狂犬病病毒CTN181株糖蛋白的真核表达及初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Eukaryotic Expression of G Protein of Attenuated Rabies Virus CTN181 Strain and Its Primary Application
  • 作者:焦洋
  • 论文级别:硕士
  • 学科专业名称:病原生物学
  • 学位年度:2009
  • 导师:唐青
  • 学科代码:100103
  • 学位授予单位:中国疾病预防控制中心
  • 论文提交日期:2009-05-01
摘要
狂犬病是由狂犬病病毒(Rabies Virus,RV)引起的一种烈性传染病,目前尚无有效的治疗手段,病死率几乎为100%,而接种狂犬疫苗是唯一有效的预防措施。评价狂犬疫苗效果的途径是检测免疫后血清中和抗体水平,目前主要是利用小鼠中和试验和细胞中和实验来检测,但这种方法操作较为复杂,不宜推广。狂犬病病毒糖蛋白(Glycoprotein,GP)是5种病毒蛋白中唯一能刺激机体产生中和抗体的抗原,所以狂犬病病毒GP在疫苗研制、抗体检测等方面有广泛的应用。除此之外,狂犬病病毒GP还与病毒毒力、致病性及病毒滴度等密切相关,本研究通过杆状病毒表达系统所表达的狂犬病病毒GP以及所建立的稳定表达狂犬病病毒GP的细胞系,不仅有助于探索更为安全易行的狂犬病抗体检测方法,还可为进一步研究狂犬病病毒GP结构和功能奠定基础。
     由于狂犬病病毒GP的已知抗原位点主要位于膜外区,本研究首先利用Bac-to-Bac杆状病毒表达系统分别表达狂犬病病毒GP及狂犬病病毒GP膜外区,利用重组表达的狂犬病病毒GP及狂犬病病毒GP膜外区蛋白做抗原,探索建立间接ELISA法检测人免疫后血清抗狂犬病病毒GP IgG水平。首先利用RT-PCR方法扩增得到狂犬病病毒CTN-181株GP基因编码区段和GP基因膜外区编码区段,然后利用杆状病毒表达系统将两段编码基因在昆虫细胞Sf9中进行表达。结果显示:克隆有G基因编码区段的重组杆状病毒表达质粒转染Sf9细胞后24小时出现细胞病变,48小时细胞病变明显;而在转染克隆有GP基因膜外区段的重组杆状病毒表达质粒转染Sf9细胞36小时后出现细胞病变,60小时细胞病变明显;间接免疫荧光及Western Blot结果显示表达的这两种蛋白均具有抗原性,并且完整GP的抗原性要优于GP膜外区的抗原性。进一步分别利用表达的GP及其膜外区做抗原,初步探索建立ELISA检测方法,检测人免疫后血清中抗GP IgG水平。结果显示,HRP标记的抗人IgG最佳稀释度为1:60000,通过棋盘滴定的方法获得了包被抗原的最佳稀释度为1:320,待测血清的最佳稀释度为1:100。在设定的实验条件下,GP膜外区做抗原用于ELISA检测方法(P/N值4.15:)优于以完整的GP做抗原(P/N值:3.12),但是存在的问题是背景值偏高,仍需进一步优化。
     本研究进一步利用IRES(内部核糖体进入位点)介导的双表达载体pIRES2-ZsGreen1,分别将CTN-181株G基因、增强型绿色荧光蛋白(ZsGreen)基因插入,构建可以同时表达狂犬病病毒CTN-181株G基因及增强型绿色荧光蛋白(ZsGreen)基因的双表达重组质粒,通过脂质体转染BHK-21细胞后,用新霉素类似物G418进行细胞株的筛选,建立稳定表达狂犬病病毒GP及ZsGreen的细胞系。结果所获得的细胞株可以高效并同时表达狂犬病病毒GP和ZsGreen,稳定进行细胞传代21代次,狂犬病病毒CTN-181 GP和ZsGreen两个蛋白仍可在已经获得的细胞系中稳定表达,所获得的细胞株ZsGreen检测阳性率在80%左右,生长周期为6天左右。该细胞系可以应用于狂犬病病毒GP抗体检测,也可以应用于建立狂犬病病毒反向遗传系统反式提供狂犬病病毒GP以期提高重组病毒滴度。
     狂犬病病毒GP及GP膜外区在杆状病毒中的成功表达以及表达狂犬病病毒GP及绿色荧光蛋白ZsGreen细胞系的建立为狂犬病特异性抗体的检测和评价奠定了基础,也为优化已有的狂犬病病毒反向遗传系统提供了新的科研思路和技术路线。
Rabies is a fatal zoonosis caused by rabies virus (RV). Inspite of no any effective therapy methods have been available to cure the disease, the pre-exposure and/or post-exposure prophylaxis with rabies vaccine is always the only way for rabies prevention. The method to evaluate the effectivity of vaccination is to detect the neutralization antibody (NA) in the serum after immunization. Ideally, the neutralization test is commonly used for the NA detection. However, the operation of neutralization test is too complicated to extend for routine use. Because only the rabies virus glycoprotein (GP) has the ability to be as an antigen to stimulate the production of NA in vaccinees, in a way, the anti-GP immunoglobulin (IgG) could be used to reflect the NA level indirectly. The established Enzyme-Linked ImmunoSorbent Assay (ELISA) method is potential to evaluate the effectivity of vaccination indirectly through detection of the anti-GP immunoglobulin (IgG) level. Additionly, the established ELISA method is so convenient and time-save that can be widely used in the related laboratories, basic CDCs to evaluate the effectivity of vaccination rapidly and precisely. Moreover, the RV GP also has close connection with viral toxicity, pathogenicity, and virus titer, so the established RV GP-stable-expressing BHK-21 cell line is helpful for the study of protein structure and function.
