氢化共轭二烯烃类聚合物的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭二烯烃类聚合物,特别是橡胶类聚合物的氢化反应,由于其为橡胶带来新的结构和性能的改进,长久以来一直是很活跃的研究领域。将活性阴离子可控聚合技术和氢化反应技术相结合来合成结构可控的饱和的烯烃共聚物是一个重要的研究方向。本论文以催化加氢反应为主线,采用低成本、高活性、在环己烷中溶解性好的环烷酸镍(Ni)/三异丁基铝(Al)为催化体系对一系列均聚物、嵌段共聚物和无规共聚物进行氢化反应,重点考察了Al/Ni催化体系的反应条件对氢化反应的影响规律,制备了多种新型结构的高分子材料。
     对均聚物(聚丁二烯PB和聚异戊二烯PI)分别进行氢化和氘化反应,制备了设定分子量且单分散的聚乙烯(HPB)、氘代聚乙烯(DPB)、乙烯-丙烯交替共聚物(HPI)和氘代乙烯-丙烯交替共聚物(DPI),为中子示踪研究聚集态结构提供了模板聚合物。采用上述催化体系对顺-1,4结构含量为100%的全顺式聚异戊二烯(HCPI)进行氢化反应,首次制备了具有完全交替结构的乙烯-丙烯交替共聚物;对立构嵌段聚丁二烯(LVPB-b-HVPB)进行氢化反应,制备了一系列不同嵌段比的聚乙烯-b-聚丁烯-1嵌段共聚物(PE-b-PBt-1),并将其作为聚丙烯/低密度聚乙烯(PP/LLDPE)的增容剂进行了研究;对高顺式聚异戊二烯-b-聚己内酯嵌段共聚物(HCPI-b-PCL)进行氢化反应制备了乙烯-丙烯交替共聚物-b-聚己内酯两嵌段共聚物(alt-EP-b-PCL);对苯乙烯-异戊二烯-丁二烯三元无规共聚物(SIBR)进行氢化反应制备了氢化SIBR(HSIBR)。将星形乙烯-丙烯交替共聚物(S-alt-EP)、线形HSIBR和星形HSIBR(S-HSIBR)三种氢化产品用作润滑油的黏度指数改进剂,对其微观结构与性能的关系进行了研究。HSIBR作为新型材料,研究了其单体含量和加氢度对于抗热氧稳定性和物理机械性能的影响。主要研究结果及结论如下:
     以均聚物(PB、PI和HCPI)为氢化反应底物,得到完全氢化或氘化的产物。研究了Al/Ni催化体系中反应条件对于聚丁二烯氢化反应的影响,得出了最佳反应条件如下:Ni用量为2mgNi/g聚合物、Al/Ni比为6、反应温度为70℃、反应压力为4MPa、反应时间3h。
     以嵌段共聚物(LVPB-b-HVPB和HCPI-b-PCL)为氢化底物,制备了难以通过单体直接聚合得到的结构可控的饱和的烯烃共聚物(PE-b-PBt-1和alt-EP-b-PCL)。PE-b-PBt-1可作为PP/LLDPE共混物的增容剂,冲击强度和断裂伸长率随增容剂含量的增加而增加。在PP/LLDPE摩尔比为8:2的共混体系中PE嵌段含量越低的增容剂增容效果越好,共混物的力学性能越优异。通过NMR, FTIR和广角X射线衍射测试,结果表明alt-EP-b-PCL为具有高度规整的序列结构的嵌段共聚物。
     以系列化的SIBR为底物进行氢化反应,制备一系列HSIBR。研究了反应条件对SIBR氢化反应的影响规律,确定了最优反应条件:Ni用量为2mgNi/g聚合物、Al/Ni比为6、反应温度为60℃、反应压力为4MPa、聚合物浓度为10%、反应时间3h。在上述氢化条件下SIBR加氢度大于98%。研究了SIBR氢化反应的动力学,通过1H NMR测试得到了SIBR中各微观结构的氢化反应速率大小顺序依次为:B1,2>B1,4>13,4>11,4。
     HSIBR用作润滑油黏度指数改进剂(viscosity index improver, VII),重点考察HSIBR分子量、微观结构和SIBR中聚丁二烯单元含量对VII黏度指数改进剂性能的影响规律进行了研究。结果表明,HSIBR是一种具有非常突出的剪切稳定性和低温性能的黏度指数改进剂。
     HSIBR作为新型材料,对不同单体配比和不同加氢度的胶样进行开炼硫化,对样品的热空气老化性能、拉伸强度和硬度进行了研究。结果表明,随着异戊二烯含量增加,样品硬度增大,tanδ峰值增加;随着加氢度增加,氢化样品硬度降低,抗老化性能显著提高,tanδ峰值先降低后升高,储能模量E’不断降低,损耗模量E”峰值不断降低。
Hydrogenation reaction of conjugated diene polymer, especially rubber-like polymer, has been an active field of research for a long time because hydrogenated rubbers include new or improved properties comparing to the base rubbers. Combination of living anionic polymerization and hydrogenation reaction for preparation of saturated olefin copolymers with a controlled architecture is an important research field. In this paper, throughout catalytic hydrogenation reaction, a series of homopolymer, block copolymer and random copolymer were hydrogenated by a Ziegler-Natta type catalyst with low cost, high activity and good solubility in cyclohexane, which was prepared with nickel naphthenate (Ni) as main catalyst and aluminum triisobutyl (Al) as assist catalyst. The effect of reaction condition on the extent of hydrogenation was investigated. A series of polymer materials with new structure were prepared.
