hTERT非端粒酶依赖途径调控喉鳞癌细胞凋亡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用RNA干扰技术沉默人端粒酶逆转录酶(hTERT)前后,检测喉癌细胞及移植瘤组织中hTERT表达含量与端粒酶活性及前列腺凋亡反应因子(Par-4)表达相关性,探讨人端粒酶逆转录酶不依赖其催化活性的抗凋亡作用及其机制,为喉癌的基因治疗提供新的思路。
     方法:构建靶向人端粒酶逆转录酶mRNA的质粒p-EGFP-shTERT,将质粒转染体外培养的喉癌Hep-2细胞,应用TRAP-PCR法检测检测转染后0h、12h、24h、48h四个时间点喉癌Hep-2细胞端粒酶活性,流式细胞术检测转染后四个时间点细胞凋亡程度,Western-blot检测hTERT蛋白及Par-4蛋白表达;建立喉癌移植瘤裸鼠动物模型,采用瘤体内多点注射方式将质粒p-EGFP-shTERT导入移植瘤内,采用量子点超敏荧光免疫技术检测质粒转染前以及转染后6d、10d、14d移植瘤组织内hTERT和Par-4两种蛋白表达情况,方差分析、卡方检验及Spearman相关性检验分析实验结果。
     结果:质粒成功转染Hep-2细胞24h后端粒酶活性开始下降,48h后端粒酶活性被抑制;质粒转染12h后Hep-2细胞即有显著凋亡,随时间延长,凋亡率逐渐增高;hTERT蛋白表达随转染时间延长逐渐降低,Par-4蛋白表达逐渐增加;体内实验中发现,质粒转染前,hTERT蛋白在喉癌Hep-2细胞裸鼠移植瘤中呈高表达,而且胞核、胞浆内均有表达,但Par-4蛋白仅在胞浆表达,质粒转染14天后,hTERT表达降低,胞核内表达下调明显,而Par-4在胞核表达增多,Speraman等级相关分析发现,移植瘤中Par-4和hTERT在质粒p-EGFP-shTERT转染前后表达呈负相关(p<0.05,r=-0.908)。
     结论:应用RNA干扰抑制hTERT表达过程中,我们发现质粒转染24h后,端粒酶活性仅有轻度降低,48小时后端粒酶活性才被抑制,然而质粒转染Hep-2细胞12h后,就有凋亡反应出现,24h后凋亡显著,因此推测,RNA干扰抑制hTERT诱导的凋亡反应并不依赖端粒酶活性的抑制。同样,hTERT介导的肿瘤细胞抗凋亡作用除端粒酶激活途径外,还存在其它非端粒酶途径;抑制hTERT蛋白表达的同时,我们还发现,前列腺凋亡反应因子(Par-4)表达上调,且质粒转染前后两种蛋白表达部位发生改变,提示Par-4可能参与hTERT不依赖其催化活性的抗凋亡途径,hTERT可能在胞浆中与Par-4相互作用,抑制了Par-4转入胞核,从而抑制了细胞凋亡。
Objective:To explore the mechanism of telomerase-independent anti-apoptosis of hTERT, investigated the relationship between the expression of human telomerase reverse transcriptase (hTERT) and telomerase activity or prostate apoptosis response4(Par-4) proteins in laryngocarcinoma cells after applying RNA interference to silencing the expression of hTERT gene in laryngeal carcinoma cells in vitro and in vivo, which supply an new method for the laryngocarcinoma gene therapy.
     Methods:A plasmid termed pEGFP-shTERT was constructed. Hep-2cells were transfected with the plasmids. After0,12,24,48hours, cells were collected and detected with TRAP-PCR in telomerase activity, with flow cytometer in cell apoptosis, with and immunocytochemistry in expression of hTERT and Par-4protein and with Western-blot in expression of hTERT and Par-4protein; An animal model of laryngocarcinoma was constructed. The plasmids pEGFP-shTERT were transfected by multipoint injection. The expression of Par-4and hTERT after transfected of0,6,10,14days was detected by Quantum dots-based immunofluoresense technology in xenograft laryngocarcinoma from nude mice.
     Results:The plasmids were successfully transfected after12h of treated with pEGFP-shTERT, the transfection rate achieved78.6%after24h. After24h of plasmids transfection, the telomerase activity of Hep-2cells started to decline but not be inhibited completely, while the apoptosis of Hep-2cells occurred before the inactivation of the telomerase after12h of plasmids transfection. The expression of hTERT was down-regulated and the expression of Par-4was increased after RNAi, and there are obvious dose-effect relationship (P<0.05); Meanwhile, the similar results were found in vivo study, furthermore before hTERT gene silencing, the hTERT protein were found both in nucleus and cytoplasm, while Par-4protein only expressed in cytoplasm. After14d of RNAi, the expression of hTERT protein decreased both in nucleus and cytoplasm, especially in nucleus, while the expression of Par-4protein obviously increased in nucleus.There was negative correlation between Par-4and hTERT expression in nucleus (P<0.05, r=-0.908).
