冻藏对面筋蛋白分子量、链结构及聚集态影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦面制品的品质主要由面筋蛋白所决定的,本论文以面筋蛋白为研究对象,通过研究不同冻藏的模式(恒温冻藏和冻融冻藏)和时间对面筋蛋白分子量大小与分布、面筋蛋白分子链结构(分形维数、链构象、链尺寸和形貌)、聚集态的结构、热特性及面团的流变与质构性能的影响,分别从分子水平、微观水平和宏观水平深入探讨了冻藏处理对面筋蛋白微观构造和宏观性能变化的机理,建立了冻藏处理后面筋蛋白结构的变化与面团品质之间的关系,为扩大面团的深加工方向建立科学的理论基础。
     主要研究内容如下:
     一、冻藏处理对面筋蛋白分子量及其分布的影响
     采用SAXS、SEC MALLS、SDS PAGE和分光光度法分别研究冻藏模式处理后的面筋蛋白分子量及亚基大小与分布、自由氨基和自由巯基的变化。结果表明,乙酸为溶解面筋蛋白的良溶液,在面筋蛋白的稀乙酸溶液中(8mg/mL),可以忽略乙酸溶剂对面筋蛋白分子链的影响;研究发现冻藏处理后面筋蛋白的平均分子量与重均分子量都发生下降;从SEC紫外图谱上可以看出面筋蛋白洗脱峰的保留时间会随着冻藏时间的增加而延迟,峰面积下降,当洗脱时间为12.0min时出现新的吸收峰,且新吸收峰的峰面积随着冻藏时间增加而增加,面筋蛋白的高分子聚合物发生了解聚;自由氨基含量分析发现,在冻藏过程中面筋蛋白的自由氨基含量没有发生变化;SDS PAGE电泳研究发现,冻藏对面筋蛋白的亚组分麦谷蛋白和醇溶蛋白的亚基分子量的大小和分布没有影响;但是,自由巯基的含量会随着冻藏时间的增加而增加。冻藏过程中面筋蛋白二硫键断裂是导致高聚物发生解聚,分子量的大小与分布发生下降的主要原因。
     二、冻藏处理对面筋蛋白分子链结构(分形维数、链构象、链尺寸和形貌)的影响
     采用SAXS、SEC MALLS和AFM方法分别研究面筋蛋白链结构的变化。研究发现,面筋蛋白的链构形为相互交联的纤维状网络结构;经过冻藏处理后会导致网络状结构的弱化及分形维数的下降;分子链在乙酸溶液呈现一种类似于扁椭圆球体的构象,但是,无法判断冻藏处理对面筋蛋白分子链构象的影响;面筋蛋白的流体力学半径(Rg)大小与分布随着冻藏时间的增加呈现下降的趋势,与分形维数(Dm)的变化呈正相关。分子链的断裂是导致分子尺寸Rg下降的原因之一。
     三、面筋蛋白Mark Houwink Sakurada(MHS)方程的建立及冻藏对分子链构象的影响
     在25°C,建立了未经冻藏处理的面筋蛋白在1%SDS缓冲液中易溶和难溶两部分的MHS方程如下:[η]=1.7459×102M0.6933v=1.7375×102q0.6933=×20.6933MHSMw1.667710Mw(SDS S G)[η]=7.5682×103M0.7372=7.56×30.737230.7372v8210qMHSM=7.2079×10wMw(SDS IS G)它们的特征因子α分别为0.6933和0.7372,易溶部分呈现半柔顺链,难溶部分呈现半刚性链的构象。建立冻藏处理后面筋蛋白的MHS方程,结果发现在恒温冻藏过程中,易溶部分的分子链都呈现半柔顺性,并且,其柔顺性随着冻藏时间的增加而增加;难溶部分的分子链仍呈现半刚性,随着冻藏时间的增加构象没有明显变化。在冻融冻藏过程中,易溶部分分子链的柔顺性增加;难溶部分分子链还呈现半刚性链,随着冻藏时间达到90d时,链构象由半刚性链转变为半柔顺性链。冻藏导致面筋蛋白分子链柔顺性增加,分子链构象的变化也是Rg下降的原因之一。
     四、冻藏处理对面筋蛋白聚集态结构与热特性质的影响
     以湿面筋蛋白、脱水后面筋蛋白和麦谷蛋白为研究对象,冻藏过程中由于水分的迁移使面筋蛋白显微网络结构明显弱化,随着冻藏时间的增加出现了不规则孔洞;湿面筋蛋白的二级结构没有发生明显变化,但将水分除去后发现,随着冻藏时间的增加,面筋蛋白高分子解聚后产生的小分子物质发生聚集导致部分β转角结构转化为β折叠结构;而面筋蛋白和麦谷蛋白的热稳定性下降,其裂解温度的下降趋势与三维网络结构弱化的趋势相一致。
     五、冻藏后面筋蛋白对面团流变与质构性能的影响
     选择中筋粉作为研究对象,根据掺粉实验结果表明,随着添加的面筋蛋白冻藏时间的增加,其面团的流变学与质构特性呈现下降的趋势。添加面筋蛋白分子量的大小和面团的硬度呈正相关。面筋蛋白分子量及分子链结构的变化是冻藏后面团品质变化的重要原因。
With the increasing market for frozen foods, the gluten quality during frozen storage hasattracted attention in food industry. In this dissertation, Wheat gluten was used as modelmaterials. The mechanism of induced by frozen storage was elucidated by exploring theeffects of frozen mode (frozen and freeze thaw cycles) and storage time on molecular weightsize and distribution, molecular chain structure (fractal dimensions, conformation, size andtopography), aggregated structure and thermodynamic behavior of wheat gluten andrheological properties of dough under different frozen mode and storage time on. We will usethose basic data to explore the relationship between the microstructure of gluten with differentsize scale (chain structure and aggregated structure) structure and properties changes duringfrozen storage, and further study quality of the product was developed during the frozenstorage which has great commercial benefits as it will provide a useful practical guideline tomanufacture dough products. The main research and results are as follows:
     1. Effect of frozen mode and storage time on molecular weight size and its distribution ofwheat gluten
     Wheat gluten and its subunits were affects by different frozen mode and storage time onmolecular weight size, distribution, free amino groups content and free sulfhydryl groupscontent analyzed by SAXS, SEC MALLS, SDS PAGE and spectrophotometrically. Theresults indicated that the dilute acetic acid solution (8mg/mL) is a good solution, so avoidingthe influence of the solvent on the characterization of the solute. The mean molecular weightand weight average molecular weight of the gluten decreased with increasing frozen time. Inthe elution pattern of SEC, as the frozen storage time increasing, the retention time of thegluten is negatively delayed and the areas also decreased, compared with that of the controlgluten. There is a new absorption peak in the frozen stored samples, the area of the peakincreased with frozen storage time. It was clearly seen that no remarkable difference andrelative mobilities of band could be observed for wheat gluten subunits with or without frozenstorage. The free amino groups content changed few and the free sulfhydryl group content ofthe gluten increased with the frozen storage time, indicating that the depolymerization of thegluten during frozen storage was attributed to the breakage of disulfide bonds.