     Designed molecular weight and monodisperse hydrogenated polybutadiene (HPB), deuterated polybutadiene (DPB), hydrogenated polyisoprene (HPI) and deuterated polyisoprene (DPI) were prepared by hydrogenation or deuteration of homopolymers (polybutadiene and polyisoprene). Alternating ethylene-propylene copolymer (alt-EP) was prepared for the first time by hydrogenation of polyisoprene (HCPI) having high cis-1,4content (~100%) with the catalyst mentioned above. A series of polyethylene-b-polybutylene (PE-b-PBt-1) samples with different block ratio were prepared by hydrogenation of low-vinyl-polybutadiene-b-high-vinyl-polybutadiene (LVPB-b-HVPB), which can be used as compatibilizer of polypropylene/linear low density polyethylene (PP/LLDPE). High cis-polyisoprene-b-polycaprolactone (HCPI-b-PCL), and styrene-isoprene-butadiene rubber (SIBR) were hydrogenated to prepare new materials. Star-shaped alt-EP (S-alt-EP), hydrogenated SIBR (HSIBR) and star-shaped HSIBR (S-HSIBR) can be used as viscosity index improver (VII) in lubricants due to their improved thermal and oxidative resistance. The relationship of microstructure and performance was investigated. When HSIBR was used as damping material, the effect of monomer content and hydrogenation degree on thermal oxidative stability and dynamic mechanical property was investigated. The main results and conclusions are as follows:
     The fully hydrogenated or deuterated products were obtained using homopolymer as hydrogenation substrate. The effect of reaction condition on the extent of hydrogenation was investigated. The optimum hydrogenation condition was as follows:catalyst amount,2mg Ni per each1gram of polymer; Al/Ni molar ratio,6; temperature,70℃; hydrogen pressure,4MPa; and time,3h.
     PE-b-PBt-1and alt-EP-b-PCL were prepared by hydrogenation using block copolymer as hydrogenation substrate. Used as compatibilizer of PP/LLDPE, impact strength and breaking elongation of blend increased with the increase of the compatibilizer content. In the blend with the PP/LLDPE molar ratio of8:2, compatibilization effect and mechanical properties increased with the decrease of PE block content in solubilizer.The results obtained from NMR, FTIR and WAXD indicated that alt-EP-b-PCL was block copolymer having high alternating ethylene and propylene block.
     HSIBR was prepared by hydrogenation using random terpolymer (SIBR) as hydrogenation substrate. The effect of reaction condition on the extent of hydrogenation of SIBR was investigated. The optimum hydrogenation condition was as follows:catalyst amount,2mg Ni per each1gram of polymer; Al/Ni molar ratio,6; temperature,60℃; hydrogen pressure,4MPa; polymer concentration,10%; and time,3h. HSIBR with hydrogenation degree of98%was obtained in the hydrogenation condition as mentioned above. Hydrogenation reaction kinetics of SIBR was also investigated in this paper. The results obtained from1H NMR indicated that the hydrogenation rates of microstructures decreased as follow:B1,2>B1,4>Ⅰ3,4>Ⅰ1,4.
     HSIBR can be used as Ⅶ in lubricant. The effect of molecular weight, microstructure and butadiene units content of HSIBR on performance as Ⅶ was investigated in this paper. The results indicated that HSIBR was a Ⅶ with outstanding shear stability and high HTHS viscosities, while maintaining correspondingly high thickening power and viscosity index, as well as excellent low-temperature fluidity.
     HSIBR can also be used as damping material. After mixing and vulcanizing, hydrogenated samples with different monomer ratio and different hydrogenation degree was obtained. Physical mechanical properties such as, aging, tensile and hardness (Shore A) experiments were investigated. The results indicated that with the increase of isoprene unit content, hardness of samples increased, the peak value of tan δ increased, and that with the increase of hydrogenation degree, hardness of samples decreased, aging property was improverd, the peak value of tan δ increased first, then decreased, storage modulus (E') decreased, loss modulus (E") decreased first, then increased. Content of isoprene play a very important role in damping capacity of polymer. Hydrogenated product obtain from SIBR with high isoprene content could be suitable for damping materials.
引文
[1]SZWARC M, LEVEY M, MILKOVICH R. Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers[J]. Journal of the American Chemical Society,1956,78(11):2656-2657.
    [2]张洪敏,侯元雪.活性聚合[M].北京:中国石化出版社,1998.
    [3]MORTON M. Anionic Polymerization:Principles and Practice[M]. New York:Academic Press,1983.
    [4]MATTHEWS F E, et al. British Patent 24,790(1910)
    [5]HARRIES C H. Justus Liebigs Ann. Chem.383,157(1911); U.S. Patent 1058056(1913)(to Bayer)
    [6]SZWARC M. "Living" Polymers[J]. Nature,1956,178:1168-1169.
    [7]BASKARAN D, MULLER AHE.Anionic vinyl polymerization-50 Years after Michael Szwarc [J]. Prog Polym Sci,2007,32:173-219.
    [8]朱李继,李杨,王玉荣,等.活性阴离子聚合及其单体的研究进展[J].高分子通报,2009,8:14-23.
    [9]张洪敏,候元雪.活性聚合.北京:中国石化出版社,1998.