     In the first section, the GP coding gene (GP CD) and GP extramembrane region coding gene (GP EX) was amplified by Reverse Transcription Polymerase Chain Reaction (RT-PCR) and then both were cloned into and expressed by the Baculovirus Expression System in insect cell line Sf9. The results observed initial, mild cytopathic effect (CPE) of Sf9 cells 24 hours after transfection with recombinant GP CD Baculovirus plasmid and obvious CPE after 48 hours, while the silimar CPE was observed after 36 and 60 hours after transfection with recombinant GP EX Baculovirus plasmid. In addition, the antigenicity of both the expressed proteins was identified by Immunofluorescence Assay (IFA) and Western Blot. Both had the property of antigenicity and the antigenicity of GP CD was superior compared with GP EX. In the further study, both the expressed proteins were used as antigens to established ELISA method for detection the serum anti-GP IgG level in the immunized population. The results showed that the ELISA method established using GP EX was superior compared with ELISA using GP CD (the P/N value of the former was higher than the latter). However, the established ELISA methods should be optimized because of the presence of impure background.
     In the second section, recombinant double expression plasmid (RDEP) mediated by IRES (internal ribosome entry sites) was constructed using pIRES2-ZsGreenl vector, which can express RV GP and enhanced GFP (green fluorescent protein) ZsGreen simultaneously. Then the RDEP was transfected into BHK-21 cells using lipofectamine 2000, and the transfected cells was screened by G418 (a kind of neomycin analog) to establish the cell line stablely expressing both RV GP and ZsGreen. The results demonstrated that the screened BHK-21 cell line has the ability to stalbely express both RV GP and ZsGreen with high performance, and the ratio of ZsGreen-expressed cells is higher and higher with the cell passage, and finally the ratio can reached up to 80%. This cell line can also be helpful for the enhancement of rescued rabies virus titer through reverse genetics and for the study of property and function of RV GP.
     In conclusion, both the successful expression of RV GP and GP extramembrane region, and the establishment of cell line with stably expressing RV GP and ZsGreen are not only helpful for the detection and evaluation of specific RV antibody, but also beneficial for the optimization of the established RV CTN-181 strain-based reverse genetics.
引文
1.Benmansour AH,Leblosis H,Couln p.Antigenicity of rabies virus glycoprotein.J.Virol.1991,65:4193-4203.
    2.Tordo N.Characteristics and molecular biology of the rabies virus.Laboratory techniques in rabies.WHO,Geneva 1996,28-49.
    3.11唐青,Lillian AO,Charles ER,等.我国四株狂犬病病毒糖蛋白基因序列分析和位点比较.中国病毒学,2000,15(1):22-33.
    4.Bunschoten B,Gore M.Characterrization of a new virus neutralizing epitope that clones a sequential determinant on the rabies virus glycoprotein,J Gen Virol,1993,74:1593.
    5.Zhang S,Liu Y,Zhang F,Hu R.Competitive ELISA using a rabies glycoprotein-transformed cell line to semi-quantify rabies neutralizing-related antibodies in dogs.Vaccine.2009 Mar 26;27(15):2108-2113.
    6.Lentz TL,Wilson PT,Hawrot E,et al.Amino acid sequence similarity between rabies virus glycoprotein and snake venon curareminetic neurotoxins.Science 1984,226:847-848.
    7.Castellanos JE,Castaluda DR,Velandia AE,et al.Partial inhibition of the in vitro infection of adult mouse dorsal root ganglion neurons by rabies virus using nicotinic antagonists.Neurosci.Lett.1997,229(3):198-200.
    8.Thoulouze MI,Lafage M,Schachner M.The neural cell adhesion molecule is a receptor for rabies virus.J.Virol.1998,72:7181-7190.
