基于免疫学原理的遗传算法在土石坝反分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土石坝是传统的坝型,结构简单,易取材,是世界大多数国家坝工建设的主要坝型。其安全性分析方法的研究是目前坝工研究的热点。利用原位观测资料进行大坝材料反分析,进而预测大坝实际的工作性状是进行大坝安全性评价的重要手段,因而进行土石坝反演分析理论和方法的研究具有十分重要的意义。
     本文在阅读了大量文献的基础上,深入地讨论了土石坝材料模型参数反演分析的原理,并探讨了基于现场观测信息反演分析土体模型参数的具体方法,开发了基于免疫学原理的遗传算法的土石坝反分析程序。最后结合三峡茅坪溪沥青混凝土心墙坝工程实例,通过使用坝体在填筑阶段所取得的现场观测成果,进行了沥青混凝土邓肯张E—μ模型参数的反演分析。反演结果验证了本文所建议的理论与方法是可行的,开发的程序是有效性的。具体工作如下:
     1.在遗传算法原理的基础上,结合非线性排序策略和最优保存策略,用FORTRAN语言编制了改进的遗传算法程序。从优化一个简单函数的实例入手,分析该程序的可行性。
     2.遗传算法随机搜索能力强,但是其收敛方向无法控制、易陷入局部最优解,且收敛慢。而基于免疫学原理的遗传算法利用浓度调节机制,可以克服遗传算法的上述缺点,文章用简单函数进行程序测试,验证了该算法的有效性。
     3.在已有反演分析方法的基础上,结合免疫遗传算法基本原理,开发了基于免疫学原理的遗传算法反分析程序,并应用于三峡茅坪溪沥青混凝土心墙坝的心墙材料力学模型参数反演分析。
     4.利用沥青混凝土材料的反演参数值,对三峡茅坪溪沥青混凝土心墙坝进行二维有限元计算,预测了大坝实际运行的工作性态,为大坝安全运用提供依据。
Embankment dam which material can be got easily is the main style during many countries on the earth. its research of security analytical method is a hot issue.Using the in-situ observation data to back-analyze the dam material parameter, and forecast the actual running state of dam is one of the main methods of safety evaluation.So it is of great significance to study the theories and methods of back-analysis.In this paper, after reading lots of correlation literatures, the back-analysis principle.of the Embankment Dam material parameters are lucubrated and a material method of back-analysis model parameter which is based on on-site observation date is discussed, and the back-analysis of genetic algorithms based on Immunology principle is empoldered combined with the projiet example of maopingxi dam.Useing the stress observation date at the bottorm of Asphalt-concrete Core wall during the constructing.period to back-analysis the core wall's model parameter.the result of this project have verified the genetic algorithms based on Immunology principle used in embankment dam back-analysis to be effective.The main contents are as follows:1.Basing on the SGA and uniting non-line taxis strategy , the improved genetic alogorithm program is presented in fortran language , and its feasibility is analyzed by a simple function.2.The GA based on immunology principle which uses the composition regulation conquered GA's defect sach as the way of converging can not control , the speed of converging is slow , and this method's validity has been tested by simple function.3.Basing on the existing back-analysis method , empoldered the genetic algorithms Based on Immunology principle , and used in the core wall model parameters back-analysis of the maopingxi project to test it's validity.4.Wanted to forecast work behavior of the dam , the 2-D FEM analysis has been carried on the project of maopingxi dam.In this process the back-analysis values is used.