    [10]北京化工学院高分子化学教研室.热塑性弹性体之三.1978.
    [11]HSIEH H L. Am Chem Soc, Minneapolis, Minnesota,1976.
    [12]NOSHAY A, et al. Block Copolymers. New York:Academic Press,1977.
    [13]DEANIN R D. New Industrial Polymer. ACS, Washington D C.,1972.
    [14]MIYAMOTO M, SAWAMOTO M, HIGASHIMURA T. Living Polymerization of Isobutyl Vinyl Ether with Hydrogen Iodide/Iodine Initiating System[J]. Macromolecules,1984,17(3):265-268.
    [15]OTSU T, YOSHIDA M. Role of Initiator-Transfer Agent-Terminator (Iniferter) in Radical Polymerizations:Polymer Design by Organic Disulfides as Iniferters[J]. Makromolekulare Chemie,Rapid Communications,1982,3(2):127-132.
    [16]DOI Y, UEKI S, KEII T. "Living" Coordination Polymerization of Propene Initiated by the Soluble V(acac)3-Al(C2H5)2Cl System[J].Macromolecules,1979,12(5):814-819.
    [17]WEBSTER O W, HERTLER W R, SOGAH D Y, et al. Group-Transfer Polymerization.1. A New Concept for Addition Polymerization with Organosilicon Initiators[J]. Journal of the American Chemical Society,1983,105(17):5706-5708.
    [18]SOGAH D Y, WEBSTER O W. Sequential Silyl Aldol Condensation in Controlled Synthesis of Living Poly(Vinyl Alcohol) Precursors [J]. Macromolecules,1986,19(6):1775-1777.
    [19]GILLIOM L R, GRUBBS R H. Titanacyclobutanes Derived from Strained, Cyclic Olefins:the Living Polymerization of Norbornene[J]. Journal of the American Chemical Society,1986,108(4):733-742.
    [20]INOUE S. "Immortal" anionic ring-opening polymerization by metalloporphyrin catalyst. Makromolekulare Chemie[J]. Macromolecular Symposia,1986,3(1):295-300.
    [21]HADJICHRISTIDIS N, PITSIKALIS M, PISPAS S, et al. Polymers with Complex Architecture by Living Anionic Polymerization[J]. Chemical Review,2001,101(12):3747-3792.
    [22]李爱香,鲁在君.结构明确的梳形支化聚合物的合成与表征[J].高分子学报,2008,3:203-208.
    [23]RUCKENSTEIN E, ZHANG H. Well-defined Graft Copolymers Based on the Selective Living Anionic Polymerization of the Bifunctional Monomer 4-(vinylphenyl)-l-butene[J]. Macromolecules,1999,32(19):6082-6087.
    [24]KOWALCZUK M, ADAMUS C X, JEDLINSKI Z. Synthesis of New Graft Polymers via Anionic Grafting of Beta-butyrolactone on Poly(methyl methacrylate)[J]. Macromolecules,1994,27(2):572-575.
    [25]BEERS K L, GAYNOR S G, MATYJASZEWSKI K, et al. The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization[J]. Macromolecules,1998,31(26):9413-9415.
    [26]EDERLE Y, ISEL F, GRUTKE S, et al. Anionic Polymerization and Copolymerization Macromonomers:Kinetics, Structure Control[C]. Macromolecular Symposium,1998,132:197-206.
    [27]KANAOKA S, SUEOKA M, SAWAMOTO M, et al. Star-shaped Polymers by Living Cationic Polymerization.Ⅶ. Amphiphilic Graft Polymers of Vinyl Ethers with Hydroxyl Groups Synthesis and Host-guest Interaction[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1993,31(10):2513-2521.
    [28]HONG K, UHRIG D, JIMMY W. Living Anionic Polymerization[J]. Current Opinion in Solid State and Materials Science,1999,4(6):531-538.
    [29]HATADA K, KITAYAMA T. Star Polymer Synthesis[M]. New York:Marcel Dekker,1997.
    [30]GUAN Z. Control of Polymer Topology Through Late-transition-metal Catalysis[J]. Journal of Polymer Science Part A:Polymer Chemistry,2003,41(14):3680-3692.
    [31]ROOVERS J, ZHOU L L, TOPOROWSKI P M, et al. Regular Star Polymers with 64 and 128 Arms Models for Polymeric Micelles[J]. Macromolecules,1993,26(16):4324-4331.
    [32]TSITSILIANIS C, LUTZ P, GRAFF S, et al. Core-First Synthesis of Star Polymers with Potentially Ionogenic Branches[J]. Macromolecules,1991,24(22):5897-5902.
    [33]ROOVERS J, TOPOROYVSKI P. Relaxation by Constraint Release in Combs and Star-Combs[J]. Macromolecules,1987,20(9):2300-2306.
    [34]SCHAPPACHER M, DEFFIEUX A. New Polymer Chain Architecture:Synthesis and Characterization of Star Polymers with Comb Polystyrene Branches[J]. Macromolecules,2000,33(20):7371-7377.
    [35]KOUTALAS G, IATROU H, LOHSE D J, et al. Well-Defined Comb, Star-Comb, and Comb-on-Comb Polybutadienes by Anionic Polymerization and the Macromonomer Strategy[J]. Macromolecules,2005,38(12):4996-5001.
