基于单模光纤耦合自差探测星间光通信系统接收性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星激光通信技术被视为是建立高速卫星通信链路的有效手段,受到了国际上的广泛重视。美国、欧洲、日本等国家和地区已相继进行了空间实验,成功实现了星间和星地高速激光通信。美国计划2015年在第三代中继卫星上采用激光通信技术,准备将卫星光通信推向实用化。
     DPSK/自差探测体制具有与相干探测相媲美的高灵敏度探测能力、相对简单的接收机结构和以波分复用方式实现更高速率传输的优势,是未来高速卫星光通信技术发展中极具潜力的选择之一。
     将空间激光高效耦合进单模光纤内,这是基于自差探测体制的卫星光通信系统的关键技术之一。在星间光通信中,受卫星平台振动、跟踪系统中跟踪探测器噪声以及转台机械噪声等因素的影响,接收端存在随机角抖动。受光学元件加工、装调误差以及空间环境的影响,光学系统不可避免的存在形变,进而影响接收光束的波前。随机角抖动和波前畸变将对单模光纤耦合产生影响,进而影响自差光通信系统的通信性能。此外,由于星间激光通信是在两个相对高速运动的卫星载体间进行,因此,必须考虑卫星间相对运动产生的多普勒频移问题。
     本文对基于单模光纤耦合、自差探测的星间激光通信系统接收性能进行了研究,重点对空间激光到单模光纤耦合这一关键技术进行了理论和实验研究,并针对卫星光通信特有的多普勒频移问题进行了分析。
     研究了随机角抖动对空间光到单模光纤耦合效率的影响。在入射光瞳面上,建立了随机角抖动对空间光到单模光纤耦合影响的理论模型。基于该模型,得到了单模光纤平均耦合效率的解析表达式,给出了耦合系统的优化条件。分析了随机角抖动与光纤对准误差的综合影响。最后,进行了随机角抖动对单模光纤耦合效率影响的模拟实验研究,验证了理论分析的正确性。
     研究了波前畸变对空间光到单模光纤耦合效率的影响。构造了在以单模光纤后向传输模场为加权函数的孔径内正交的多项式。利用所得正交多项式,研究了整体波前畸变对空间激光到单模光纤耦合的影响,并评估了斯特列尔比近似解的精确性。研究了单模光纤耦合效率随局部波前畸变各参量的变化规律,对透射式和反射式光学天线分别进行了讨论。
     研究了随机角抖动引起的接收信号衰落特性以及随机角抖动下星间自差光通信系统的平均误码率;分析了整体波前畸变和局部波前畸变对星间自差光通信系统通信性能的影响,对透射式和反射式光学天线的情况分别进行了研究。
     针对多普勒频移的影响,提出了鲁棒自差接收方法,讨论了鲁棒自差接收方法的适用条件。当鲁棒自差接收的适用条件不能满足时,必须采用自动控制环路精确控制MZI相位,为进一步提高接收机性能,分析了在整个载波频率变化范围内,使接收机误码率最低的光带通滤波器最佳带宽,对不同光带通滤波器的情况进行了对比分析。
     本文的研究工作将为自差探测系统中空间激光到单模光纤耦合这一关键技术的突破打下理论基础,对基于自差探测的卫星光通信系统的优化设计提供理论依据。
Satellite laser communication technology, which has been attracted considerable attention, is considered to be an effective method to establish high speed satellite communication links. Space experiments have been performed by American, Europe, Japan and so on, in which intersatellite and ground-to-satellite laser communications have been realized. In order to promote this technology to real utility, American plans to adopt laser communication technology on the 3rd generation of repeater satellites in 2015.
     Since DPSK/self-homodying scheme has high sensitivity, which is comparable to coherent detection, relatively simple configurations and excellent spectral efficiency in dense wavelength division multiplex,it is one of the the most promising ways to approach high speed satellite laser communication.
     Coupling space light into single-mode fiber is one of the key technologies in satellite laser communication systems based on self-homodying detection. In practice, laser communication terminals operate in the presence of random angular jitter, which is caused by vibration of the satellite platform, noise of the tracking detector and mechanical noise of antenna. Due to influence of the surface error of optical elements, machining error of optical systems and space environment, there are wavefront aberrations in the receiving beam. Random angular jitter and wavefront aberrations have a great impact on single-mode fiber coupling efficiency, which will deteriorate the communication performance of self-homodying laser communication systems. Moreover, since the intersatellite link is established between two satellites moving relative to each other in high speed, Doppler shift due to relative motion between satellites must be taken into account.