     2. Effect of frozen mode and storage time on molecular chain structure (fractaldimensions, conformation, size and topography)
     The effects of frozen mode and storage time on gluten molecular chain structureexplored by SAXS, SEC MALLS and AFM. It was found that the gluten chain forming afibril like network. But the network was weakened and the fractal dimensions decreasedduring the frozen storage. The radius of gyration (Rg) was positively related to fractaldimensions of the gluten, indicating that the breakage of the gluten chain is one reason of thedecrease of Rg. The results also showed that the gluten dissolved in the50mM acetic acidappeared to be similar to quasi spherical of the chain conformation, but the change of thestructure did not show an obvious relationship with the storage time.
     3. Estimation of Mark-Houwink-Sakurada (MHS) equation parameters for gluten andeffect of the frozen mode and storage time on conformation of the chain
     Fractional separation of gluten using the fast protein liquid chromatography (FPLC) anda numerical method for determination of MHS equation were studied. With1%SDS buffer assolvent, MHS equations for SDS soluble gluten (SDS S G) and SDS insoluble gluten(SDS IS G) proteins were established as:[η]=1.7459×102M0.6933=×2qM0.6933=×2M0.6933v1.737510MHSw1.667710w(SDS S G)[η]=7.5682×103M0.737230.737230.7372v=7.5682×10qMHSMw=7.2079×10Mw(SDS IS G)The value of α (0.6933and0.7372) suggested that in this solvent the gluten behaved like asemiflexible and a semistiff chain for the SDS S G and SDS IS G respectively. Establish theMHS equation for the frozen stored gluten. The results indicated that the conformation of theSDS S G was a semiflexible chain and more flexibility with the storage time, but theconformation of the SDS IS G changed few during the constant temperature frozen storage.In the freeze thaw cycles, the conformation of the SDS S G and the SDS IS G became moreflexibility with the storage time. The decrease of the Rgalso attribute to the change of thechain conformation.
     4. Effect of frozen mode and storage time on aggregated structure and thermodynamicbehavior
     The hydration gluten, dry gluten and glutenin using the SEM, FIRT and TGA, and theeffects of frozen mode and storage time on aggregated structure and thermodynamic behaviorexplored. Microstructure of the frozen stored gluten had great change based on SEMobservation. In secondary structure, the hydration gluten had no change, but modification ledto increase in β sheet for the dry gluten. The decomposition temperature decreased during thefrozen storage led to the thermostability deteriorated, which was positively related to theweakened tendency of gluten network.
     5. Effect of frozen mode and storage time on rheological properties of dough
     The gluten and AP flour using a Micro dough farinograph and TPA, and the effects offrozen mode and storage time on rheological and textural properties explored. The resultsindicated that the rheological and textural properties of the dough deteriorated with add thefrozen stored gluten. The hardness of the dough had positively related to the molecular weightof the additive of the gluten. This suggested that the molecular weight and the molecularchain were the decisive influencing the quality of the dough for frozen storage.
引文
[1] Leon A, Duran E, de Barber CB. A new approach to study starch changes occurring in thedough baking process and during bread storage[J]. Zeitschrift fur Lebensmitteluntersuchungund Forschung A.1997,204:316320.
    [2] Esselink EFJ, van Aalst H, Maliepaard M, et al. Long term storage effect in frozen doughby spectroscopy and microscopy[J]. Cereal Chemistry.2003,80:396403.
    [3] Bailey C. A translation of Beccari's lecture 'Concerning Grain'(1728)[J]. Cereal Chemistry.1941,18:555561.
    [4] Shewry PR, Tatham AS, Forde J, et al. The classification and nomenclature of wheatgluten proteins: a reassessment[J]. Journal of Cereal Science.1986,4:97106.
    [5] Osborne TB. The proteins of the wheat kernel[M]: Carnegie institution of Washington;1907.
    [6] Wrigley C. Giant proteins with flour power[J]. Nature.1996,381:738739.
    [7] Wahlund KG, Gustavsson M, MacRitchie F, et al. Size characterisation of wheat proteins,particularly glutenin, by asymmetrical flow field flow fractionation[J]. Journal of CerealScience.1996,23:113119.
    [8] Stevenson S, Preston K. Flow field flow fractionation of wheat proteins[J]. Journal ofCereal Science.1996,23:121131.
    [9] Pomeranz Y. Advances in Cereal Science and Technology[J]. Journal of PediatricGastroenterology and Nutrition.1986,5:1001.
    [10] Gianibelli M, Larroque O, MacRitchie F, et al. Biochemical, genetic, and molecularcharacterization of wheat glutenin and its component subunits[J]. Cereal Chemistry.2001,78:635646.
    [11] Grosch W, Wieser H. Redox reactions in wheat dough as affected by ascorbic acid[J].Journal of Cereal Science.1999,29:116.
    [12] Wieser H. Chemistry of gluten proteins[J]. Food Microbiology.2007,24:115119.
    [13] Arfvidsson C, Wahlund K, Eliasson A. Direct molecular weight determination in theevaluation of dissolution methods for unreduced glutenin[J]. Journal of Cereal Science.2004,39:18.