    [36]KAPNISTOS M, KOUTALAS G, HADJICHRISTIDIS N, et al. Linear Rheology of Comb Polymers with Star-like Backbones:Melts and Solutions[J]. Rheologica Acta,2006,46(2):273-286.
    [37]JULIE M, LEISTON B, JACQUES P, et al. Synthesis and Microphase Separation of Poly(styrene-b-acrylonitrile) Prepared by Sequential Anionic and ATRP Techniques [J]. Macromolecules,2006,39(5):1766-1770.
    [38]HAWKER C J, HEDRICK J L, MOINEAU G, et al. Dual Living Free Radical and Ring Opening Polymerizations from a Double-Headed Initiator[J]. Macromolecules,1998,31(2):213-219.
    [39]MATYJASZEWSKI K, XIA J H. Atom Transfer Radical Polymerization[J]. Chemical Re views,2001,101 (9):2921-2990.
    [40]MATYJASZEWSKI K, HONG S C, TEODORESCU M, et al. Incorporation of Polar Monomers to Polyolefins by Atom Transfer Radical Polymerization (ATRP)[J]. Polymeric Materials Science and Engineering,2001,84:259-260.
    [41]HONG S C, PAKULA T, MATYJASZEWSKI K. Preparation of Polyisobutene-graft-Poly(Methyl Methacrylate) and Polyisobutene-graft-Polystyrene with Different Compositions and Side Chain Architectures through Atom Transfer Radical Polymerization (ATRP)[J]. Macromolecular Chemistry and Physics,2001,202(17):3392-3402.
    [42]GROMADA J, MATYJASZEWSKI K. Simultaneous Reverse and Normal Initiation in Atom Transfer Radical Polymerization[J]. Macromolecules,2001,34(22):7664-7671.
    [43]SHINODA H, MATYJASZEWSKI K. Structural Control of Poly(Methyl Methacrylate)-g-Poly(Lactic Acid) Graft Copolymers by Atom Transfer Radical Polymerization (ATRP)[J]. Macromolecules,2001,34(18):6243-6248.
    [44]HONG S C, PAIK H J, MATYJASZEWSKI K. An Immobilized/Soluble Hybrid Catalyst System for Atom Transfer Radical Polymerization[J]. Macromolecules,2001,34(15):5099-5102.
    [45]MATYJASZEWSKI K, PAIK H J, ZHOU P, et al. Determination of Activation and Deactivation Rate Constants of Model Compounds in Atom Transfer Radical Polymerization[J]. Macromolecules2001,34(15):5125-5131.
    [46]COESSENS V, PINTAUER T, MATYJASZEWSKI K. Functional Polymers by Atom Transfer Radical Polymerization[J]. Progress in Polymer Science,2001,26(3):337-377.
    [47]BOERNER H G, BEERS K, MATYJASZEWSKI K, et al. Synthesis of Molecular Brushes with Block Copolymer Side Chains Using Atom Transfer Radical Polymerization[J]. Macromolecules,2001,34(13):4375-4383.
    [48]DAVIS K A, MATYJASZEWSKI K. ABC Triblock Copolymers Prepared Using Atom Transfer Radical Polymerization Techniques[J]. Macromolecules,2001,34(7):2101-2107.
    [49]HUANG J L, HUANG X Y, ZHANG S. Block Copolymerization of Ethylene Oxide and Styrne by Sequential Initiation of an Anion and a Photoinduced Charge Transfer Complex[J]. Macromolecules,1995,28(13):4421-4425.
    [50]YU X F, ZHANG G, SHI T F, et al. Synthesis of Symmetric H-shaped Block Copolymer by the Combination of ATRP and Living Anionic Polymerization[J]. Polymer,2007,48(9):2489-2495.
    [51]李爱香,鲁在君.新型“蜈蚣形”苯乙烯-甲基丙烯酸甲酯共聚物的合成[J].中国科学(B辑:化学),2007,37(1):31—35.
    [52]CAI Y L, TANG Y Q, ARMES S P. Direct Synthesis and Stimulus-Responsive Micellization of Y-Shaped Hydrophilic Block Copolymers[J]. Macromolecules,2004,37(26):9728-9737.
    [53]YU X F, SHI T F, AN L J, et al. Synthesis of a Wang-Shaped Amphiphilic Block Copolymer by the Combination of Atom Transfer Radical Polymerization and Living Anionic Polymerization[J]. Journal of Polymer Science, Part A:Polymer Chemistry,2007,45(1):147-156.
    [54]何曼君,陈维孝,董西侠.高分子物理(修订版).上海:复旦大学出版社,2001.
    [55]潘祖仁.高分子化学(第三版).北京:化学工业出版社.2002.
    [56]潘祖仁.高分子化学(第四版).北京:化学工业出版社,2007.
    [57]SZWARC M, et al. Ionic Polymerization and Living Polymers. New York:Chapman&Hall,1993.
    [58]焦书科.高分子化学习题及解答.北京:化学工业出版社,2004.
    [59]MORTON M, FETTERS L J, INOMATA J, et al. Synthesis and properties of uniform polyisoprene networks.I.Synthesis and Characterization of.alpha.,.omega.-dihydroxypolyisoprene[J]. Rubber Chemistry and Technology,1976,49(2):303-19.
    [60]MORTON M, ELLS F R. Absolute Rates in Anionic Copolymerization[J]. Journal of Polymer Science,1962,61:25-29.