     This dissertation is concerned with the research on the receiving performance of intersatellite laser communication systems based on single-mode fiber coupled self-homodying detection. Theoretical and experimental studies on coupling space light into single-mode fiber are emphasized. The effect of Doppler shift is analyzed.
     First of all, the influence of random angular jitter on coupling space light into single-mode fiber is studied. In the pupil plane, the coupling model in the presence of random angular jitter is established. Based on this model, the analytical expression of the mean-coupling efficiency is derived and the best coupling conditions are deduced. The compositive influence of random angular jitter and fiber misaligned errors is analyzed. Finally, simulated experiment for influence of random angular jitter on single-mode fiber coupling efficiency is performed, which verifies the correctness of theories.
     The influence of wavefront aberrations on single-mode fiber coupling efficiency is studied. Orthonormal polynomials on pupil weighted by the backpropagated fiber mode are constructed. Based on orthogonal polynomials, the influence of whole wavefront aberrations are investigated and the accuracy of the Strehl Ratio approximation is evaluated. The variation rules of single-mode fiber coupling efficiency with characteristic parameters of localized wavefront aberrations are found. The situations for transmission-type and reflection-type optical antennas are discussed separately.
     In the presence of random angular jitter, the fade characteristics of fiber-coupled signals are investigated and the average bit error rate of intersatellite self-homodying communication systems is obtained. The influence of whole and localized wavefront aberrations on communication performance of intersatellite self-homodying communication systems is evaluated. The situations for transmission-type and reflection-type optical antennas are discussed separately.
     A robust self-homodying receiving method is proposed for the effect of Dopper shift. The requirements for this method are discussed. When the precise active control has to be used, the impact of frequency drifts relative to optical filter’s center frequency becomes evident. Optimum bandwidths of optical filters yielding optimum performance over the entire range of frequency shifts are determined to further improve the receiver performance.
     This dissertation can benefit the breakthrough of the technology for coupling space light into single-mode fiber and contribute to the optimization of satellite laser communication systems based on self-homodying detection.
引文
1 M. Toyoshima, W. R. Leeb, H. Kunimori, T. Takano. Comparison of Microwave and Light Wave Communication Systems in Space Application. Proc. SPIE. 2005, 5296:1~12
    2 R. G. Marshalek, G. S. Mecherle, P. R. Jordan. System-Level Comparison of Optical and RF Technologies for Space-to-Space and Space-to-Ground Communication Links. Proc. SPIE. 1996, 2699:134~145
    3 G. O. Penhauser, M. Wittig, A. Popesce. The European SILEX Project and other Advanced Concepts for Optical Space Communications. Proc. SPIE. 1991, 1522:2?13
    4 G. D. Fletcher, T. R. Hicks, B. Laurent. The SILEX Optical Interorbit Link Experiment. Electr. & Comm. Eng. J. 1991, 3(6):273?279
    5 M. Bailly, E. Perez. The Pointing, Acquisition and Tracking System of SILEX European Program: a Major Technological Step for Intersatellites Optical Communication. Proc. SPIE. 1991, 1417:142~157