    [14] Bietz J, Wall J. Wheat gluten subunits: molecular weights determined by sodium dodecylsulfate polyacrylamide gel electrophoresis[J]. Cereal Chemistry.1972:416430.
    [15] Payne P, Law C, Mudd E. Control by homoeologous group1chromosomes of thehigh molecular weight subunits of glutenin, a major protein of wheat endosperm[J].Theoretical and Applied Genetics.1980,58:113120.
    [16] Payne P, Lawrence G. Catalogue of alleles for the complex gene loci, Glu A1, Glu B1,and Glu D1which code for high molecular weight subunits of glutenin in hexaploid wheat[J].Cereal Research Communications.1983,11:2935.
    [17] Kolster P, Krechting C, Van Gelder W. Quantification of individual high molecularweight subunits of wheat glutenin using SDS PAGE and scanning densitometry[J]. Journalof Cereal Science.1992,15:4961.
    [18] Gupta R, Shepherd K. Two step one dimensional SDS PAGE analysis of LMW subunitsof glutelin[J]. Theoretical and Applied Genetics.1990,80:6574.
    [19]王金水.酶解膜超滤改性小麦面筋蛋白功能特性研究[D].广州:华南理工大学,2007.
    [20] Shewry P, Halford N, Tatham A. High molecular weight subunits of wheat glutenin[J].Journal of Cereal Science.1992,15:105120.
    [21] Sissons M, Bekes F, Skerritt J. Isolation and functionality testing of low molecularweight glutenin subunits[J]. Cereal Chemistry.1998,75:3036.
    [22] Shewry P, Tatham A. Disulphide bonds in wheat gluten proteins[J]. Journal of CerealScience.1997,25:207227.
    [23] Brennan C. Gliadin and Glutenin: the unique balance of wheat quality[J]. InternationalJournal of Food Science&Technology.2009,44:18651866.
    [24] Belton P, Colquhoun I, Grant A, et al. FTIR and NMR studies on the hydration of ahigh Mr subunit of glutenin[J]. International journal of biological macromolecules.1995,17:7480.
    [25] Humphris A, McMaster T, Miles M, et al. Atomic force microscopy (AFM) study ofinteractions of HMW subunits of wheat glutenin[J]. Cereal Chemistry.2000,77:107110.
    [26] Kasarda DD, Autran JC, Lew EJL, et al. N terminal amino acid sequences of
    [omega] gliadins and [omega] secalins:: Implications for the evolution of prolamin genes[J].Biochimica et Biophysica Acta (BBA) Protein Structure and Molecular Enzymology.1983,747:138150.
    [27] Payne PI, Holt LM, Lawrence GJ, et al. The genetics of gliadin and glutenin, the majorstorage proteins of the wheat endosperm[J]. Plant Foods for Human Nutrition (FormerlyQualitas Plantarum).1982,31:229241.
    [28] Payne PI. Genetics of wheat storage proteins and the effect of allelic variation onbread making quality[J]. Annual Review of Plant Physiology.1987,38:141153.
    [29] Singh N, Shepherd K. The structure and genetic control of a new class ofdisulphide linked proteins in wheat endosperm[J]. TAG Theoretical and Applied Genetics.1985,71:7992.
    [30] Pogna N, Autran JC, Mellini F, et al. Chromosome1B encoded gliadins and gluteninsubunits in durum wheat: genetics and relationship to gluten strength[J]. Journal of CerealScience.1990,11:1534.
    [31] Fido R, Gras P, Tatham A. Effects of [alpha],[beta],[gamma] and [omega] gliadins onthe dough mixing properties of wheat flour[J]. Journal of Cereal Science.1997,26:271277.
    [32] Wrigley C, Bushuk W, Gupta R. Nomenclature: establishing a common glutenlanguage[J]. Gluten.1996,96:403407.
    [33] Kline L, Sugihara T. Factors affecting the stability of frozen bread doughs. I[J]. Preparedby straight dough method Baker’s Dig.1968,42:4446.
    [34] Hsu K, Hoseney R, Seib P. Frozen dough. I. Factors affecting stability of yeasteddoughs[J]. Cereal Chemistry.1979,56:419424.
    [35] Autio K, Sinda E. Frozen doughs: Rheological changes and yeast viability[J]. CerealChemistry.1992,69:409413.
    [36] Varriano Marston E, Hsu K, Mahdi J. Rheological and structural changes in frozendough[J]. Baker’s Dig.1980,54:3234.
    [37] Wolt M, D'Appolonia B. Factors involved in the stability of frozen dough. II. The effectsof yeast type, flour type, and dough additives on frozen dough stability[J]. Cereal Chemistry.1984,61:213221.
    [38] Berglund P, Shelton D, Freeman T. Frozen bread dough ultrastructure as affected byduration of frozen storage and freeze thaw cycles[J]. Cereal Chemistry.1991,68:105107.
    [39] Gélinas P, Deaudelin I, Grenier M. Frozen dough: effects of dough shape, water content,and sheeting molding conditions[J]. Cereal foods world.1995,40:124126.
    [40] Lu W, Grant L. Effects of prolonged storage at freezing temperatures on starch andbaking quality of frozen doughs[J]. Cereal Chemistry.1999,76:656662.
    [41] Bot A. Differential scanning calorimetric study on the effects of frozen storage on glutenand dough[J]. Cereal Chemistry.2003,80:366370.
    [42] Zounis S, Quail K, Wootton M, et al. Studying frozen dough structure usinglow temperature scanning electron microscopy[J]. Journal of Cereal Science.2002,35:135147.
    [43] Kennedy C. Freezing processed foods[J]. Managing frozen foods.2000:137–158.
    [44] Ribotta P, León A, Anon M. Effect of freezing and frozen storage of doughs on breadquality[J]. Journal of agricultural and food chemistry.2001,49:913918.
    [45] Popineau Y, Pineau F. Changes of conformation and surface hydrophobicity ofgliadins[J]. Lebensmittel Wissenschaft and Technologie.1988,21:113117.
    [46] Skerritt JH, Devery J, Hill AS. Gluten intolerance: chemistry celiac toxicology, anddetection of prolamins in foods[J]. Cereal foods world.1990,35:641644.