     Conclusion:After24h of plasmids transfection, the telomerase activity of Hep-2cells started to decline but not obviously, while the apoptosis of Hep-2cells occurred before the inactivation of the telomerase. After24h of plasmids transfection, there were16.5% Hep-2cells in apoptosis. So, we consider that hTERT may have anti-apoptosis effect independent of telomerase. There was negative correlation between Par-4and hTERT expression when silencing hTERT gene, which meant Par-4may took part in the hTERT mediated apoptosis independent of telomerase. hTERT may interact with Par-4in cytoplasm and inhibit the translocation of Par-4into nucleus, and then inhibit the Par-4induced apoptosis.
引文
[1]Campisi,J. (2001) Cellular senescence as a tumor-suppressor mechanism.Trends Cell Biol.,11, S27-31.
    [2]Hanahan,D. and Weinberg,R.A. (2000) The hallmarks of cancer. Cell,100,57-70.
    [3]Campisi,J., Kim,S.H., Lim,C.S. and Rubio,M. (2001) Cellular senescence, cancer and aging: the telomere connection. Exp. Gerontol.,36,1619-1637.
    [4]Meyerson,M. (2000) Role of telomerase in normal and cancer cells.J. Clin. Oncol.,18, 2626-2634.
    [5]Granger,M.P., Wright,W.E. and Shay,J.W. (2002) Telomerase in cancer and aging. Crit. Rev. Oncol. Hematol.,41,29-40.31
    [6]Kilian,A., Bowtell,D.D., Abud,H.E., Hime,G.R., Venter,D.J., Keese,P.K.,Duncan,E.L., Reddel,R.R. and Jefferson,R.A. (1997) Isolation of a candidate human telomerase catalytic subunit gene, which revealscomplex splicing patterns in different cell types. Hum. Mol. Genet., 6,2011-2019.
    [7]Tao Z, Chen S, Xiao B, et al. Targeted therapy of human laryngeal squamous cell carcinoma in vit ro by antisense oligonucleotides directed against telomerase reverse transcriptase mRNA. J Laryngol Otol,2005,119:92-96.
    [8]Yan Wang,Ze-Zhang Tao, Shi-Ming Chen. Application of combination of short hairpin RNA segments for silencing VEGF, TERT and Bcl-xl expression in laryngeal squamous carcinoma, Cancer Biology & Therapy 7:6,896-901; June 2008.
    [9]W Chen, SM Chen, Y Yu, Bk Xiao, ZW Huang, ZZ Tao*. Telomerase inhibition alters telomere maintenance mechanisms in laryngeal squamous carcinoma cells. J Laryngol Otol. 2010,124,776-781.
    [10]Cao Y, Li H, Deb S, et al. TERT regulates cell survival independent of telomerase enzymatic activity[J]. Oncogene 2002,21,3130-3138.
    [11]Rubaiyat Rahman, Leena Latonen, Klas G Wiman. hTERT antagonizes p53-induced apoptosis independently of telomerase activity[J]. Oncogene 2005,24:1320-1327.
    [12]周平,房殿春,陈兵,等.一组端粒相关蛋白分子的克隆[J].世界华人消化杂志,2008,16(14):1507-1512.
    [13]周平,房殿春,陈兵,等.人端粒相关蛋白HKR3, SMARCB1的筛选及其在胃癌细胞中的表达[J].胃肠病学,2008,13(5):260-263.
    [14]彭勇,陈兵,等.Par-4蛋白对端粒酶活性影响的研究[D].西安:第三军医大学,2004,5:
    [15]Zhang L, Guo L, Peng Y, Chen B. Expression of T-STAR gene is associated with regulation of telomerase activity in human colon cancer cell line HCT-116[J]. World J Gastroenterol 2006, 12(25):4056-4060.
    [16]Kyo S,Takakura M, Taira T, et al. Sp1 cooperates with c-NYX to activate transcription of the hunan terlomerase reverse transcriptase gene[J]. Nucleic Acids Res,2000,28(3);669-677.
    [17]Dutta K, Cotton L. Stabilization of a pH-sensitive apoptosis-linked coiled coil through single point mutations [J]. Protein Sci,2003,12:257-265.