    6 R. Lange, B. Smutny. Homodyne BPSK-Based Optical Intersatellite Communication Links. Proc. SPIE. 2007, 6457:645703-1~645703-9
    7 B. Smutny, H. Kaempfner, G. Muehlnikel et al. 5.6Gbps Optical Intersatellite Communication Link. Proc. SPIE. 2009, 7199:719906-1~719906-8
    8 R. Fields, C. Lunde, R. Wong, J. Wicker, D. Kozlowski. NFIRE-to-TerraSAR-X Laser Communication Results: Satellite Pointing, Disturbances and other Attributes Consistent with Successful Performance. Proc. SPIE. 2009, 7330:73300Q-1~73300Q-15
    9 R. Lange, B. Smutny. BPSK Laser Communication Terminals to be Verified in Space. IEEE Military Comm. Conf. 2004, 1:441~444
    10 A. H. Gnauck, P. J. Winzer. Optical Phase-Shift-Keyed Transmission. J. Lightwave Technol. 2005, 23(1):115~130
    11 L. G. Kazovsky, G. Kalogerakis and W-T. Shaw. Homodyne Phase-Shift-Keying Systems: Past Challenges and Future Opportunities. J. Lightwave Technol. 2006, 24(12):4876~4884
    12 M. Toyoshima, T. Jono, K. Nakagawa, A. Yamamoto. Optimum Divergence Angle of a Gaussian Beam Wave in the Presence of Random Jitter in Free-Space Laser Communication Systems. J. Opt. Soc. Am. A. 2002, 19(3):567~571
    13 S. Arnon, S. R. Rotman, N. S. Kopeika. Performance Limitations of a Free-Space Optical Communication Satellite Network Owing to Vibrations: Heterodyne Detection. Appl. Opt. 1998, 37(27):6366~6374
    14 C. C. Chen, C. S. Gardner. Impact of Random Pointing and Tracking Errors on the Design of Coherent and Incoherent Optical Intersatellite Communication Links. IEEE Trans. Commun. 1989, 37(3):252~260
    15 M. Toyoshima. Maximum Fiber Coupling Efficiency and Optimum Beam Size in the Presence of Random Angular Jitter for Free-Space Laser Systems and their Applications. J. Opt. Soc. Am. A. 2006, 23(9):2246~2250
    16 J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, et al. NIF Optical Materials and Fabrication Technologies. Proc. of SPIE. 2004, 5341:84~101
    17 D.W. Camp, M. R. Kozlowski, L. M. Sheehan, et al. Subsurface Damage and Polishing Compound Affect the 355nm Laser Damage Threshold of Fused Silica Surfaces. Proc. of SPIE. 1997, 3244:356~364
    18 S. Betti, V. Carrozzo, E. Duca. Optical Intersatellite System Based on DPSK Modulation. Proc. 2nd IEEE Wireless Comm. Systems. 2005:252~260
    19 Z. Sodnik, H. Lutz, B. Furch, R. Meyer. Optical Satellite Communications in Europe. Proc. SPIE. 2010,7587:758705-1~758705-9
    20 T. Tolker-Nielsec, B. Demelenne, E. Desplats. In Orbit Test Results of the First SILEX Terminal. Proc. SPIE. 1999, 3615:31~42
    21 T. Tolker-Nielsec, G. Oppenhaeuser. In Orbit Test Result of an Operational Optical Intersatellite Link between ARTEMIS and SPOT4, SILEX. Proc. SPIE. 2002, 4635:1~15
    22 Z. Rich. Terminal for Short Range Optical Intersatellite Links: Executive Summary. Oerlikon-Contraves Space. 1997:1~5
    23 G. A. Koepf, R. G. Marshalek, D. L. Bebly. Space Laser Communications: a Review of Major Programs in the United States. International J. Elec. and Comm. 2002, 56(4):232~242
    24 S. Arnon. Power versus Stabilization for Laser Satellite Communication. Appl.Opt. 1999, 38(15):3229~3234
    25 Free-Space Optical Communications at JPL/NASA. JPL Report. 2003:1~9
    26 V. A. Vilnrotter, C. W. Lau. Quantum Detection and Channel Capacity for Communications Applications. Proc. SPIE. 2002, 4635:103~115
    27 C. C. Hodge, H. A. Klein, D. J. E. Knight, L. Maleki. Ultra-Stable Optical Frequencies for Space. IEEE IFCS. 1999, 2:663~666