    [47] Hino A, Takano H, Tanaka Y. New freeze tolerant yeast for frozen dough preparations[J].Cereal Chemistry.1987,64:265275.
    [48] Ribotta PD, Leon AE, Anon MC. Effect of freezing and frozen storage on thegelatinization and retrogradation of amylopectin in dough baked in a differential scanningcalorimeter[J]. Food Research International.2003,36:357363.
    [49] Lorenz K, Kulp K. Freezing of doughs for the production of breads and rolls in theUnited States[J]. Frozen and refrigerated doughs and batters American Association of CerealChemists, St Paul, MN.1995:135153.
    [50] Stauffer C. Frozen dough production[M]: Chapman&Hall. London, UK;1993.
    [51] Autio K, Sinda E. Frozen doughs: Rheological changes and yeast viability[J]. CerealChemistry.1992,69:409413.
    [52] El Hady E, El Samahy S, Seibel W, et al. Changes in gas production and retention innon prefermented frozen wheat doughs[J]. Cereal Chemistry.1996,73:472477.
    [53] Seguchi M, Nikaidoo S, Morimoto N. Centrifuged liquid and breadmaking properties offrozen and thawed bread dough[J]. Cereal Chemistry.2003,80:264268.
    [54] Gys W, Courtin CM, Delcour JA. Refrigerated dough syruping in relation to thearabinoxylan population[J]. Journal of agricultural and food chemistry.2003,51:41194125.
    [55] Gys W, Gebruers K, Sorensen J, et al. Debranning of wheat prior to milling reducesxylanase but not xylanase inhibitor activities in wholemeal and flour[J]. Journal of CerealScience.2004,39:363369.
    [56] Martin M, Zeleznak K, Hoseney R. A mechanism of bread firming. I. Role of starchswelling[J]. Cereal chemistry.1991,68:498.
    [57] Davidou S, Le Meste M, Debever E, et al. A contribution to the study of staling of whitebread: Effect of water and hydrocolloid[J]. Food Hydrocolloids.1996,10:375383.
    [58] Slade L, Levine H, Finley J. Protein water interactions: Water as a plasticizer of glutenand other protein polymers[J]. Protein quality and the effects of processing.1989:9124.
    [59] Rasanen J, Blanshard J, Mitchell J, et al. Properties of frozen wheat doughs at subzerotemperatures[J]. Journal of Cereal Science.1998,28:114.
    [60] Selomulyo VO, Zhou W. Frozen bread dough: Effects of freezing storage and doughimprovers[J]. Journal of Cereal Science.2007,45:117.
    [61] Orth R, Bushuk W. A comparative study of the proteins of wheats of diverse bakingqualities[M]1972.
    [62] Chakraborty K, Khan K. Biochemical and breadmaking properties of wheat proteincomponents. II. Reconstitution baking studies of protein fractions from various isolationprocedures[J]. Cereal Chemistry.1988,65:340344.
    [63] Singh N, Donovan G, Batey I, et al. Use of sonication and size exclusionhigh performance liquid chromatography in the study of wheat flour proteins. I. Dissolutionof total proteins in the absence of reducing agents[J]. Cereal Chemistry.1990,67:150161.
    [64] Bean S, Lyne R, Tilley K, et al. A Rapid Method for Quantitation of Insoluble PolymericProteins in Flour1[J]. Cereal Chemistry.1998,75:374379.
    [65] Sapirstein H, Fu B. Intercultivar variation in the quantity of monomeric proteins, solubleand insoluble glutenin, and residue protein in wheat flour and relationships to breadmakingquality[J]. Cereal Chemistry.1998,75:500507.
    [66] Southan M, MacRitchie F. Molecular weight distribution of wheat proteins[J]. CerealChemistry.1999,76:827836.
    [67] Collar C, Andreu P, Martinez J, et al. Optimization of hydrocolloid addition to improvewheat bread dough functionality: a response surface methodology study[J]. FoodHydrocolloids.1999,13:467475.
    [68] Rosell C, Rojas J, Benedito de Barber C. Influence of hydrocolloids on dough rheologyand bread quality[J]. Food Hydrocolloids.2001,15:7581.
    [69] Mandala I. Physical properties of fresh and frozen stored, microwave reheated breads,containing hydrocolloids[J]. Journal of Food Engineering.2005,66:291300.
    [70] Ribotta P, Perez G, Leon A, et al. Effect of emulsifier and guar gum on micro structural,rheological and baking performance of frozen bread dough[J]. Food Hydrocolloids.2004,18:305313.
    [71] Barcenas ME, Benedito C, Rosell CM. Use of hydrocolloids as bread improvers ininterrupted baking process with frozen storage[J]. Food Hydrocolloids.2004,18:769774.
    [72] Collar C, Martinez J, Rosell C. Lipid binding of fresh and stored formulated wheatbreads. Relationships with dough and bread technological performance[J]. Food science andtechnology international.2001,7:501510.
    [73] Dziezak JD. A focus on gums[J]. Food Technology.1991,45:116132.
    [74] Sharadanant R, Khan K. Effect of hydrophilic gums on frozen dough. I. Dough quality[J].Cereal Chemistry.2003,80:764772.
    [75] Sharadanant R, Khan K. Effect of hydrophilic gums on the quality of frozen dough: II.Bread characteristics[J]. Cereal Chemistry.2003,80:773780.
    [76] Asghar A, Anjum FM, Tariq MW, et al. Effect of carboxymethyl cellulose and gumarabic on the stability of frozen dough for bakery products[J]. Turkish Journal Biology.2005,29:237241.
    [77] Kontogiorgos V, Goff H. Calorimetric and microstructural investigation of frozenhydrated gluten[J]. Food Biophysics.2006,1:202215.
    [1] Selomulyo VO, Zhou W. Frozen bread dough: Effects of freezing storage and doughimprovers[J]. Journal of Cereal Science.2007,45:117.
    [2] Arfvidsson C, Wahlund K, Eliasson A. Direct molecular weight determination in theevaluation of dissolution methods for unreduced glutenin[J]. Journal of Cereal Science.2004,39:18.