    [18]Chao Lu, Jie-Qing Chen, Guo-Ping Zhou,et al. Multimolecular complex of Par-4 and E2F1 binding to Smac promoter contributes to glutamate-induced apoptosis in human-bone mesenchymal stem cells[J]. Nucleic Acids Research,2008,36(15):5021-5032.
    [19]Nadia El-G, Yanming Z, Sushma G, et al. Identification Of a uniquecore domain of Par-4 sufficient for selective apoptusis induction incancer cells[J]. Mol Cell Biol,2003,23(16): 5516-5525.。
    [20]赵艳超,张淑波,陈维田,何淼.癌症相关促凋亡蛋白Par-4的信号转导途径预测研究.中山大学学报(自然科学版)V01.49No.6.2010
    [21]Meyerson,M. (2000) Role of telomerase in normal and cancer cells.J. Clin. Oncol.,18, 2626±2634.
    [22]Granger,M.P., Wright,W.E. and Shay,J.W. (2002) Telomerase in cancer and aging. Crit. Rev. Oncol. Hematol.,41,29-40.31
    [23]Cao Y, Li H, Deb S, et al. TERT regulates cell survival independent of telomerase enzymatic activity[J]. Oncogene 2002,21,3130-3138.
    [24]Rubaiyat Rahman, Leena Latonen, Klas G Wiman. hTERT antagonizes p53-induced apoptosis independently of telomerase activity[J]. Oncogene 2005,24:1320-1327.
    [25]Izumi Horikawaland J.Carl Barrett Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis vol.24 no.7 pp.1167±1176, 2003
    [26]Folini M, Brambilla C, Villa R, et al. Antisense oligonucleotide-mediated inhibition of hTERT, but not hTERC, induces rapid cell growth decline and apoptosis in the absence of telomere shortening in human prostate cancer cells[J]. Eur J Cancer,2005,41(4):624-634.
    [27]Dudognon C, Pendio F, etal. Death receptor signaling regulatory function for telomerase: hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance[J]. Oncogene 2004,23:7469-7474.
    [28]Izumi Horikawaland J.Carl Barrett Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis vol.24 no.7 pp.1167-1176, 2003
    [29]Stephen F. Sells, Seong-Su Han,Sumathi Muthukkumar, et al. Expression and Function of the Leucine Zipper Protein Par-4 in Apoptosis[J]. MOLECULAR AND CELLULAR BIOLOGY, 1997:3823-3832.
    [30]Nadia E1 — G, Yanming Z, Sushma G, et al. Identification Of a unique core domain of Par-4 sufficient for selective apoptusis induction incancercells[J]. Mol Cell Biol,2003,23(16): 5516-5525.
    [31]Jeng-Woei Lee, Kuei-Fang Lee, Hsue-Yin Hsu, et al. Protein expression and intracellular localization of prostate apoptosis response-4 (Par-4) are associated with apoptosis induction in nasopharyngeal carcinoma cell lines[J]. Cancer letters 2007,257:252-262.
    [32]El-Guendy N, RangnekarVM. Apoptosis by Par-4 in cancer and neurodegenerative diseases[J]. Exp Cell Res 2003,283:51-66.
    [33]秦天洁,马巍,刘陕西,杨广笑Par-4诱导细胞凋亡发生机制的研究进展.现代肿瘤医学.2008,16(12):2216-22]9.
    [34]Jeng-Woei Lee, Kuei-Fang Lee, Hsue-Yin Hsu, et al. Protein expression and intracellular localization of prostate apoptosis response-4 (Par-4) are associated with apoptosis induction in nasopharyngeal carcinoma cell lines[J]. Cancer letters 2007,257:252-262.
    [35]El-Guendy N, RangnekarVM. Apoptosis by Par-4 in cancer and neurodegenerative diseases[J]. Exp Cell Res 2003,283:51-66.
    [1]Campisi,J. (2001) Cellular senescence as a tumor-suppressor mechanism.Trends Cell Biol.,11, S27-31.
    [2]Hanahan,D. and Weinberg,R.A. (2000) The hallmarks of cancer. Cell,100,57-70.
    [3]Campisi,J., Kim,S.H., Lim,C.S. and Rubio,M. (2001) Cellular senescence, cancer and aging: the telomere connection. Exp. Gerontol.,36,1619-1637.
    [4]Meyerson,M. (2000) Role of telomerase in normal and cancer cells.J. Clin. Oncol.,18, 2626-2634.