    28 J. Xu, R. L. Philips, L. C. Andrews. A New Scheme of Coherent Array Detection to Cancel out Phase Fluctuations and Doppler Frequency Shift Due to Atmospheric Turbulence and Target Movement for Laser Communications. Proc. SPIE. 1999, 3615:325~330
    29 S. Arnon, N. S. Kopeika. Laser Satellite Communication Network-Vibration Effect and Possible Solutions. Proceedings of IEEE. 1997, 85(10):1646~1661
    30 J. R. Lesh, R. Depaula. Overview of NASA R&D in Optical Communications. Proc. SPIE. 1995, 2381:4~11
    31 D. M. Boroson, A. Biswas, B. L. Edwards. MLCD: Overview of NASA’s Mars Laser Communications Demonstration System. Proc. SPIE. 2004, 5338:16~28
    32 T. Morio, Y. Shiro, Y. Toshihiko, A. Katsuyoshi, Y. Kazuo, S. Koichi. Reconfirmation of the Optical Performance of the Laser Communications Terminal Onboard the OICETS Satellite. Acta Astronautica. 2004, 55(39):261~26
    33 M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. Reyes, A. Alonso, Z. Sodnik, B. Demelenne. Long-Term Statistics of Laser Beam Propagation in an Optical Ground-to-Geostationary Satellite Communication Link. IEEE Transactions on Antennas and Propagation. 2005, 53(2):842~850
    34 T. Jono, Y. Takayama, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, Z. Sodnik, B. Demelenne, A. Brid, K. Arai. OICETS on-Orbit Laser Communication Experiments. Proc. SPIE. 2006, 6105:1~11
    35 M. Toyoshima, K. Takizawa, T. Kuri, et al.. Ground-to-OICETS Laser Communication Experiments. Proc. SPIE. 2006, 6304:1~8
    36 S. Yamakawa, T. Araki, H. Morikawa. Analysis of Noises Generated in High-Power-Operated Erbium Doped Fiber Amplifiers and their Influences on IM-DD/Coherent OIC System Performance. Proc. SPIE. 2000, 3932:196~204
    37 S. Yamakawa, T. Aroki, Y. Hisada. Trade-off between IM/DD and CoherentSystem in High- Data- Rate Optical Interorbit Links. Proc. SPIE. 1999, 3615:80~89
    38 S. Yamakawa, N. Takata. Coherent Lightwave Receivers with a Laser Diode Local Oscillator for Interorbit Optical Communication. Proc. SPIE. 2003, 4975:69~79
    39马晶,潘锋,谭立英.星地上行激光链路中最佳光束参数的研究.强激光与粒子束. 2006, 18(8):1233~1237
    40韩琦琦,于思源,马晶等.卫星光通信中耦合运动对光信号跟踪影响分析.宇航学报. 2006, 27(4):405~409
    41马晶,高宠,谭立英.星地光通信中PAT链路的衰落冗余.光学精密工程. 2007, 15(3):308~314
    42 Yuqiang Yang, Liying Tan, Jing Ma, Jianjie Yu. Effects of Localized Deformation Induced by Reflector Antenna on Received Power. Opt. Comm. 2009, 282(3):396~400
    43 Yijun Jiang, Jing Ma, Liying Tan, Siyuan Yu, Wenhe Du. Measurement of Optical Intensity Fluctuation over an 11.8 km Turbulent Path. Opt. Express. 2008, 16(10):6963~6973
    44 Jing Ma, Yijun Jiang, Liying Tan, Siyuan Yu, Wenhe Du. Influence of Beam Wander on Bit-error Rate in a Ground-to-Satellite Laser Uplink Communication System. Opt. Lett. 2008, 33(22):2611~2613
    45 Wenhe Du, Liying Tan, Jing Ma, Siyuan Yu, Yijun Jiang. Measurements of Angle-of-Arrival Fluctuations over an 11.8 km Urban Path. Laser Part. Beams. 2010, 28:91~99
    46 Wenhe Du, Liying Tan, Jing Ma, Yijun Jiang. Temporal-Frequency Spectra for Optical Wave Propagating through Non-Kolmogorov Turbulence. Opt. Express. 2009, 18(6):5763~5775
    47 Liying Tan, Janjie. Yu, Jing Ma, Yuqiang Yang, Mi Li, Yi jun Jiang, Janfeng Liu, Qiqi Han. Approach to Improve Beam Quality of Intersatellite Optical Communication System Based on Diffractive Optical Elements. Opt. Express. 2009, 17(8):6311~6319
    48陈纯毅,杨华民,佟首峰,蒋振刚.空间光通信卫星平台振动实时模拟.系统仿真学报. 2007, 19(16):3834~3837
    49张景旭.卫星捕获与大气补偿技术.光机电信息. 1999, 16(10):3?6
    50张诚,胡薇薇,徐安士.星地光通信发展状况与趋势.中兴通信技术. 2006, 12(2):52?56