    9.Langevin C,Jaaro H,Bressanelli S,et al.Rabies virus glycoprotein(RVG) is a trimeric ligand for the N-terminal cysteine- rich domain of the mammalian p75neurotrophin receptor.J Biol Chem.2002,277(40):37655-37622.
    10.Gaudin Y,Ruigrok R W,Knossow M,et al.Low-PH conformational changes of rabies virus glycoprotein and their role in membrane fusion.J Virol,1993,67(3):1365-1372.
    11.Lafay F,Benejean J,Tuffereau C,et al.Vaccination against rabies:Construction and characterization of SAG2 a double avirulent derivative of SAD Bern.Vaccine 1994,123:317-320.
    12. Coulon P, Tenaus JP, Flamand A, et al. An avirulent mutant of rabies virus is unable to infect motoneurons in vivo and in vitro. J. Virol. 1998, 72: 273 -278.
    13. Takayama - Ito M, Ito N, Yamada K, et al. Multiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult mice. Virus Res. 2006, 115 ( 2): 169 -175.
    14. Ito N, Takayama M, Yamada K, et al. Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system. Microbiol Immunol. 2003, 47(8),613-617.
    15. 40 Inoue K, Shoji Y, Kurane I, et al. An improved method for recovering rabies virus from cloned cDNA. J Virol Methods. 2003,107(2):229-36.
    16. 41 Morimoto K, Foley HD, McGettigan JP, et al. Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. J Neurovirol. 2000, 6(5):373-81.
    17. 金奇, 主编. 医学分子病毒学. 北京: 科学出版社, 2001, 264-266.
    18. Gaudin Y, Tuffereau C, Benmansour A. Fatty acylation of rabies virus glycoprotein. Virol,1991,184:627-632.
    19. Dietzschold B, Wiktor TJ, Wunner WH, et al. Chemical and immunological analysis of the rabies soluble glycoprotein. Virol,1983,124: 330-337.
    20. Gupta PK, Sharma S, Walunj SS, et al. A DNA vaccine that encodes rabies virus glycoprotein lacking transmembrane domain enhances antibody response but not protection. Acta Virol. 2006, 50(2):87-92.
    21. Teruel MN, Meyer T. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction [J]. Cell, 2000(2):181-184.
    22. Cyer MS. Regulation of nuclear localization during signaling [J]. J Biol Chem, 2001(24):20805-20808.
    23. Alvisi G, Musiani D, Jans DA, et al. An importin alpha/beta recognized bipartite nuclear localization signal mediates targeting of the human herpes simplex virus type 1 DNA polymerase catalytic subunit pUL30 to the nucleus [J]. Biochemistry, 2007(32):9155-9163.
    24.邓鹏,陈腾祥,龚小卫.串联重复核定位信号的绿色荧光蛋白融合载体的构建与原核表达.贵州医学院学报.2008,33(4):13-14.
    25.龚小卫,姜勇.MAPK的细胞内定位与激活后移位机制[J].生物化学与生物物理进展,2003(4):509-513.
    26.Anilionis A,Wunner WH,Curtis PT.Structure of the glycoprotein gene in rabies.Nature,1981,294:275-8.
    27.Morimoto K,Ni YJ,Kanwai A.SyncytiμM formation idss induced in the murine neuroblastoma cell cμlture which produce pathogenic type G protein of the rabies virus.Virol,1992,189:203.
    28.Cinzelmann KK,Cox JH,Schneider LG,et al.Molecμlar Cloning and complete nucleotide sequence of the attenuated rabies virus SAD-B19.Virol,1990,175:185.
    29.徐兰,郭增柱,张永振,等.狂犬病病毒糖蛋白研究进展.中国人兽共患病学报,2006,22(9):876-879.
    30.Gaudin Y,Tuffereau C,Benmansour A.Fatty acylation of rabies virus glycoprotein.Virol,1991,184:627-632.
    31.Irie T,Matsuda Y,Honda Y,et al.Studies on the escape mutants of rabies virus which are resistant to neutralization by a highly conserved conformational epitope-specific monoclonal anti-body # 1-46-12.Microbiol Immunol,2002,46:449-461.
    32.Lafon M,Wiktor T,Macfarlan RI.Antigenic sites on the CVS rabies virus glycoprotein:analysis with McAbs.J Gen Virol,1983,64:843-851.
    33.唐青,Lillian AO,Charles ER,等.我国四株狂犬病病毒糖蛋白基因序列分析和位点比较.中国病毒学,2000,15(1):22-33.
    34.Roger WJ,Vander H.Structure and functional studies on a unique linear neutralizing antigentic site(G5) of rabies virus glycoproteino J Gen Virol,1993,74:1593.
    35.Shakin-Eschelman SH,Remaley AT,Eshleman AT,et al.N-linked glycosylation of rabies virus glycoprotein.J Biol Chem,1992,267:10690-10698.