    [61]HADJICHRISTIDIS N, IATROU H, PISPAS S, et al. Anionic polymerization:High vacuum techniques [J]. Journal of Polymer Science Part A:Polymer Chemistry,2000,38(18):3211-3234.
    [62]UHRIG D, MAYS J W. Experimental Techniques in High-Vacuum Anionic Polymerization [J]. Journal of Polymer Science, Part A:Polymer Chemistry,2005,43(24):6179-6222.
    [63]周科衍.有机化学实验技术.北京:高等教育出版社,1992.
    [64]MIYAMOTO M, SAWAMOTO M, HIGASHIMURA T. Living Polymerization of Isobutyl Vinyl with the Hydrogen Iodide Initiating[J]. Macromolecules,1984,17(3):265-268.
    [65]FAUST R, NAGY A, KENNEDY P. Living Carbocationic Polymerization.5. Linear Telechelic Polyisobutylenes by Bifunctional Initiators[J]. Journal of [66] Macromolecular Science, Part A:Pure and Applied Chemistry,1987,24(6):595-609.
    [67]GEORGES M K, VEREGIN R P N, KAZMAIER P M, et al. Narrow Molecular Weight Resins by a Free-Radical Polymerization Process[J]. Macromolecules,1993,26(11):2987-2988.
    [68]HAWKER C J, BARCLAY G G, ORELLANA A, et al. Initiating Systems for Nitroxide-Mediated "Living"Free Radical Polymerizations:Synthesis and Evaluation[J]. Macromolecules,1996,29(16):5245-5254.
    [69]EMRICK T, HAYES W, FRECHET J M J. A TEMPO-Mediated "Living" Free-Radical Approach to ABA Triblock Dendritic Linear Hybrid Copolymers[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1999,37(20):3748-3755.
    [70]WANG J S, MATYJASZEWSKI K. Controlled "Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes[J]. Journal of the American Chemical Society,1995,117(20):5614-5615.
    [71]PATTEN T E, XIA J, ABERNATHY T, et al. Polymers with Very Low Polydispersities from Atom Transfer Radical Polymerization[J]. Science,1996,272(5263):866-868.
    [72]MIN K, GAO H, MATYJASZEWSKI K. Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer (AGET)[J]. Journal of the American Chemical Society,2005,127(11):3825-3830.
    [73]MAYADUNNE R T A, RIZZARDO E, CHIEFARI J, et al. Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents:ABA Triblock Copolymers by Radical Polymerization in Two Steps[J]. Macromolecules,2000,33(2):243-245.
    [74]FAVIER A, CHARREYRE M T. Experimental Requirements for an Efficient Control of Free-Radical Polymerizations via the Reversible Addition-Fragmentation Chain Transfer (RAFT) Process [J]. Macromolecular Rapid Communications,2006,27(9):653-692.
    [75]WEBSTER O W, HERTLER W R, SOGAH D Y, et al. Group-Transfer Polymerization.1. A New Concept for Addition Polymerization with Organosilicon Initiators[J]. Journal of the American Chemical Society,1983,105(17):5706-5708.
    [76]HERTLER W R, SOGAH D Y, WEBSTER O W, et al. Group-Transfer Polymerization.3. Lewis Acid Catalysis[J]. Macromolecules,1984,17(7):1415-1417.
    [77]黎富华.热塑性弹性体SEBS合成工艺研究(硕士学位论文).长沙:湖南大学,2000.
    [78]王琳.SBS加氢制备新型热塑性弹性体SEBS的研究(硕士学位论文).辽宁:辽宁工程技术大学.2005.
    [79]高军,佘万能,屈秀宁SEPS新型弹性体和催化进展[J].弹性体,2004,14(5):61—65.
    [80]CHAMBERLAIN L R, GIBLER C J. Selective hydrogenation of conjugated diolefin polymers[P].US:5039755,1991.
    [81]黎富华.热塑性弹性体SEBS合成工艺研究:(硕士学位论文).长沙:湖南大学,2000.
    [82]朱家顺,柳庆春,文丽荣,等.苯乙烯-异戊二烯-苯乙烯(SIS)嵌段共聚物的镍系催化加氢[J].弹性体,2002,12(5):1-5.
    [83]EQUIZA N, YAVE W, QUIJADA R, et al. Use of SEBS/EPR and SBR/EPR as Binary Compatibilizers for PE/PP/PS/HIPS Blends:a Work Oriented to the Recycling of Thermoplastic Wastes[J]. Macromolecular Materials Engineering,2007,292(9):1001-1011.
    [84]TCHOMAKOV K P, FA VIS B D, HUNEAULT M A, et al. Mechanical Properties and Morphology of Ternary PP/EPDM/PE Blends[J]. Canadian Journal of Chemical Engineering,2005,83(2):300-309.
    [85]张育英,郝广杰,郭天瑛,等.EVA增容PP/HDPE共混体系的形态结构与性能[J].离子交换与吸附,2000,16(5):449-453.
    [86]史铁钧,何涛,吴德峰.改性滑石粉填充聚丙烯/高密度聚乙烯复合体系的流变性能[J].高分子材料科学与工程,2004,20(1):125—128.
    [87]MONTEZIN F, CUESTA J M L, CRESPY A, et al. Flame Retardant and Mechanical Properties of a Copolymer PP/PE Containing Brominated Compounds/Antimony Trioxide Blends and Magnesium Hydroxide or Talc[J]. Fire and Materials,1997,21(6):245-252.