    [3] Wrigley C. Giant proteins with flour power[J]. Nature.1996,381:738739.
    [4] Orth R, Bushuk W. A comparative study of the proteins of wheats of diverse bakingqualities[M]1972.
    [5] Chakraborty K, Khan K. Biochemical and breadmaking properties of wheat proteincomponents. II. Reconstitution baking studies of protein fractions from various isolationprocedures[J]. Cereal Chemistry.1988,65:340344.
    [6] Singh N, Donovan G, Batey I, et al. Use of sonication and size exclusionhigh performance liquid chromatography in the study of wheat flour proteins. I. Dissolutionof total proteins in the absence of reducing agents[J]. Cereal Chemistry.1990,67:150161.
    [7] Bean S, Lyne R, Tilley K, et al. A Rapid Method for Quantitation of Insoluble PolymericProteins in Flour1[J]. Cereal Chemistry.1998,75:374379.
    [8] Sapirstein H, Fu B. Intercultivar variation in the quantity of monomeric proteins, solubleand insoluble glutenin, and residue protein in wheat flour and relationships to breadmakingquality[J]. Cereal Chemistry.1998,75:500507.
    [9] Southan M, MacRitchie F. Molecular weight distribution of wheat proteins[J]. CerealChemistry.1999,76:827836.
    [10] Kennedy C. Freezing processed foods[J]. Managing frozen foods.2000:137–158.
    [11] Ribotta P, León A, Anon M. Effect of freezing and frozen storage of doughs on breadquality[J]. Journal of agricultural and food chemistry.2001,49:913918.
    [12] Oliveira CLP, Behrens MA, Pedersen JS, et al. A SAXS study of glucagon fibrillation[J].Journal of Molecular Biology.2009,387:147161.
    [13] Watanabe Y, Inoko Y. Size exclusion chromatography combined with small angle X rayscattering optics[J]. Journal of Chromatography A.2009,1216:74617465.
    [14] Bean S, Lookhart G. Factors Influencing the Characterization of Gluten Proteins bySize Exclusion Chromatography and Multiangle Laser Light Scattering (SEC MALLS)[J].Cereal Chemistry.2001,78:608618.
    [15] Mendichi R, Fisichella S, Savarino A. Molecular weight, size distribution andconformation of Glutenin from different wheat cultivars by SEC MALLS[J]. Journal ofCereal Science.2008,48:486493.
    [16] Carceller J, Aussenac T. Size characterisation of glutenin polymers byHPSEC MALLS[J]. Journal of Cereal Science.2001,33:131142.
    [17] Kontogiorgos V, Goff H. Calorimetric and microstructural investigation of frozenhydrated gluten[J]. Food Biophysics.2006,1:202215.
    [18] Wyatt PJ. Light scattering and the absolute characterization of macromolecules[J].Analytica Chimica Acta.1993,272:140.
    [19] Zhu H, Ownby DW, Riggs CK, et al. Assembly of the gigantic hemoglobin of theearthworm Lumbricus terrestris[J]. Journal of Biological Chemistry.1996,271:3000730021.
    [20] Astafieva IV, Eberlein GA, John Wang Y. Absolute on line molecular mass analysis ofbasic fibroblast growth factor and its multimers by reversed phase liquid chromatographywith multi angle laser light scattering detection[J]. Journal of Chromatography A.1996,740:215229.
    [21] Gujral HS, Rosell CM. Functionality of rice flour modified with a microbialtransglutaminase[J]. Journal of Cereal Science.2004,39:225230.
    [22] Nielsen P, Petersen D, Dambmann C. Improved method for determining food proteindegree of hydrolysis[J]. Journal of Food Science.2001,66:642646.
    [23] Laemmli UK. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. Nature.1970,227:680685.
    [24] Payne P, Corfield K, Blackman J. Identification of a high molecular weight subunit ofglutenin whose presence correlates with bread making quality in wheats of related pedigree[J].Theoretical and Applied Genetics.1979,55:153159.
    [25] Veraverbeke W, Larroque O, Békés F, et al. In vitro polymerization of wheat gluteninsubunits with inorganic oxidizing agents. I. Comparison of single step and stepwiseoxidations of high molecular weight glutenin subunits[J]. Cereal Chemistry.2000,77:582588.
    [26] Steel RGD, Torrie JH. Principles and procedures of statistics: a biometrical approach[M]:McGraw Hill New York;1980.
    [27] Day L, Augustin M, Batey I, et al. Wheat gluten uses and industry needs[J]. Trends inFood Science&Technology.2006,17:8290.
    [28] Jin KS, Kim DY, Rho Y, et al. Solution structures of RseA and its complex with RseB[J].Journal of synchrotron radiation.2008,15:219222.
    [29] Hirai M, Arai S, Takizawa T, et al. Dynamics and phase behavior of asupermacromolecular suspension under a magnetic field studied by time resolved x rayscattering[J]. Physical Review B.1997,55:3490.
    [30] Hirai M, Niimura N, Zama M, et al. Interparticle interactions and structural changes ofnucleosome core particles in low salt solution[J]. Biochemistry.1988,27:79247931.
    [31] Hirai M, Arai S, Iwase H, et al. Small angle X ray scattering and calorimetric studies ofthermal conformational change of lysozyme depending on pH[J]. The Journal of PhysicalChemistry B.1998,102:13081313.
    [32] Kataoka M, Head JF, Seaton BA, et al. Melittin binding causes a largecalcium dependent conformational change in calmodulin[J]. Proceedings of the NationalAcademy of Sciences of the United States of America.1989,86:6944.
    [33] Zounis S, Quail K, Wootton M, et al. Studying frozen dough structure usinglow temperature scanning electron microscopy[J]. Journal of Cereal Science.2002,35:135147.
    [34] Lookhart G, Bean S. Cereal proteins: Composition of their major fractions and methodsfor identification[J]. Handbook of cereal science and technology.1991:361381.
    [35] Bleukx W, Roels S, Delcour J. On the presence and activities of proteolytic enzymes invital wheat gluten[J]. Journal of Cereal Science.1997,26:183193.
    [36] Wadhawan CK. Fundamental studies on vitality of gluten for breadmaking[D]:University of Manitoba;1988.
