
    119 G. M. Williams, M. A. Putnam, C. G. Askins, M. E. Gingerich, and E. J. Friebele. Radiation Effects in Erbium-Doped optical fibers. Electronics Letters. 1992, 28(19): 1816~1818
    120 D. L. Griscom, M. E. Gingerich, and E. J. Friebele. Radiation-Induced Defects in Glasses: Origin of Power-law Dependence of Concentration on Dose. Physical Review letters. 1993, 71(7): 1019~1022
    121 W. C. Goltsos. Radiation-Induced Loss Studies in Er-Doped Fiber Amplifier Systems. Proc. SPIE. 1996, 2699: 304~309
    122 G. M. Williams and E. J. Friebele. Space Radiation Effects on Erbium-Doped Fiber Devices: Sources, Amplifiers, and Passive Measurements. IEEE Transaction on Nuclear Science. 1998, 45(3): 1531~1536
    123 K. Miller, T. O. Connor, and R. Kaliski. Gamma-Ray Induced Effects in Erbium-Doped Fiber Optic Amplifiers. Proc. SPIE. 1998, 3440: 16~23
    124 T. S. Rose, D. Gunn, and G. C. Valley. Gamma and Proton Radiation Effects in Erbium-Doped Fiber Amplifiers: Active and Passive Measurements. Journal of Lightwave Technology. 2001, 19(12): 1918~1923
    125 R. J. Bussjager, M. J. Hayduk, S. T. Johns, L. R. Taylor, and E. W. Taylor. Gamma-Ray Induced Damage and Recovery Behavior in an Erbium-Doped Fiber Laser. Proc. SPIE. 2002, 4547: 126~133
    126 B. Tortech, M. Van Uffelen, A. Gusarov, Y. Ouerdane, A. Boukenter, J. P. Meunier, F. Berghmans, and H. Thienpont. Gamma Radiation Induced Loss in Erbium Doped Optical Fibers. Journal of Non-Crystalline Solids. 2007, 353: 477~480
    127 B. P. Fox, Z. V. Schneider, and K. S. Potter. Gamma Radiation Effects in Yb-Doped Optical Fiber. Proc. SPIE. 2007, 6453: 645328-1~645328-8
    128杨祥林.光纤放大器及其应用.电子工业出版社, 2000
    129刘增基,周洋溢,胡辽林,周绮丽.光纤通信.西安电子科技大学出版社, 2001
    130李嘉强. C和L波段掺铒光纤放大器的研究.天津大学硕士论文. 2005: 14~16
    131 O. Berne, M. Caussanel, and O. Gilard. A Model for the Prediction of EDFA Gain in a Space Radiation Environment. IEEE Photonics Technology Letters. 2004, 16(10): 2227~2229
    132 M. Caussanel, O. Gilard, M. Sotom, P. Signoret, and J. Gasiot. Extrapolation of Radiation-Induced EDFA Gain Degradation at Space Dose Rate. Electronics Letters. 2005, 41(4): 168~170
    133王衍勇.宽带掺铒光纤放大器关键技术研究.天津大学博士论文. 2004: 41~47
    134 J. Burgmeier, A. Cords, R. Marz, C. Schaffer, and B. Stummer. A Black Box Model of EDFA’s Operating in WDM Systems. Journal of Lightwave Technology. 1998, 16(7): 1271~1275
    135 X. Zhang and A. Mitchell. A Simple Black Box Model for Erbium-Doped Fiber Amplifiers. IEEE Photonics Technology Letters. 2000, 12(1): 28~30
    136 Y. Koyama, E. Morikawa, R. Suzuki and Y. Yasuda. 21th AIAA InternationalCommunications Satellite systems Conference and Exhibit Technical papers. 2003, 2280: 1~7
    137 M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto. Optimum Divergence Angle of a Gaussian Beam Wave in the Presence of Random Jitter in Free-Space Laser Communication Systems. J. Opt. Soc. Am. A. 2002, 19(3): 567~571
    138 P. C. Becker, N. A. Olsson, and J. R. Simpson. Erbium-doped fiber amplifiers : fundamentals and technology. San Diego, CD: Academic Press, 1999
    139 R. M. Gagliardi and S. Karp. Optical Telecommunications. Beijing: Publishing House of Electronics Industry, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700