    [88]李海东,程凤梅,王宇明,等EPDM增韧聚丙烯及其脆韧转变机理的研究[J].弹性体,2005,15(5):23—25.
    [89]张启霞.三元乙丙橡胶弹性体增韧改性聚丙烯/三元乙丙橡胶共混改性聚丙烯[D].杭州:浙江大学.
    [90]TANG L X, QU B J, SHRN X F. Mechanical properties, morphological structure, and thermal behavior of dynamically photocrosslinked PP/EPDM blends [J]. Journal of Applied Polymer Science,2004,92(5):3371-3380.
    [91]赵海燕,丁锐.透明聚丙烯材料低温增韧的研究[J].工程塑料应用,2008,36(2):25-29.
    [92]周琦,王勇,邱桂学,等.POE与EPDM对聚丙烯增韧改性研究[J].弹性体,2007,17(4):44-47.
    [93]敖玉辉,孙伟权,杨海东,等.不同弹性体增韧聚丙烯的研究[J].中国塑料,2005,19(10):53—56.
    [94]黄佃平,江云涛,胡红旗,等i-PB/PP共混体系力学性能和结晶性能的研究[J].塑料,2008,37(2).33-36.
    [95]赵永仙,黄宝琛,李旭东,等.聚丙烯/聚丁烯热塑性弹性体共混物力学性能的研究[J].中国塑料,2004,18(7):28-31.
    [96]付一政,李炳海.聚乙烯聚丙烯共混体系力学性能的研究[J].现代塑料加工应用,2005,17(4):12-15.
    [97]邱桂学,吴人洁.mPE弹性体增韧改性力学性能的研究[J].合成树脂与塑料,2001,]8(3):38-40.
    [98]邓彦波.HSD型润滑油黏度指数改进剂[J].甘肃石油和化工,2006,2:10—14.
    [99]崔维怡,崔华,王秀芝,等.润滑油粘度指数改进剂的使用性能与发展[J].弹性体,2006,19(6):1—7.
    [100]崔维怡,惠继星,张吉波,等.润滑油粘度指数改进剂SEP的制备及其性能研究[J].吉林化工学院学报,2009,26(4):18-21.
    [101]CHRISTOPH H, WALTER H, HANS-BERND F, et al. A-B Block Copolymers Based on Butadiene, Isopprene and Styrene, their preparation and their use[P]. US,5053459,1989.
    [102]NORDSIEK K H. The "Integral Rubber" Concept——an Approach to an Ideal Tire Tread Rubber[J]. Kautschuk Gummi Kunststoffe,1985,38(3):178-185.
    [103]GILMAN H, HAUBEIN A H. Relative Reactivities of Organometallic Compounds. LVI. The Quantitative Analysis of Alkyllithium Compounds[J]. Journal of the American Chemical Society,1944,66(9):1515-1516.
    [104]GILMAN H, CARTLEDGE F K. The Analysis of Organolithium Compounds[J]. Journal of Organometallic Chemistry,1964,2(6):447-454.
    [105]袁履冰,何仁.有机铝化合物[M].北京:北京人民出版社,1979.
    [106]胡保利,王爱东,王郁,等.SBS加氢催化剂脱除研究[J].石化技术,2003,10(4):4-7.
    [107]SLOAN M F, MATLACK A S, BRESLOW D S. Soluble Catalysts for the Hydrogenation of Olefins[J]. Journal of the American Chemical Society,1963,85(24):4014-4018.
    [108]CLARK J K, CHEN H Y. Proposed Method for Determining the Sequence Distributions of the Configurations in High 1,4-Polybutadienes by Infrared Spectroscopy[J]. Journal of Polymer Science, Polymer Chemistry Edition,1974,12(4):925-928.
    [109]SANTEE E R J, CHANG R, MORTON M.300 MHz Proton NMR of Polybutadiene. Measurement of Cis-Trans Isomeric Content[J]. Journal of Polymer Science, Polymer Letters Edition,1973,11(7):449-452.
    [110]SANTEE E R J, MOCHEL V D, MROTON M. Proton NMR of Polybutadiene at 300 MHz. Cis-1,4-Trans-1,4 Linkages[J]. Journal of Polymer Science, Polymer Letters Edition,1973,11(7):453-455.
    [111]GRECHISHKINA T V, SLUKIN A D. IR Spectroscopic Identification of the Structure of Polybutadienes[J]. Khimiyai Khimicheskaya Tekhnologiya(Minsk),1984,19:58-61.
    [112]曾焕庭.核磁共振对合成橡胶结构的测定[J].合成橡胶工业,1981,4(4):304-313.
    [113]BATES F S, ROSEDALE J H, BAIR H E. Synthesis and Characterization of a Model Saturated Hydrocarbon Diblock Copolymer[J]. Macromolecules,1989,22(6):2557-2564.
    [114]ZHAO J, SCHULZ M F, BATES F S. Phase Behavior of Pure Diblocks and Binary Diblock Blends of Poly(ethylene)-Poly(ethylethylene)[J]. Macromolecules,1996,29(4):1204-1215.
    [115]贾志欣,杜明亮,郭宝春,等.液体聚异戊二烯的结构表征[J].合成材料老化与应用,2005,34(4):23-26.
    [116]董慧茹,陶红,王楠楠,等.光谱法分析乙丙共聚物的序列结构及链节比[J].高等学校化学学报,2006,27(5):961—965.