引文
[1] 杨林德等著,岩土工程问题的反演理论与工程实践,科学出版社,1996:148~165
    [2] Kavangh K T, Clough R W. Finite element application in the characerization of elastic solid [J]. Int. J. Solids Structures, 1972, (7): 11~23
    [3] G. Gioda, G. Maier. Direct search solution of an inverse problem in elasto-plasticity: identification of cohesion, friction angle and in-situ stress by pressure tunnel test. Int J Num Methods in Eng, 1980, 15: 1823~1848
    [4] G. Gioda, L. Jurina. Numerical identification of soil-structure interaction pressures. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(1): 33~56
    [5] S. Sakurai, K. Takeuchi. Back analysis of measured displacement of tunnels. Rock Mechanics and Rock Engineering, 1983, 16(3): 173~178
    [6] A. Cividini, G. Maier, A. Nappi. Parameter estimation of a static geotechnical model using a bayes' approach. Int J Rock Mech Min Sci & Geomech Abstr, 1983, 20(5): 215~226
    [7] A. Asaoka, M. Matsuo. An inverse problem approach to the prediction of multi-dimensional consolidation behavior. Soils and Foundations, 1984. 3, 24(1): 49~62
    [8] G. Gioda, S. sakurai. Back analysis procedures for the interpretation of field measurements in geomechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(6): 555~583
    [9] S. Sakurai, S. Akutagawa. Some aspects of back analysis in Geotechnical engineering, in: Eurock' 93. Safety and environmental issues in rock engineering. Proc. symposium, Lisba, 1993. Vol. 2, ed L. Ribeiro, E. Sousa & N. F. Grossmann, (Balkema), 1995: 1133~1140
    [10] M. Hoshiya, A. Sutoh. Kalman filter-finite element method in identification. Journal of Engineering Mechanics, 1993. 2, 119(2): 197~210
    [11] A. R. Simpaon, S. D. Priest. The application of genetic algorithms to optimization problems in geotechnics, 1993, 15(1): 1~19
    [12] C. G. Koh, L. M. See. Identification and uncertainty estimation of structural parameters. Journal of Engineering Mechanics, 1994. 6, 120(6): 1219~1236
    [13] M. Suzuki, K. Ishii. Parameter identification and probabilistic prediction of settlement of embankment. Stuctural Safety, 1994. 4, 14: 47~59
    [14] P. S. Theocaris, P. D. Panagiotopoulos. Generalized hardening plasticity approximated via anisotropic elasticity: a neural network approach. Computer Methods in Applied Mechanics and Engineering, 1995, 125: 123~139
    [15] A. Ledesma, A. Gens, E. E. Alosno.. Parameter and variance estimation in geotechnical back analysis using prior information. International Journal for Numerical & Analytical Methods in Geomechanics, 1996, 20(2): 119~141
    [16] A. Ledesma, A. Gens, E. E. A1onso. Estimation of parameters in Geotechnical Backanalysis-Ⅰ. Maximum Liklihood Approach. Computers and Geotechnics, 1996, 18(1): 1~27