    51 F. Xiao, W. W. Hu, A. S. Xu. Optical Phased-Array Beam Steering Controlled by Wavelength. Appl. Opt. 2005, 44(10):5429?5433
    52王建民,汤俊雄,孙东喜,朱彦,谷亚权.卫星激光通信均匀信标光的研究.光学学报. 2006, 26(1):7~10
    53李晓峰,胡渝.空-地激光通信链路总体设计思路及重要概念研究.应用光学. 2005, 25(6):57?62
    54罗彤,胡渝,李贤.星间光链路中捕获系统分析与仿真.应用光学. 2002, 23(1):5?8
    55刘淑华,卢亚雄,罗彤.空间光通信中快速倾斜镜的数字控制研究.激光与红外. 2002, 32(3):165?167
    56 K. Sakurai, R. Suzuki, S. Ishikawa, I. Nishiyama, Y. Yasuda. A Study of Global Multimedia Mobile Satellite Communication System: Current Status. Acta Astronautica 2000, 47(2-9):163~169
    57 H. Mikami, R. Suzuki, Y. Arimoto, Y. Yasuda. DPSK-Self Homodyne Detection System Adopting PLC for Optical Intersatellite Link Terminal. IEEE Lasers and Electro-Optics Society 12th Annual Meeting. 1999, 1:293~294
    58郭金生.几种光放大器比较.中国有线电视. 2004, 3(Z1):67~69
    59 D. R. Goff. Fiber Optic Reference Guide. 3rd Edition. Boston: Focal Press ed., 2002:9~10
    60 G. Bosco, P. Poggiolini. The Impact of Receiver Imperfections on the Performance of Optical Direct-Detection DPSK. J. Lightwave Technol. 2005, 23(2):842~848
    61 K.-P. Ho. The Effect of Interferometer Phase Error on Direct-Detection DPSK and DQPSK Signals. IEEE Photonics Technology Letters. 2004, 16(1):308~310
    62 C. Froehly. Coherent and Interferometry through Optical Fibers. ESO Conference on Scientific Importance of High Angular Resolution at Infrared and Optical Wavelengths. 1981:285~293
    63 L. L. A. Vosteen, B. Ahlers. Darwin Infrared Nulling Interferometer Demonstrator. Proc. SPIE. 2005, 5905:59050B-1~59050B-8
    64 G. Perrin, V. Coudédu Foresto, S. T. Ridgway, J. M. Mariotti, J. A. Benson. A Fibered Recombination Unit for the Infrared-Optical Telescope Array. Proc.SPIE. 1995, 2476:120~128
    65 P. R. Lawson, A. Ahmed, R. O. Gappinger, A. Ksendzov, O. P. Lay, S. R. Martin, R. D. Peters, D. P. Scharf, J. K. Wallace, B, Ware. Terrestrial Planet Finder Interferometer Technology Status and Plans. Proc. SPIE. 2006, 6268:626828-1~626828-8
    66 P. R. Lawson, O. P. Lay, S. R. Martin, R. D. Peters, R. O. Gappinger, A. Ksendzov, D. P. Scharf, A. J. Booth. Terrestrial Planet Finder Interferometer 2007-2008 Progress and Plans. Proc. SPIE. 2008, 7013:70132N-1~70132N-15
    67 K. Sato, J. Nishikawa, M. Yoshizawa, T. Fukushima, Y. Torii, K. Matsuda, K. Kubo, H. Iwashita, S. Suzuki. Experiments of the Fiber-Connected Interferometer for MIRA Project. Proc. SPIE. 2000, 4006:1102~1106
    68 Salisbury, S. Michael. Sensitivity and Signal to Noise Ratio Improvement of a one Micro Ladar System Incorporating a Neodymium Dopted Optical Fiber Preamplifier Laser Radar Testbed. Technical rept. 1993:1~3
    69 P. J. Winzer, W. R. Leeb. Fiber Coupling Efficiency for Random Light and its Applications to Lidar. Opt. Lett. 1998, 23(13):986~988
    70 A. Kalmar, K. H. Kudielka, W. R. Leeb. Experimental Demonstration of a Self-Tracking 16-Aperture Receive Telescope Array for Laser Intersatellite Communications. Proc. SPIE. 1998, 3266:70~78
    71 P. F. Szajowaki, G. Nykolak, J. J. Auborn, H. M. Presby, G. E. Tourgee. 2.4km Free-Space Optical Communication 1550nm Transmission Link Operating 2.5Gb/s Experimental Results. Proc. SPIE. 1998, 3532:29~40
    72 P. F. Szajowaki, G. Nykolak, J. J. Auborn, H. M. Presby, G. E. Tourgee, D. M. Romain. High-Power Optical Amplifiers Enable 1550nm Terrestrial Free-Space Optical Data Links Operating at WDM 2.5Gp/s Data Rates. Proc. SPIE. 1999, 3850:2~10
    73 G. Nykolak, P. F. Szajowski, A. Cashion, H. M. Presby, G. E. Tourgee, J. J. Auborn. 40-Gb/s DWDM Free-Space Optical Transmission Link over 4.4km. Proc. SPIE. 2000, 3932:16~20