    [117]TANGTHONGKUL R,PRASASSARAKICH P,MCMANUS N T,et a1.Hydrogenation of cis-1,4-polyisoprene catalyzed by Ru(CH=CH(Ph))Cl(CO)(PCy3)2[J].Joumal ofApplied Polymer Science,2004,91(5):3259-3273.
    []18]李三喜,马瑞春,张帆.乙丙共聚物的13C NMR研究[J].波谱学杂志,1998,15(2):109-116.
    [119]CHENG H N.13C-NMR sequence determination for multicomponent polymer mixtures[J].JOHmal of Applied Polymer Science,1988,35(6):1639-1650.
    [120]DONG Q,FAN Z Q,FU Z S,et al_Fractionation and characterization of an ethylene-propylene copolymer produced with a MgCl2/SiO2/TiCl4/diester-type ziegler-narta catalyst[J].JOHmal of Applied Polymer Science,2008,107(2):1301-1309.
    [121]莫志深,王立筱,张宏放,等.乙丙前段共聚物的X-射线衍射研究[J].高分子学报,1988,,6:441-446.
    [122]CAo Y P,ZHANG A Q.Selective Hydrogenation of Cinnamaldehyde over Pt-Supported Styrene-Butadiene.Styrene B10Ck Copolymer[J].Chinese Joumal of Organic Chemistry,2011,31(4):577-581.
    [123]JAMANEK D,W1ECZOREK Z,LESZCZYNSKA I,et al.Hydrogenation of C.C Bonds in Styrene-Butadiene-Styrene Block Copolymers in the Presence of Monocyclopentadienyl Titanium(Ⅳ) Catalytic Systems[J].P0limery,2011,56(4):289-293.
    [124]YU F J,CHEN J J,HE X J,et al.Selective Catalytic Hydrogenation of SBS BolCk Copolymer with Metallocene Catalyst Aceelerated by Methyl Benzoate[J].Acta Polymetica Sinjca,2010,11:1306-1312.
    [125]CRIST B,WILLIAMS D N.CrystaUization and melting of model ethylene-butene random copolymers:therlilal studies[J].JoHmal ofMacromoleelllar Science,Part B:Physics,2000,39(1):1-13.
    [126]李嵬,李杨,胡雁鸣,等.完全交替结构乙烯-丙烯共聚物的制备与表征[J].高分子学报,2010,8:961—965.
    [127]王建明,陈伟,祝桂香.开环聚合制备聚己内酯[J].石化技术与应用,2006,24(6):492-497.
    [128]SABATA S,HETFLEJS J.Hydrogenation ofLow Molar MaSS 0H-Telechelic P01ybutadienes Catalyzed by HomogeBeous ziegler Nickel Catalysts[J].Johmal of Applied Polymer Scienee,2002,85(6):1185.1193.
    [129]GONZALEZ-AGUIRRE P,MEDlNA-TORRES L,SCHRAUWEN C,et a1.Morphology and Rheological Behavior Of Maltene-polymer Blends.].Effect of Partial Hydrogenation Of Poly(Styrene-block-Butadiene-block-Styrene-block)-Type Copolymers[J].Journal of Applied Polymer Scienee,2009,112(3):1330-1344.
    [130]BARRIOSA V A E,NAJERA R H,PETIT A,et al.Selective Hydrogenalion of ButadieRe-Styrene Copolymers Using a ziegler-Natta Type Catalyst 1.Kinetic Study[J].European Polymet Journal,2000,36(9):1817-1834.
    [131]WANG Z S,WANG Y R,LI Y,et a1.Mierostructure and Glass-Transition Temperature of Novel Star N-SIBR[J].Journal of Apped P01ymer Science,2006,102(6):5848-5853.
    [132]薛林.用于粘度指数改进剂的氢化SIBR的研究[D].大连:大连理工大学,2009.
    [133]肖文明,张艺,程开良,等.三元共聚液晶聚酯酰亚胺/PET共混体系结构与性能研究[J].高分子学报,2011,4:402-408.
    [134]MO Z S,ZHANG H F.Structure of Crystalline Polymers by X-ray Diffraetion[M].1st ed. Beijing:Science Press,2003.
    [135]LITT F A. Viscosity-temperature relations[J]. Lubrication Engineering,1986,42(5):287-289.
    [136]VAN DER WAAL G. Improving the Performance of Synthetic Base Fluids with Additives[J]. Journal of Synthetic Lubrication,1987,4(4):267-282.
    [137]WANG T Y. TSIANG R C C, LIOU J S, et al. Preparation and Characterization of a Star-Shaped Polystyrene-b-Poly(Ethylene-co-Propylene) Block Copolymer as a Viscosity Index Improver of Lubricant[J]. Journal of Applied Polymer Science,2001,79(10):1838-1846.
    [138]AKHMEDOV A 1, ISAKOV E U. Synthesis of Viscosity Modifiers by Copolymerization of Decyl Methacrylate with Dicyclopentadiene[J]. Chemistry and Technology of Fuels and Oils,1989,3:20-21.
    [139]VER STRATE G, STRUGLINSKI M J. Polymers as Lubricating Oil Viscosity Modifiers[J]. Polymeric Materials Science and Engineering,1989,61:252-258.
    [140]VER STRATE G, STRUGLINSKI M J. Polymers as Lubricating-Oil Viscosity Modifiers[J]. ACS Symposium Series,1991,462:256-72.