    [5]Granger,M.P., Wright,W.E. and Shay,J.W. (2002) Telomerase in cancer and aging. Crit. Rev. Oncol. Hematol.,41,29-40.31
    [6]Joseph Tung-Chieh Chang Yin-Ling Chen. Differential regulation of telomerase activity by six telomerase subunits. Eur. J. Biochem.269,3442-3450 (2002)
    [7]Kilian,A.,Bowtell,D.D.,Abud,H.E.,Hime,G.R.,Venter,D.J., Keese,P.K.,Duncan,E.L., Reddel,R.R. and Jefferson,R.A. (1997) Isolation of a candidate human telomerase catalytic subunit gene, which revealscomplex splicing patterns in different cell types. Hum. Mol. Genet.,6,2011±2019.
    [8]Takakura,M., Kyo,S., Kanaya,T., Hirano,H., Takeda,J., Yutsudo,M. and Inoue,M. (1999) Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells.Cancer Res.,59,551-557.
    [9]Cong,Y.S., Wen,J. and Bacchetti,S. (1999) The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum. Mol. Genet.,8,137±142.
    [10]Grandori,C., Cowley,S.M., James,L.P. and Eisenman,R.N. (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior.Annu. Rev. Cell. Dev. Biol.,16,653-699.
    [11]Kyo,S., Takakura,M., Taira,T., Kanaya,T., Itoh,H., Yutsudo,M., Ariga,H. and Inoue,M. (2000) Spl cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res.,28,669-677.
    [12]Wu,K.J., Grandori,C., Amacker,M., Simon-Vermot,N., Polack,A., Lingner,J. and Dalla-Favera,R. (1999) Direct activation of TERT transcription by c-MYC. Nature Genet.,21, 220-224.
    [13]Yasukazu Sagawa, Hirotaka Nishi, Keiichi Isaka*,The correlation of TERT expression with c-myc pression in cervical cancer. Cancer Letters 168 (2001) 45-50
    [14]Yago,M., Qhki,R., Hatakeyama,S., Fujita,T. and Ishikawa,F. (2002) Variant forms of upstream stimulatory factors (USFs) control the promoter activity of hTERT, the human gene encoding the catalytic subunit of telomerase. FEBS Lett.,520,40-46.
    [15]G unes,C., Lichtsteiner,S., Vasserot,A.P. and Englert,C. (2000) Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Madl. Cancer Res.,60, 2116-2121.
    [16]Xu,D., Popov,N., Hou,M., Wang,Q., Bjorkholm,M., Gruber,A.,Menkel,A.R. and Henriksson,M. (2001) Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc. Natl Acad. Sci. USA,98,3826-3831.
    [17]Oh,S., Song,Y., Yim,J. and Kim,T.K. (1999) The Wilms' tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene. J. Biol. Chem.,274, 37473-37478.
    [18]Mokbel,-K; Ghilchik,-M; Williams,-G; Akbar,-N; Parris,-C; Newbold,-R, The association between telomerase activity and hormone receptor status and p53 expression in breast cancer. Int-J-Surg-Investig.2000; 1(6):509-16
    [19]Ikeguchi,-M; Makino,-M; Kaibara,-N Telomerase activity and p53 gene mutation in familial polyposis coli. Anticancer-Res.2000 Sep-Oct; 20(5C):3833-7
    [20]Xu,D., Wang,Q., Gruber,A., Bjorkholm,M., Chen,Z.G, Zaid,A., Selivanova,G., Peterson,C., Wiman,K.G. and Pisa,P. (2000) Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene,19,5123-5133.
    [21]Kanaya,T., Kyo,S., Hamada,K., Takakura,M., Kitagawa,Y., Harada,H. and Inoue,M. (2000) Adenoviral expression of p53 represses telomerase activity through down-regulation of human telomerase reverse transcriptase transcription. Clin. Cancer Res.,6,1239-1247.
    [22]Zhou,C. and Liu,J. (2003) Inhibition of human telomerase reverse transcriptase gene expression by BRCA1 in human ovarian cancer cells. Biochem. Biophys. Res. Commun.,303,130-136.
    [23]Esteller,M. (2002) CpG island hypermethylation and tumor suppressor genes:a booming present, a brighter future. Oncogene,21,5427-5440.
    [24]Devereux,T.R., Horikawa,I., Anna,C.H., Annab,L.A., Afshari,C.A. and Barrett,J.C. (1999) DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res.,59,6087-6090.
    [25]Dessain,S.K., Yu,H., Reddel,R.R., Beijersbergen,R.L. and Weinberg,R.A. (2000) Methylation of the human telomerase gene CpG island. Cancer Res.,60,537-541.
    [26]Robertson,K,D. (2002) DNA methylation and chromatinDunraveling the tangled web. Oncogene,21,5361-5379.
    [27]Dobosy,J.R. and Selker,E.U. (2001) Emerging connections between DNA methylation and histone acetylation. Cell. Mol. Life Sci.,58,721-727.