    [37] Redman D. Softening of gluten by wheat proteases[J]. Journal of the Science of Foodand Agriculture.1971,22:7578.
    [38] Kawamura Y, Yonezawa D. Wheat flour proteases and their action on gluten proteins indilute acetic acid[J]. Agricultural and biological chemistry.1982,46:767.
    [39] Shewry PR, Tatham AS, Barro F, et al. Biotechnology of breadmaking: unraveling andmanipulating the multi protein gluten complex[J]. Bio/technology.1995,13:11851190.
    [40]刘国琴.冷冻和冻藏对面筋蛋白性质的影响及其脱水机理研究[D].广州:华南理工大学,2006.
    [41] Weegels P, Van de Pijpekamp A, Graveland A, et al. Depolymerisation andRe polymerisation of Wheat Glutenin During Dough Processing. I. Relationships betweenGlutenin Macropolymer Content and Quality Parameters*1[J]. Journal of Cereal Science.1996,23:103111.
    [42] Weegels P, Hamer R, Schofield J. Depolymerisation and re polymerisation of wheatglutenin during dough processing. II. Changes in composition[J]. Journal of Cereal Science.1997,25:155163.
    [43] Lindsay MP, Skerritt JH. The glutenin macropolymer of wheat flour doughs::structure function perspectives[J]. Trends in Food Science&Technology.1999,10:247253.
    [44] Singh H, MacRitchie F. Changes in proteins induced by heating gluten dispersions athigh temperature[J]. Journal of Cereal Science.2004,39:297301.
    [45] Singh H. A study of changes in wheat protein during bread baking using SE HPLC[J].Food Chemistry.2005,90:247250.
    [46] Shewry P, Tatham A. Disulphide bonds in wheat gluten proteins[J]. Journal of CerealScience.1997,25:207227.
    [47] Kaufman S, Hoseney R, Fennema O. Dough rheology A review of structural models andthe role of disulfide interchange reactions[J]. Cereal foods world.1986,31:820824.
    [1] Burchard W. Solution properties of branched macromolecules[J]. Advance in PolymerScience.1999,143:113194.
    [2]何曼君,陈维孝,董西侠.高分子物理(修订版)[M].上海:复旦大学出版社.1998.
    [3] Gao S, Zhang L. Molecular weight effects on properties of polyurethane/nitrokonjacglucomannan semiinterpenetrating polymer networks[J]. Macromolecules.2001,34:22022207.
    [4] Lu Y, Zhang L, Zhang X, et al. Effects of secondary structure on miscibility and propertiesof semi IPN from polyurethane and benzyl konjac glucomannan[J]. Polymer.2003,44:66896696.
    [5] Zhang M, Zhang L, Chi Keung Cheung P. Molecular mass and chain conformation ofcarboxymethylated derivatives of β glucan from sclerotia of Pleurotus tuber regium[J].Biopolymers.2003,68:150159.
    [6] Thomson NH, Miles MJ, Popineau Y, et al. Small angle X ray scattering of wheatseed storage proteins:[alpha],[gamma] and [omega] gliadins and the high molecularweight (HMW) subunits of glutenin[J]. Biochimica et Biophysica Acta (BBA) ProteinStructure and Molecular Enzymology.1999,1430:359366.
    [7] Egelhaaf SU, Swieten EV, Bosma T, et al. Size and Shape of the Repetitive Domain ofHigh Molecular Weight Wheat Gluten Proteins. I. Small Angle Neutron Scattering[J].Biopolymers.2003,69:311324.
    [8] Mendichi R, Fisichella S, Savarino A. Molecular weight, size distribution andconformation of Glutenin from different wheat cultivars by SEC MALLS[J]. Journal ofCereal Science.2008,48:486493.
    [9] Carceller J, Aussenac T. Size characterisation of glutenin polymers by HPSEC MALLS[J].Journal of Cereal Science.2001,33:131142.
    [10] Humphris A, McMaster T, Miles M, et al. Atomic force microscopy (AFM) study ofinteractions of HMW subunits of wheat glutenin[J]. Cereal Chemistry.2000,77:107110.
    [11] McIntire T, Lew E, Adalsteins A, et al. Atomic force microscopy of a hybridhigh molecular weight glutenin subunit from a transgenic hexaploid wheat[J]. Biopolymers.2005,78:5361.
    [12] Schaefer D. Polymers, fractals, and ceramic materials[J]. Science1989,243:10231027.
    [13] Mandelbrot BB, Passoja DE, Paullay AJ. Fractal character of fracture surfaces ofmetals[J]. Nature.1984,308:721722.
    [14] Avnir D. The fractal approach to heterogeneous chemistry: surfaces, colloids,polymers[M]: John Wiley&Sons;1989.
    [15] Schmidt PW. Small angle scattering studies of disordered, porous and fractal systems[J].Journal of Applied Crystallography.1991,24:414435.
    [16] Neves S, Polo Fonseca C. Determination of fractal dimension of polyaniline compositesby SAXS and electrochemical techniques[J]. Electrochemistry communications.2001,3:3643.
    [17] Schaefer DW, Keefer KD. Structure of random porous materials: silica aerogel[J].Physical review letters.1986,56:21992202.
    [18] Miles MJ, Carr HJ, McMaster TC, et al. Scanning tunneling microscopy of a wheat seedstorage protein reveals details of an unusual supersecondary structure[J]. Proceedings of theNational Academy of Sciences of the United States of America.1991,88:6871.
    [19] Watanabe Y, Inoko Y. Further application of size exclusion chromatography combinedwith small angle X ray scattering optics for characterization of biological macromolecules[J].Analytical and Bioanalytical Chemistry.399:14491453.
    [20] Watanabe Y, Inoko Y. Size exclusion chromatography combined with small angle X rayscattering optics[J]. Journal of Chromatography A.2009,1216:74617465.
    [21] Glatter O, Kratky O. Small angle X ray scattering[M]: Academic Press London;1982.
    [22] Kataoka M, Hagihara Y, Mihara K, et al. Molten globule of cytochrome c studied bysmall angle X ray scattering[J]. Journal of Molecular Biology.1993,229:591596.