    [17] A. Gens, A. Ledesma, E. E. A1onso. Estimation of parameters in Geotechnical. Backanalysis-Ⅱ. Application to a Tunnel Excavation Problem. Computers and Geotechnics, 1996, 18(1): 29~46
    [18] D. A. Tomonari. Implicit constitutive modeling for visco-platicity using neural networks. Int J Num Methods in Eng, 1998, 43: 195~219
    [19] J. Ghaoboussi, D. E. Sidarta. New nested adaptive neural networks for constitutive modeling. Computers and Geotechnics, 1998, 22(1): 19~51
    [20] T. Ohkami, G. Swoboda. Parameter identification of viscoelastic materials. Computers and Geotechnics, 1999, 24: 279~295
    [21] A. A. Javadi, R. Farmani, V. V. Toropov, et al. Snee. Identification of parameters for air permeability of shotcrete tunnel lining using a genetic algorithm. Computers and Geotechnics, 1999, 25: 1~24
    [22] R. Zentar, P. Y. Hicher, G. Moulin. Identification of soil parameters by inverse analysis. Computers and Geotechnics, 2001, 28: 129~144
    [23] Desheng Deng, Duc Nguyen-Minh. Identification of rock mass properties in elasto-plasticity. Computers and Geotechnics. 2003, 30: 27~40
    [24] Kaiser P. K, Zou D. H, Lang P. A, Stress determination by backanalysis of excavation-induced stress changes, Rock Mechanics and Rock Engineering, 1990 (3), vol. 23. No. 3, p185-200
    [25] 刘维倩,黄光远,穆永科等,岩土工程的位移反分析法,计算结构力学及其应用,1995(4),vol.11.No.4:1~8
    [26] 刘怀恒,支护荷载反演及安全度预测,西安矿业学院学报,1991 (4),vol.11.No.4:1~8
    [27] 李云鹏,支护位移反分析中的几个实用问题[A],首届全国岩土力学与工程青年工作者学术讨论会论文集[C],浙江大学出版社,1992:186~189
    [28] 薛琳,岩体粘弹性力学模型的判别定理与应用,岩土力学与工程学报,浙江大学出版社,1994(5),Vol.16.No.5:1~10
    [29] 陈斌,卓家寿,刘宁,岩土工程反分析的非确定性模型研究与发展,水利水电科技进展,2001(10),vol.21.No.5:5~8
    [30] Gordan A. F, Estimation for stochastic soil models, Journal of Geotechnical and Geoenvironmental Engineering, 1999(7): 450-485
    [31] 李皓,唐新军,朱焕春,岩体工程正反耦合位移反分析初探,武汉水利水电大学学报,1997(4),Vol.30.No.4:p42~45
    [32] 杨志法,刘竹华,位移反分析在地下工程设计中的初步应用,地下工程,1998(2):20~24
    [33] 张路青,贾正雪,弹性位移反分析对地应力、弹模的反演唯一性,岩土工程学报,2003(3),Vol.23.No.2:172~177
    [34] Ledesma A, Alonso E. E,Probabilistic back analysis using a maximum 1ikelihood approach[A],Proceedings 12th International Conference 0n Soil Mechanics and Foundation Engineering[C], Brail, 1989(2): 849~852
    [35] 吴中如,水工建筑物安全监控理论及其应用,等教育出版社,2003.1
    [36] 朱满培,土石坝原观资料计算机管理分析系统,水利水运科学研究,1996.03
    [37] 郭雪莽,土石坝位移反分析的遗传方法,华北水利水电学院学报,2001.03
    [38] 陈斌,面向对象的土石坝参数随机反演程序设计,工程地质学报,2004.03
    [39] 张丙印,基于神经网络和演化算法的土石坝位移反演分析,岩土力学,2005.04
    [40] 田明俊,基于蚁群算法的土石坝土体参数反演,岩石力学与工程学报,2005.08
    [41] 田明俊,土石坝土体参数反演的一种新方法,土木工程学报,2005.08
    [42] 邴凤山,我国坝工技术成就,水力发电,1999年第10期:15~19
    [43] 汝乃华,牛运光,土石坝的事故统计和分析,大坝与安全,2001年第1期:31~37