    36.Wunner WB,Dietzschold C,Smith M,et al.Antigenic variants of CVS rabies virus with altered glycosylation sites. Virol. 1985.140:1-12.
    37. Wojczyk BS, Takahashi N, Levy MT, et al. N glycosylation at one rabies virus glycoprotein sequon influences N glycan processing at a distant Sequon on the same molecμle .Glycobiol,2005,15(6):65 5-666.
    38. Turner GS. Immunoglobμlin and antibody responses to rabies Vaccine. J Gen Virol, 1978,595-604.
    39. Moalem G, Monsonego A, Shani Y. Differential T cell response in central and peripheral nerve injury: connection with immune privilege. FASEB J, 13:1207-1217.
    40. Hooper DC ,Morimoto K, Bette M, et al. Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. Microbiol Immunol,1998,72:3711-3719.
    41. Hu R , Zhang S ,Fooks AR,et al .Prevention of rabies virus infection in dogs by a recombinant canine adenovirus type-2 encoding the rabies virus glycoprotein. Microbes Infect,2006,8(4):1090-1097.
    42. Fu ZF, Rupprecht CE, Dietzschold B, et al. Oral vaccination of racoons ( Procyon lotor) with bacμlovirus-expressed rabies virus glycoprotein. Vaccine, 1993, 11: 925-928.
    43. Macfarlan R, Dietzschold B, Wiktor TJ. T cell response to cleaved rabies virus glycoprotein and to synthetic peptides. J lmmunol,1984,133:2748.
    44. Celis E, Rupprecht CE, Plotkin SA. New and improved vaccine against rabies. New Generat Vaccine, 1990,419-437.
    45. Perry LL, Lodmell DL. CD4+ and CD8+ T cell in murine resistance to street rabies virus . J Virol, 1991,65:3429-3434.
    46. Galelli A, Baloμl L, Lafon M. Abortive rabies virus central infection is concrolled by T lymphocyte local recruitment and induction of apoptosis.Journal of Neurovirol, 2000,6:359-372.
    47. Tordo N, Bourhy H, Sather S, Olio R. Structure and expression in baculovirus of the Mokola virus glycoprotein: an efficient recombinant vaccine. Virology. 1993 May;194(1):59-69.
    48.Prehaud C,Takehara K,Flamand A,Bishop DH.Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors.Virology.1989 Dec;173(2):390-399.
    49.Fu ZF,Rupprecht CE,Dietzschold B,et al.Oral vaccination of racoons(Procyon lotor) with baculovirus-expressed rabies virus glycoprotein.Vaccine.1993;11(9):925-928.
    50.Kieny MP,Lathe R,Drillien R.Expression of rabies virus glycoprotein from a recombinant vaccinia virus.Nature.1984 Nov 8-14;312(5990):163-6.
    51.Cadoz M,Strady A,Meignier B,et al.Immunisation with canarypox virus expressing rabies glycoprotein J.L ancet,1992,339(8):1429-1432.
    52.Fries L F,Tartaglia J,Taylor J,et al.Human safety and immuncgenicity of a canarypox2rabies glycoprotein recombinant vaccine:an altenrative poxvirus vector system.Vaccine,1996,14(5):428-434.
    53.金宁一,郭志儒,赵怀龙,等.狂犬病毒CTN株糖蛋白重组鸡痘病毒与核酸疫苗的联合免疫免疫学杂志,2004,20(4):772-775.
    54.Osorio JE,Frank RS,Moss K,et al.Raccoon poxvirus as a mucosal vaccine vector for domestic cats.J Drug Target,2003,11(8-10):463-470.
    55.李文辉,张云,王树蕙,等.小鼠对表达狂犬病毒3aG株糖蛋白的重组复制缺陷型腺病毒的免疫应答.中华实验和临床病毒学杂志,2001,15(1):61-65.
    56.朱蓉,徐葛林,孙文,等.双抗夹心法ELISA与NIH法在狂犬疫苗抗原检测中的比较.中国病毒学,2005,20(6):623-625.
    57.俞永新,主编.狂犬病和狂犬病疫苗(M).北京:中国医药科技出版社,2009,98-100.
    58.Feyssaguet M,Dacheux L,Audry L,et al.Mμlticenter comparative study of a new ELISA,PLATELIA RABIES II,for the detection and titration of anti-rabies glycoprotein antibodies and comparison with the rapid fluorescent focus inhibition test(RFFIT) on hμMan samples from vaccinated and non-vaccinated people.Vaccine,2007,25:2244-2251
    59.Gupta PK,Sharma S,Walunj SS.Immunogenic and antigenic properties of recombinant soluble glycoprotein of rabies virus.Vet Microbiol,2005, 108(3-4):207-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700