    [23] Kataoka M, Nishii I, Fujisawa T, et al. Structural characterization of the molten globuleand native states of apomyoglobin by solution X ray scattering[J]. Journal of MolecularBiology.1995,249:215228.
    [24] Matsushima N, Danno G i, Sasaki N, et al. Small angle X ray scattering study bysynchrotron orbital radiation reveals that high molecular weight subunit of glutenin is a veryanisotropic molecule[J]. Biochemical and Biophysical Research Communications.1992,186:10571064.
    [25] Jin KS, Kim DY, Rho Y, et al. Solution structures of RseA and its complex with RseB[J].Journal of synchrotron radiation.2008,15:219222.
    [26] Wen J, Arakawa T, Philo JS. Size exclusion chromatography with on line light scattering,absorbance, and refractive index detectors for studying proteins and their interactions[J].Analytical biochemistry.1996,240:155166.
    [27] Belton P, Colquhoun I, Grant A. FTIR and NMR studies on the hydration of a high Mrsubunit of glutenin[J]. International journal of biological macromolecules.1995,17:7480.
    [28] Field J, Tatham A, Shewry P. The structure of a high Mr subunit of durum wheat(Triticum durum) gluten[J]. Biochemical Journal.1987,247:215221.
    [1] Picout DR, Ross Murphy SB. On the Mark Houwink parameters for galactomannans[J].Carbohydrate Polymers.2007,70:145148.
    [2] Guaita M, Chiantore O, Munari A, et al. A general intrinsic viscosity molecular weightrelationship for linear polydisperse polymers3. Applicability to the evaluation of themark houwink sakurada k and a constants[J]. European polymer journal.1991,27:385388.
    [3] Lojewski T, Zieba K, Lojewska J. Size exclusion chromatography and viscometry in paperdegradation studies. New Mark Houwink coefficients for cellulose incupri ethylenediamine[J]. Journal of Chromatography A.2010,1217:64626468.
    [4] Chen RH, Chen WY, Wang ST, et al. Changes in the Mark Houwink hydrodynamicvolume of chitosan molecules in solutions of different organic acids, at different temperaturesand ionic strengths[J]. Carbohydrate Polymers.2009,78:902907.
    [5] Kasaai MR, Arul J, Charlet G. Intrinsic viscosity–molecular weight relationship forchitosan[J]. Journal of Polymer Science Part B: Polymer Physics.2000,38:25912598.
    [6] Mendichi R, Fisichella S, Savarino A. Molecular weight, size distribution andconformation of Glutenin from different wheat cultivars by SEC MALLS[J]. Journal ofCereal Science.2008,48:486493.
    [7] Bean S, Lookhart G. Factors Influencing the Characterization of Gluten Proteins bySize Exclusion Chromatography and Multiangle Laser Light Scattering (SEC MALLS)[J].Cereal Chemistry.2001,78:608618.
    [8] Day L, Augustin MA, Batey IL, et al. Gluten uses and food industry needs[J]. Trends inFood Science&Technology2004,17:8290.
    [9] Ohnishi ST, Barr JK. A simplified method of quantitating protein using the biuret andphenol reagents[J]. Analytical biochemistry.1978,86:193200.
    [10] Ng W, Tam K, Jenkins R. Evaluation of intrinsic viscosity measurements ofhydrophobically modified polyelectrolyte solutions[J]. European polymer journal.1999,35:12451252.
    [11] Togrul H, Arslan N. Flow properties of sugar beet pulp cellulose and intrinsicviscosity molecular weight relationship[J]. Carbohydrate Polymers.2003,54:6371.
    [12] E. BR. In Polymer Handbook [M]. NewYork: Wiley Interscience;1999.
    [13] Kurata M., Y. T. In Polymer Handbook [M]. NewYork: Wiley Interscience;1999.
    [14] Kasaai MR. Comparison of various solvents for determination of intrinsic viscosity andviscometric constants for cellulose[J]. Journal of applied polymer science.2002,86:21892193.
    [15] Wyatt PJ. Light scattering and the absolute characterization of macromolecules[J].Analytica Chimica Acta.1993,272:140.
    [16] Astafieva IV, Eberlein GA, John Wang Y. Absolute on line molecular mass analysis ofbasic fibroblast growth factor and its multimers by reversed phase liquid chromatographywith multi angle laser light scattering detection[J]. Journal of Chromatography A.1996,740:215229.
    [17] Arfvidsson C, Wahlund K, Eliasson A. Direct molecular weight determination in theevaluation of dissolution methods for unreduced glutenin[J]. Journal of Cereal Science.2004,39:18.
    [18] Jeng L, Balke S. Evaluation of light‐scattering detectors for size exclusionchromatography. II. Light‐scattering equation selection[J]. Journal of applied polymerscience.1993,49:13751385.
    [19] Kasaai MR. Intrinsic viscosity–molecular weight relationship and hydrodynamic volumefor pullulan[J]. Journal of applied polymer science.2006,100:43254332.
    [20] Kasaai MR. Calculation of Mark Houwink Sakurada (MHS) equation viscometricconstants for chitosan in any solvent temperature system using experimental reportedviscometric constants data[J]. Carbohydrate Polymers.2007,68:477488.
    [1] Ma CY, Liu WS, Kwok K, et al. Isolation and characterization of proteins from soymilkresidue (okara)*[J]. Food Research International.1996,29:799805.
    [2] Foegeding EA, Davis JP, Doucet D, et al. Advances in modifying and understanding wheyprotein functionality[J]. Trends in Food Science&Technology.2002,13:151159.
    [3] Schober TJ, Clarke CI, Kuhn M. Characterization of Functional Properties of GlutenProteins in Spelt Cultivars Using Rheological and Quality Factor Measurements1[J]. CerealChemistry.2002,79:408417.
    [4] Wellner N, Mills ENC, Brownsey G, et al. Changes in protein secondary structure duringgluten deformation studied by dynamic Fourier transform infrared spectroscopy[J].Biomacromolecules.2005,6:255261.
    [5] Cao X, Mohamed A, Gordon S, et al. DSC study of biodegradable poly (lactic acid) andpoly (hydroxy ester ether) blends*1[J]. Thermochimica acta.2003,406:115127.