    [141]ECKERT R J A, COVEY D F. Developments in the Field of Hydrogenated Diene Copolymers as Viscosity Index lmprovers[J]. Lubrication Science,1988,1(1):65-80.
    [142]LIOU I C, TSIANG R C C, WU J, et al. Synthesis of a star-shaped poly(ethylene-co-propylene) copolymer as a viscosity index improver for lubricants[J]. Journal of Applied Polymer Science,2002,83(9):1911-1918.
    [143]TORRES E, DUTTA N, CHOUDHURY N R, et al. Effect of Composition on the Solution Rheology of Stearyl Methacrylate-co-Styrene-co-Vinyl Pyrrolidinone in Paraffinic Base Oil[J]. Polymer Engineering and Science,2004,44(4):736-748.
    [144]ALEKSEEV A P, LEONENKO V V, SAFONOV G A. Thickening of Petroleum Systems. Communication 1 [J]. Chemistry and Technology of Fuels and Oils,2005,41(5):380-385.
    [145]BEZOT B, HESSE-BEZOT C, ELMAKOUDI B, et al. Comparison of Hydrodynamic and Rheological Properties of Dilute-Solutions of a Styrene-Hydrogenated Butadiene Copolymer in Aliphatic Solvents by Light-Scattering and Viscometric Techniques[J]. Journal of Applied Polymer Science,1994,51(10):1715-1725.
    [146]BARTZ W J, WILFRIED J. Influence of Viscosity Index Improver, Molecular Weight, and Base Oil on Thickening, Shear Stability, and Evaporation Losses of Multigrade Oils[J]. Lubrication Science,2000,12(3):215-237.
    [147]KASHYAP A K, RAY S S, MISRA A K, et al. Intrinsic Viscosity as a Laboratory Control Parameter for the Design of VI Improvers Based on Linear Isoprene Polymers and Copolymers[J]. Polymer Preprints,1994,35(1):727-728.
    [148]BOURGOGNON H, RODES C, NEVEU C, et al. Mathematical Model for the Thickening Power of Viscosity Index Improvers:pplication to Engine Oil Formulations[J]. Lubrication Science,1991,3(3):143-160.
    [149]ABDEL-AZIM, ABDEL-AZIM A, ABDEL-AZIEM R M. Polymeric Additives for Improving the Flow Properties and Viscosity Index of Lubricating Oils[J]. Journal of Polymer Research,2001,8(2):111-118.
    [150]SALAUEN P, HOUZELOT J, VILLERMAUX J, et al. Sequential Method for the Determination of Operating Conditions for Cptimizing End-Use Properties of a Terpolymer[J]. Chemical Engineering Journal,1996,63(1):19-25.
    [151]KAPUR G S, SARPAL A S, MAZUMDAR S K, et al. Structure-Performance Relationships of Viscosity Index Improvers:I. Microstructural Determination of Olefin Copolymers by NMR Spectroscopy[J]. Lubrication Science,1995,8(l):49-60.
    [152]LAI M K, WANG J Y, TSIANG R C C. Synthesis and Characterization of (Star Polystyrene)-block-(Polyisoprene)-block-(Star Polystyrene) Copolymers[J]. Polymer,2005,46(8):2558-2566.
    [153]LIOU I C, TSIANG R C C, WU J, et al. Synthesis of a Star-Shaped Poly(Ethylene-co-Propylene) Copolymer as a Viscosity Index Improver for Lubricants[J]. Journal of Applied Polymer Science,2002,83(9):1911-1918.
    [154]NASSAR A M. The Behavior of Polymers as Viscosity Index Improvers[J]. Petroleum Science and Technology,2008,26(5):514-522.
    [155]WANG J, YE Z, ZHU S. Topology-Engineered Hyperbranched High-Molecular-Weight Polyethylenes as Lubricant Viscosity-Index Improvers of High Shear Stability[J]. Industrial and Engineering Chemistry Research,2007,46(4):1174-1178.
    [156]KUGIMIYA T, YOSHIMURA N, MITSUI J. Tribology of Automatic Transmission Fluid[J]. Tribology Letters,1998,5(1):49-56.
    [157]JORDAN E F Jr, SMITH S Jr, PARKER W E, et al. Viscosity Index. Ⅰ. Evaluation of Selected Copolymers Incorporating n-Octadecyl Acrylate as Viscosity Index Improvers[J]. Journal of Applied Polymer Science,1978,22(6):1509-1528.
    [158]JORDAN E F Jr, SMITH S Jr, ZABARSKY R D, et al. Viscosity index. Ⅱ. Correlation with Rheological Theories of Data for Blends Containing n-Octadecyl Acrylate[J]. Journal of Applied Polymer Science,1978,22(6):1529-1545.
    [159]李杰,张颖.粘度指数改进剂对油品性能的影响[J].润滑油,2003,18(3):37-40.
    [160]崔维怡,崔华,王秀芝,等.润滑油粘度指数改进剂的使用性能与发展[J].弹性体,2006,16(3):69—72.
    [161]THOMAS E K. Shell Oil Company. Star-shaped Dispersant Viscosity Index Improver:US,4077893[P].1978-03-07.
    [162]RHODES R B, ECKERT R J, LOEFFLER D E. Shell Oil Company. Gear Oil Viscosity Index Improvers:US,5070131[P].1991-12-03.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700