    [28]Papadopoulou A, Trangas T, Teixeira MR, Heim S, Dimitriadis E, Tsarouha H, Andersen JA. Evangelou E, Ioannidis P. Telomerase activity and genetic alterations in primary breast carcinomas. Neoplasia 2003;5:170-8
    [29]Cayuela ML, Flores JM, Blasco MA. The telomerase RNA component Terc is required for the tumour-promoting effects of Tert overexpression. EMBO J 2005;6:268-74
    [30]Xun Jin, Samuel Beck, Young-Woo Sohn.Human telomerase catalytic subunit (hTERT) suppresses p53-mediated anti-apoptotic response via induction of basic fibroblast growth factor, EXPERIMENTAL and MOLECULAR MEDICINE, Vol.42, No.8,574-582, August 2010.
    [1]Mark A. Behlke. Chemical Modification of siRNA for in Vivo use. OligoNucleotides, 2008,(18):305-320
    [2]Lars Aagaard and John J. Rossi. RNAi:principle, perspective, challenge. Adv Drug Deliv Rev. 2007 March 30; 59(2-3):75-86
    [3]Xiaoyu Lin, Xiaoan Ruan, et al. siRNA-mediated off-target gene silencing triggered by a 7nt complementation. Nucleic Acids Research,2005, Vol.33, No.14 4527-41535
    [4]Cordula Tschuch, Angela Schulz, et al. Off-target effects of siRNA specific for GFP. BMC Molecular Biology 2008,9:60
    [5]Morrissey D V, Lockridge J A, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol,2005,23 (8):1002-1007
    [6]Hornung V, Guenthner M, Bourquin C, et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med,2005,11 (3):263-270
    [7]Marques J, Williams B. Activation of the mammalian immune system by siRNAs. Nat Biotechnol,2005,23 (11):1399-1405
    [8]Bryan R Cullen. Enhancing and confirming the specificity of RNAi experiments. NATURE METHODS,2006,3 (9):677-679
    [9]Yuriy Fedorov, Emliy M. Anderson, et al. Off-target effects by siRNA can induce toxic. RNA (2006),12:1.188-1196
    [10]Jonathan K. Watts, Glen F. Deleavey and Masad J. Damha. Chemically modified siRNA:tools and application. Drug Discovery Today, October 2008,13 (19/20):844-849
    [11]Amanda Birmingham, Emily M. Anderson, et al.3'UTR seed matches, but not overall identity, are associated with RNAi off targets. NATURE METHODS, March 2006,3(3):199-203
    [12]Aimee L. Jackson, Julja Burchard, et al. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA (2006),12:1179-1187
    [13]Emily M. Anderson, Amanda Birmingham, et al. Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA (2008),14:853-861
    [14]Cecilia Dahlgrenl, Hong-Yan Zhang, et al. Analysis of siRNA Specificity on targets with double nucleotide mismatches. Nucleic Acids Research,2008,36(9):4752-4755
    [15]John J. Rossi. RNAi and the P-body connection. NATURE CELL BIOLOGY, JULY 2005,7 (7):643-644
    [16]Jean-Francois Rual, Niels Klitgord and Guillaume Achaz. Novel insights into RNAi off-target effects with C.elegants. BMC Genomics 2007,8:106
    [17]Lourdes M. Aleman, John Doench and Philip A. Sharp. Comparison of siRNA-induced off-target RNA and protein effects. RNA (2007),13:385-395
    [18]Yuki Naito, Tomoyuki Yamada, et al. dscheck:highly sensitive off-target search software for double stranded RNA-mediated RNAi. Nucleic Acids Research,2005, Vol.33
    [19]Nicola Smart, Peter James Scambler and Paul Richard Riley. A rapid and sensitive assay for quantification of siRNA efficiency and Specificity. Biol. Proced, Online 2005; 7(1):1-7
    [20]Daniel De Paula, L. B. Bentley. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA (2007),13:431-456
    [21]Aimee L. Jackson, Julja Burchard, et al. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. RNA (2006),12:1197-1205
    [22]Chemical Modifications Rescue Off-Target Effects of RNAi. ACS CHEMICAL BIOLOGY, 2006,1 (5):274-276
    [23]Ola Snove Jr., Magnar Nedland, et al. Designing effective siRNAs with off-target control. Biochemical and Biophysical Research Communications 325 (2004) 769-773
    [24]Kumiko Ui-Tei, Yuki Naito, et al. Functional dissection of siRNA sequence by systematic DNA substitution. Nucleic Acids Research,2008,36(7):2136-2138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700