    74 G. Nykolak, G. Raybon, B. Mikkelsen, B. B. Brown, P. F. Szajowski, J. J. Auborn, H. M. Presby. 160Gb/s Free-Space Transmission Link. Proc. SPIE. 2001, 4214:11~13
    75 D. Y. Song, Y. S. Hurh, J. W. Cho, J. H. Lim, D. W. Lee, J. S. Lee, Y. Chung.4×10 Gb/s Terrestrial Optical Free Space Transmission over 1.2km using an EDFA Preamplifier with 100GHz Channel Spacing. Optics Express, 2000, 7(8):280~284
    76 M. C. Jeong, J. S. Lee, S. Y. Kim, S. W. Namgung, J. H. Lee, M. Y. Cho, S. W. Huh, Y. S. Ahn, J. W. Cho, J. S. Lee. 8×10 Gb/s Terrestrial Optical Free Space Transmission over 3.4km using an Optical Repeater. IEEE Phot. Tech. Lett. 2003, 15(1):171~173
    77 E. A. Swanson, R. S. Bondurant. Fiber-Based Receiver for Free-Space Coherent Optical Communications Systems. OFC. 1989:6~173
    78 E. A. Swanson, R. S. Bondurant. Using Fiber Optics to Simplify Free-Space Lasercom Systems. Proc. SPIE. 1990, 1218:70~82
    79 K. Sayano, I. Nguyen, J. K. Chan. Demonstration of Multi-Channel Optical CDMA for Free Space Communications. Proc. SPIE. 2001, 4272:38~49
    80 T. Weyrauch, M. A. Vorontsov, J. W. Gowens, T. G. Bifano. Fiber Coupling with Adaptive Optics for Free-Space Optical Communication. Proc. SPIE. 2002, 4489:177~184
    81 C. Ruilier. A Study of Degraded Light Coupling into Single-Mode Fibers. Proc. SPIE. 1998, 3350:319~329
    82 M. Lazzaroni, F. E. Zocchi. Optical Coupling from Plane Wave to Step-Index Single-Mode Fiber. Opt. Comm. 2004, 237(1-7):37~43
    83 O. Wallner, P. J. Winzer, W. R. Leeb. Alignment Tolerances for Plane-Wave to Single-Mode Fiber Coupling and their Mitigation by Use of Pigtailed Collimators. Appl. Opt. 2002, 41(4):637~643
    84 C. Ruilier, F. Cassaing. Coupling of Large Telescopes and Single-Mode Waveguides: Application to Stellar Interferometry. J. Opt. Soc. Am. A. 2001, 18(1):143~149
    85 S. Shaklan, F. Roddier. Coupling Starlight into Single-Mode Fiber Optics. Appl. Opt. 1998, 27(11):2334~2338
    86 Y. Dikmelik, F. M. Davidson. Fiber-Coupling Efficiency for Free-Space Optical Communication through Atmospheric Turbulence. Appl. Opt. 2005, 44(23):4946~4952
    87 T. Weyrauch, M. A. Vorontsov, J. W. Gowens II, T. G. Bifano. Fiber Coupling with Adaptive Optics for Free-Space Optical Communication. Proc. SPIE. 2002,4489:177~184
    88 E. A. Swanson, J. C. Livas, R. S. Bondurant. High Sensitivity Optically Preamplified Direct Detection DPSK Receiver with Active Delay-Line Stabilization. IEEE Photon. Technol. Lett. 1994, 6(2):263~265
    89 G. P. Agrawal. Fiber-Optic Communication Systems. 3rd Edition. New York: John Wiley&Sons ed., 2002:106~198
    90 A. H. Gnauck, G. Raybon, S. Chandrasekhar et al. 2.5 Tb/s (64×42.7 Gb/s) Transmission over 40×100km NZDSF using RZ-DPSK Format and all-Raman-Amplified Spans. Proc. OFC. 2002:FC2-1 - FC2-3
    91 C. Rasmussen, T. Fjelde, J. Bennike et al. DWDM 40G Transmission over Trans-Pacific Distance (10,000 km) using CSRZ-DPSK, Enhanced FEC and all-Raman Amplified 100 km Ultrawave Fiber Spans. Proc. OFC. 2003, 22(1):203-207
    92 G. Charlet, J. Lazaro, E. Corbel. One-Hundred WDM-Channel Transatlantic Transmission Experiment at 43 Gbit/s using Raman Repeaters with Large 65-km Spacing. Proc. ECOC. 2003:1~5
    93 W. A. Atia, R. S. Bondurant. Demonstration of Return-to-Zero Signaling in both OOK and DPSK Formats to Improve Receiver Sensitivity in an Optically Preamplified Receiver. Proc. LEOS 12th Annual Meeting. 1999, 1:226~227