    [44] 吴中如,中国大坝的安全和管理,中国工程科学,2000年6月:36~39
    [45] 吴中如,顾冲时,郑东健,向衍,探讨重大水利水电工程寿命诊断的理论和方法,岩土力学与工程学报,2005.9:3018~3022
    [46] 顾冲时,诸渭林,探讨大坝与岩基的反馈分析的新理论和新方法,大坝观测与土工测试,2000.2.24卷第(1)期:8~15
    [47] 郄志红,郑旌辉,刘春来,反分析及其在水利工程中的应用,海河水利,1999.NO3:5~46
    [48] Janewany Jr C A. The Immune System Evoled to Discriminate Infectious Nonself from Noninfectious Self. Imm. Today, 1991, 13 (1): 11~16
    [49] Marrack p. & Kappler J W. How the Immune System Recognizes the Body. Scientific Ameican, 1993, 269(3): 49~55
    [50] Mannie M D. Immunological Self/Nonself Discriminate. Immunologic Research, 1999, 19(1): 65~87
    [51] Forrest S. & Hofmeyr S A. John Holland's Invisible Hand: An Artificial Immune System. Presented at the FESTSCHIRIFT, 1999
    [52] Timmis J. & Seal M, & Hunt J. an Artificial Immune System for data ananlysis. Biosystems, 2000, 55 (1/3): 143~150
    [53] 陈次武,土石坝原型观测资料的整理及分析计算,1986.9(内部资料)
    [54] 罗谷怀,甘明辉,大坝安全论证理论与方法,科学出版社,2001:48~60
    [55] 赵志仁,大坝安全监测的原理与应用,天津科学技术出版社,1992:31~49,81~112
    [56] 王厚德,大坝安全监测与监控,中国水利水电出版社,2004:21~31
    [57] L.Muller,F.Fecker,新奥法的基本思想和主要原则,地下工程,1980(6):19~22
    [58] 吕爱钟,蒋斌松,岩石力学反问题,煤炭工业出版社,1998
    [59] 闻世强硕士论文
    [60] 张社荣,何辉,改进的遗传算法在堆石体参数反演中的应用,岩石力学,2005.2:182~186
    [61] 王小平,曹立明,遗传算法-理论应用与软件实现,西安交通大学出版社,2002
    [62] 杨志法,刘华竹,位移反分析在地下工程中的应用[J],地下工程,981(2):20~24
    [63] xu angtong, li yonghua study of the modeling of hydroturbine generating set [A] international ieee/ias conference on industrial automation and control: emerging technologies, proceedings, 1995: 644-647
    [64] 左兴权,李士勇,一类自适应免疫进化算法,控制与决策,2004.3:252~256
    [65] 吕岗,陈小平,免疫算法抗体浓度调节定义的改进,数据采集与处理,2003.3:44~48
    [66] 莫宏伟,人工免疫系统原理与应用,哈尔滨工业大学出版社,2002
    [67] 潘正君,康立山,陈毓平,演化计算,清华大学出版社、广西科学技术出版社,1998:16~35
    [68] 三峡工程茅坪溪大坝填料试验总报告,北方交通大学,葛洲坝股份有限公司试验中心,2003.1.26
    [69] 孙均,王炳槛,地下结构有限元解析,同济大学出版社,1988
    [70] 钱家欢,殷宗泽,土工原理与计算,中国水利水电出版社,1996
    [71] 郭雪莽,浇筑式沥青混凝土心墙堆石坝的应力分析,华北水利水电学院学报,200.3:1~4
    [72] 李守德,俞洪良,goodman接触面单元的修正与探讨,岩石力学与工程学报,2004.8:2628~2631
    [73] 陈慧远,土石坝有限元分析,河海大学:26~28
    [74] 姜弘道,水工结构与岩土工程的现代计算方法及程序,河海大学出版社,1992:266~275
    [75] Kreinovich V, Quintana C and Fuentes O. Genetic Algorithms-What Fitness Scaling is Optimal. Cybern. and Systems, 1993, 4(1): 9~26
    [76] 陈维江,马震岳,董毓新,大坝安全监测遗传回归模型研究及应用,水电能源科学,2002.06:39~42
    [77] 周明,孙树栋,遗传算法原理及应用,国防工业出版社,1999.6:32~64
    [78] 王芝银,李云鹏,岩土力学数值分析进展与思考[A],岩石力学理论与实践[c],黄河水利出版社,1997 (6):7~13
    [79] 刘允芳,长江科学院院报,鲁布革水电站地下厂房模型洞位移反分析计算,1986
    [80] 刘允芳,力学与实践,非圆形地下洞室的复变函数解法,1987
    [81] 苏彩红,朱学峰,毛宗源,一类免疫算法及其应用[J],西南交通大学学报,2002,37 (6):677~680
    [80] 刘允芳,力学与实践,非圆形地下洞室的复变函数解法,1987
    [81] 罗印生,李人厚,张雷等,人工免疫算法在函数优化中的应用[J],西安交通大学学报(自然科学版),2003,37(8):840~843

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700