    [6] Steel RGD, Torrie JH. Principles and procedures of statistics: a biometrical approach[M]:McGraw Hill New York;1980.
    [7] Lindsay MP, Skerritt JH. Immunocytochemical localization of gluten proteins uncoversstructural organization of glutenin macropolymer[J]. Cereal Chemistry.2000,77:360369.
    [8] Lindsay MP, Skerritt JH. The glutenin macropolymer of wheat flour doughs::structure function perspectives[J]. Trends in Food Science&Technology.1999,10:247253.
    [9] Grant A, Belton P, Colquhoun I, et al. Effects of temperature on sorption of water bywheat gluten determined using deuterium nuclear magnetic resonance[J]. Cereal Chemistry.1999,76:219226.
    [10] Georget DMR, Belton PS. Effects of temperature and water content on the secondarystructure of wheat gluten studied by FTIR spectroscopy[J]. Biomacromolecules.2006,7:469475.
    [11] Mangavel C, Barbot J, Popineau Y, et al. Evolution of wheat gliadins conformationduring film formation: A Fourier transform infrared study[J]. Journal of agricultural and foodchemistry.2001,49:867872.
    [12] Feeney K, Wellner N, Gilbert S, et al. Molecular structures and interactions of repetitivepeptides based on wheat glutenin subunits depend on chain length[J]. Biopolymers.2003,72:123131.
    [13] Khurana R, Fink AL. Do Parallel [beta] Helix Proteins Have a Unique Fourier TransformInfrared Spectrum?[J]. Biophysical journal.2000,78:9941000.
    [14] Arrondo JLR, Go i FM. Structure and dynamics of membrane proteins as studied byinfrared spectroscopy[J]. Progress in biophysics and molecular biology.1999,72:367405.
    [15] Venyaminov SY, Kalnin N. Quantitative IR spectrophotometry of peptide compounds inwater (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands[J].Biopolymers.1990,30:12431257.
    [16] Pézolet M, Bonenfant S, Dousseau F, et al. Conformation of wheat gluten proteinscomparison between functional and solution states as determined by infrared spectroscopy[J].FEBS letters.1992,299:247250.
    [17] Popineau Y, Bonenfant S, Cornec M, et al. A study by infrared spectroscopy of theconformations of gluten proteins differing in their gliadin and glutenin compositions[J].Journal of Cereal Science.1994,20:1522.
    [18] Jackson M, Mantsch HH. The use and misuse of FTIR spectroscopy in the determinationof protein structure[J]. Critical reviews in biochemistry and molecular biology.1995,30:95120.
    [19] Barth A. The infrared absorption of amino acid side chains[J]. Progress in biophysics andmolecular biology.2000,74:141173.
    [20] Surewicz WK, Mantsch HH, Chapman D. Determination of protein secondary structureby Fourier transform infrared spectroscopy: a critical assessment[J]. Biochemistry.1993,32:389394.
    [21] van Velzen EJJ, van Duynhoven JPM, Pudney P, et al. Factors associated with doughstickiness as sensed by attenuated total reflectance infrared spectroscopy[J]. Cereal Chemistry.2003,80:378382.
    [22] Herald TJ, Smith DM. Heat induced changes in the secondary structure of hen eggS ovalbumin[J]. Journal of agricultural and food chemistry.1992,40:17371740.
    [23] Van Dijk AA, Van Wijk LL, Van Swieten E, et al. Structure characterization of the centralrepetitive domain of high molecular weight gluten proteins. II. Characterization in solutionand in the dry state[J]. Protein science.1997,6:649656.
    [24] Kennedy C. Freezing processed foods[J]. Managing frozen foods.2000:137–158.
    [25] Ribotta P, León A, Anon M. Effect of freezing and frozen storage of doughs on breadquality[J]. Journal of agricultural and food chemistry.2001,49:913918.
    [26] Li S, Dickinson L, Chinachoti P. Proton relaxation of starch and gluten by solid statenuclear magnetic resonance spectroscopy[J]. Cereal Chemistry.1996,73:736743.
    [1] Meziani S, Jasniewski J, Ribotta P, et al. Influence of yeast and frozen storage onrheological, structural and microbial quality of frozen sweet dough[J]. Journal of FoodEngineering.2011,109:538544.
    [2] Gallagher E, Gormley T, Arendt E. Crust and crumb characteristics of gluten freebreads[J]. Journal of Food Engineering.2003,56:153161.
    [3] Asghar A, Anjum FM, Allen JC, et al. Effect of modified whey protein concentrates oninstrumental texture analysis of frozen dough[J]. Pakistan Journal of Nutrition.2009,8:189193.
    [4] Collar C, Bollain C. Relationships between dough functional indicators duringbreadmaking steps in formulated samples[J]. European Food Research and Technology.2005,220:372379.
    [5]李敏,高翔,陈其皎等.普通小麦中α醇溶蛋白基因(GQ891685)的克隆、表达及品质效应鉴定[J].中国农业科学.2010,43:47654774.
    [6]王明霞,高翔,陈其皎等.小麦品种陕253γ醇溶蛋白基因的克隆、原核表达与功能鉴定[J].作物学报.2011,37:7986.
    [7] Steel RGD, Torrie JH. Principles and procedures of statistics: a biometrical approach[M]:McGraw Hill New York;1980.
    [8] Martin JM, Beecher B, Giroux MJ. White salted noodle characteristics from transgenicisolines of wheat over expressing puroindolines[J]. Journal of Cereal Science.2008,48:800807.
    [9] Martin JM, Berg JE, Hofer P, et al. Allelic Variation of Polyphenol Oxidase Genes Impactson Chinese Raw Noodle Color[J]. Journal of Cereal Science.2011.
    [10] Rombouts I, Lagrain B, Brunnbauer M, et al. Identification of isopeptide bonds inheat treated wheat gluten peptides[J]. Journal of agricultural and food chemistry.2011,59:12361243.
    [11] Pallos FM, Robertson GH, Pavlath AE, et al. Thermoformed wheat gluten biopolymers[J].Journal of agricultural and food chemistry.2006,54:349352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700