    94 J. H. Sinsky, A. Adamiecki, A. Gnauck et al. A 42.7-Gb/s Integrated Balanced Optical Front End with Record Sensitivity. Proc. OFC. 2003, 3:PD39-1~ PD39-3
    95 W. Idler, A. Klekamp, R. Dischler et al. System Performance and Tolerances of 43Gb/s ASK and DPSK Modulation Formats. Proc. ECOC. 2003:1~4
    96 X. Zhang, Z. Qu, G. Yang. Probability Density Function of Noise Statistics for Optically Pre-Amplified DPSK Receivers with Optical Mach-Zehnder Interferometer Demodulation. Opt. Comm. 2006, 258(2):177~183
    97 E. Forestieri. Evaluating the Error Probability in Lightwave Systems with Chromatic Dispersion, Arbitrary Pulse Shape and Pre- and Postdetection Filtering. J. Lightwave Technol. 2000, 18(11):1493~1503
    98 J-S Lee, C-S Shim. Bit-Error-Rate Analysis of Optically Preamplified Receivers using an Eigenfunction Expansion Method in Optical Frequency Domain. J. Lightwave Technol. 1994, 12(7):1224~1229
    99 E. Forestieri, M. Secondini. On the Error Probability Evaluation in Lightwave Systems with Optical Amplification. J. Lightwave Technol. 2009, 27(4):706~717
    100 J. Wang. Performance Evaluation of DPSK Optical Fiber Communication System. Doctor dissertation of University of California. 2004:30~48
    101 A. Rahmouni, N. Azami, F. Abdi. Numerical Analysis of Athermal DPSK Based on Unbalanced Thermally Expanded Core Optical Fibers Mach Zehnder Interferometer. I/V Communications and Mobile Network (ISVC) 2010 5th International Symposium on. 2010:1~4
    102 Q. Zhang, C. R. Menyuk. An Exact Analysis of RZ- vs. NRZ-DPSK Performance in ASE Noise Limited High Speed Optical Systems. IEEE/LEOS Summer Topical Meetings. 2007:242~243
    103 P. J. Winzer, H. Kim, Degradations in Balanced DPSK Receivers. IEEE Photon. Technol. Lett. 2003, 15(9):1282~1284
    104 H. Kim, P. J.Winzer. Robustness to Laser Frequency Offset in Direct Detection DPSK and DQPSK Systems. J. Lightwave Technol. 2003, 21(9):1887~1891
    105 A. Murat, P. A. Humblet, J. S. Young. Phase-Noise-Induced Performance Limits for DPSK Modulation with and without Frequency Feedback. J. Lightwave Technol. 1993, 11(2):290~302
    106 G. Einarsson, J. Strandberg and I. T. Monroy. Error Probabilty Evaluation of Optical Systems Disturbed by Phase Noise and Additive Noise. Information Theory Proc. 1995:482
    107 P. J. Winzer, S. Chandrasekhar, H. Kim. Impact of Filtering on RZ-DPSK Reception. IEEE Photon. Technol. Lett. 2003, 15(6):840~842
    108 A. F. Elrefale, R. E. Wagner, D. A. Atlas and D. G. Daut. Chromatic Dispersion Limitations in Coherent Lightwave Transmission Systems. J. Lightwave Technol. 1988, 6(5):704~709
    109 C. De Angelis, A. Galtarossa, C. Campanile, F. Matera. Performance Evaluation of ASK and DPSK Optical Coherent Systems Affected by Chromatic Dispersion and Polarization Mode Dispersion. J. Opt. Comm. 1995, 16(5):173~178
    110 J. C. Livas, E. A. Swanson, S. R. Chinn, E. S. Kintzer, R. S. Bondurant, D. J. DiGiovanni. A one-Watt, 10-Gbps High-Sensitivity Optical Communication System. IEEE Photon. Technol. Lett. 1995, 7(5):579~581
    111 W. A. Atia, R. S. Bondurant. Demonstration of Return-to-Zero Signaling in both OOK and DPSK Formats to Improve Receiver Sensitivity in an Optically Preamplified Receiver. Proc. LEOS 12th Annual Meeting. 1999, 1:226~227
    112 Y. Koyama, E. Morikawa, K. Shiratama, et al.. Optical Terminal for NeLS In-orbit Demonstration. Proc. SPIE. 2004, 5338:29~36
    113 Y. Koyama, E. Morikawa, H. Kunimori, et al.. Components Development for NeLS Optical Terminal. Proc. SPIE. 2005, 5712:217~224
    114 S. Betti, V. Carrozzo, G. Parca. Optical Intersatellite Hybrid Network Links Based on WDM Technology. Transparent Optical Networks ICTON 2008 10th Anniversary International Conferrence on. 2008:209~212
    115 P. J. Winzer, M. Pfennigbauer, M. M. Strasser, W. R. Leeb. Optimum Filter Bandwidths for Optically Preamplified NRZ Receivers. J. Lightwave Technol. 2001, 19(9):1263~1273
    116王仕璠 ,朱自强.现代光学原理.成都,电子科技大学出版社. 1998:117~126
    117 J. A. Buck. Fundamentals of Optical Fibers. 2nd Edition. Wiley, ed. 1995:73~85
    118 Ji Cang, Yixin Zhang. Axial intensity distribution of truncated Bessel-Gauss beams in a turbulent atmosphere. Optics. 2008, 121(3):328~392
    119向劲松.采用光纤耦合及光放大接收的星地光通信系统及关键技术.电子科技大学博士论文. 2007:18~26
    120 Marlin Datasheet F131B NIR, ALLIED, 2007:1~2
    121高皓.空间光到光纤的耦合及在光前置放大系统中的应用.电子科技大学硕士论文. 2007:7~22
    122 K. R. Manes, W. W. Simmons. Statistical Optics Applied to High-power Glass Lasers. J. Opt. Soc. Am. A. 1985, 2(4):528~538
    123 J. Alda, J. Alonso, E. Bernabeu. Characterization of Aberrated Laser Beams. J. Opt. Soc. Am. A. 1997, 14(10):2737~2747
    124 R. Martinez-Herrero, G. Piquero, P. M. Mejias. Beam Quality Changes Produced by Quartic Phase Transmittances. Opt. & Quant. Electron. 1995, 27(3):173~183
    125 M. Toyoshima, N. Takahashi, T. Jono, T. Yamawaki, K. Nakagawa, A. Yamamoto. Mutual Alignment Errors Due to the Variation of Wave-Front Aberrations in a Free-Space Laser Communication Link. Opt. Express. 2001,9(11):592~602
    126 Liying Tan, Yuqiang Yang, Jing Ma, Jianjie Yu. Pointing and Tracking Errors due to Localized Deformation in Intersatellite Laser Communication Links. Opt. Express. 2008, 16(17):13372~13380
    127 G. M. Dai, V. N. Mahajan. Nonrecursive Determination of Orthonormal Polynomials with Matrix Formulation. Opt. Lett. 2007, 32(1):74~76
    128 V. N. Mahajan. Strehl Ratio for Primary Aberrations: Some Analytical Results for Circular and Annular Pupils. J. Opt. Soc. Am. A. 1982, 72(9):1258~1266
    129 V. N. Mahajan. Strehl Ratio for Primary Aberrations in Terms of their Aberration Variance. J. Opt. Soc. Am. Lett. 1983, 73(6):860~861
    130 V. N. Mahajan. Zernike Circle Polynomials and Optical Aberrations of Systems with Circular Pupils. Appl. Opt. 1994, 33(34):8121~8124
    131 G. Dai, V. N. Mahajan. Orthonormal Polynomials in Wavefront Analysis: Error Analysis. Appl. Opt. 2008, 47(19):3433~3445
    132 V. N. Mahajan. Zernike Polynomials and Aberration Balancing. Proc. SPIE. 2003, 5173:1~17
    133 Liying Tan, Yuqiang Yang, Jing Ma. Pointing and Tracking Errors Due to Localized Deformation Induced by Transmission-Type Antenna in Intersatellite Laser Communication links. Appl. Opt. 2009, 48(4):786~791
    134 J. Wang, J. M. Kahn. Impact of Chromatic and Polarization-Mode Dispersion on DPSK Systems using Interferometric Demodulation and Direct Detection. J. Lightwave Technol. 2004, 22(2):362~371
    135 S. W. Golomb. Shift Register Sequences. Revised Edition. Aegean Park Press, 1981: 20~240
    136 S. Amiri, M. Mehdipour. Accurate Doppler Frequency Shift Estimation for any Satellite Orbit. IEEE Conf. Recent Advances in Space Technologies. 2007:602~607
    137 M.-H. You, S.-P. Lee, Y. Han. Adaptive Compensation Method using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System. ETRI Journal. 2000, 22(4):32~39
    138 C. Malouin, J. Bennike, T. J. Schmidt. Differential Phase-Shift Keying Receiver Design Applied to Strong Optical Filtering. J. Lightwave Technol. 2007, 25(11):3536~3542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700