基于纳米复合材料的电化学传感器检测堆肥中酚类物质及木质素功能基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆肥法是目前有机固体废物资源化的一种有效处理方法。在堆肥系统中,各种有机固体废物中含有不少酚类污染物,微生物降解多环芳烃的过程中还会产生对苯二酚和邻苯二酚两种中间产物。木质素是一种堆肥过程中大量存在且难以降解的芳香族化合物,锰过氧化物酶(MnP)和纤维二糖脱氢酶(CDH)在微生物降解木质素的过程中其中起了关键性作用。电化学生物传感器以其操作简单、选响应快速、选择性好、灵敏度高、成本低廉等特点在环境、生物、医药及食品工程等领域受到广泛关注。将纳米材料独特的导电性、催化活性及生物相容性与生物分子高度的催化能力和特异性识别能力结合起来,构建功能化的复合电极界面,为堆肥环境中污染物及其功能基因的分析检测提供了一个新的技术平台,对堆肥过程控制及环境监测具有十分重要的意义。
     本文以堆肥环境体系为研究对象,探讨了基于碳纳米管、石墨烯、金、铂等纳米复合材料的制备及功能化方法,合成并表征了多种水溶性纳米材料,研究了它们的电化学性质并将其应用于生物传感界面的修饰。通过酶、核酸探针等生物分子在电极上的固定,构建了一系列基于水溶性纳米复合材料修饰的生物传感器,用于堆肥环境中对苯二酚、邻苯二酚及锰过氧化物酶和纤维二糖脱氢酶功能基因的高灵敏检测。
     利用硼氢化钠化学还原及L-半胱氨酸共价结合的方法制备出一种水溶性石墨烯-纳米铂复合材料,构建出一种新型电化学传感器用于堆肥系统中的对苯二酚和邻苯二酚的同时检测。该纳米复合物具有良好的水溶性和生物相容性,可明显增大电极的有效比表面积、导电性能及催化活性。采用差分脉冲伏安法将其用于堆肥浸出液中对苯二酚和邻苯二酚的同时检测,检测下限分别为2.0×10-8M和1.0×10-8M。该传感器特异性好,稳定性强,灵敏度高,且不易受系统中其他物质的干扰,能快速实现酚类污染物的实时在线监测。
     制备了一种基于水溶性碳纳米管/L-赖氨酸/纳米金共同修饰的漆酶生物传感器用于对苯二酚和邻苯二酚两种物质的高灵敏测定。将L-赖氨酸通过电沉积的方法聚合在纳米金修饰后的玻碳电极上,滴涂刚果红功能化的碳纳米管水溶液,利用戊二醛交联的方法将漆酶固定。此固定化方法能很好地保持漆酶的生物活性,使得电极的催化能力大大提高,碳纳米管及纳米金均能明显提高电极的导电性、比表面积等电化学特性。该传感器制作简单,响应快速,灵敏度高,选择性好,检测下限达到了1.0×10-8M和1.0×10-9M,可用于各种环境中酚类污染物的实时监测。
     采用聚合酶链式反应扩增及限制性内切酶技术与基因传感技术相结合,研制出种基于辣根过氧化物酶和漆酶共同标记的生物传感器,用于锰过氧化物酶和纤维二糖脱氢酶编码基因的同时检测。利用目标链与巯基修饰的捕获探针及双酶标记的响应探针间夹心式杂交将其固定在电极表面,通过双酶信号放大来实现目标基因的快速检测。在最优实验条件下,采用计时电流法得到的还原电流与MnP和CDH两种目标基因浓度的常用对数值成良好的线性相关性,检测下限分别为6.2×10-12M和3.0×10-11。该生物传感器选择性好,精密度高,稳定性和可重复性好,为污染物生物降解过程中微生物功能基因的协同作用机理分析提供了很好的技术支持。
     研制了一种基于纳米金/多壁碳纳米管/1,5-萘二胺复合膜修饰的生物传感器用于纤维二糖脱氢酶功能基因的快速检测。1,5-萘二胺导电聚合膜带有大量自由氨基,有利于羧基化碳纳米管在电极表面的固定。经刚果红共价修饰后的碳纳米管导电性能好,水溶性也大大增强,为纳米金提供了一定的结合位点,增强了DNA分子在电极表面的固定量,提高了生物催化反应活性。将复合膜修饰后的电极通过扫描电镜、循环伏安法及交流阻抗法进行了表征。该传感器的灵敏度高,特异性好,操作简便,成本低,检测下限达到了1.2×10-16M,可应用于生命科学、临床医学以及环境污染控制系统中实时在线监测。
     开发出一种基于纳米金/多壁碳纳米管/石墨烯共同修饰的基因生物传感器用于锰过氧化物酶功能基因的超灵敏检测。L-半胱氨酸和刚果红分别对石墨烯和碳纳米管进行功能化修饰,得到一种水溶性较好、导电性能优越、生物相容性好的纳米复合材料。为纳米金的电化学沉积提供了良好的载体条件,明显增大了电极的比表面积,同时也提高了DNA分子在电极表面的固载量。通过扫描电镜、透射电镜、红外光谱扫描等方法对材料的形态和结构进行了表征。在最优实验条件下,采用计时电流法得到的还原电流与MnP目标基因浓度的常用对数值呈良好的线性相关性,检测下限达到了2.0×10-17M。该基因传感器的灵敏度极高,选择性和稳定性好,制备方法简单,成本低,可对环境中其他特定核苷酸序列进行快速灵敏检测。
Composting is an effective disposal method for resource utilization of organic solid wastes. Phenol compounds are common pollutants in organic solid wastes composting. Hydroquinone and catechol are the two intermediate products during biodegradation of polycyclic aromatic hydrocarbons. Lignin is one kind of aromatic polymer in composting and is extremely recalcitrant in an aerobic oxidative process. Both manganese peroxidase (MnP) and cellobiose dehydrogenase (CDH) play important roles in lignin mineralization. Electrochemical biosensors have received particular attention due to their easy operation, fast response, good selectivity, high sensitivity and low cost in environment, biology, medicine, and food stuff. The incorporation of the highly selective catalytic and recognition properties of biomolecules with the unique conductivity, catalytic activity and biocompatibility of nanomaterials provide a new technical platform for the analysis and measurement of contaminants and functional genes in composting, and are also of great importance for compost process control and environmental monitoring.
     This dissertation took the composting system for example and discussed the preparation and functionalization of carbon nanotubes, graphene, gold and platinum nanocomposite. Several water-soluble nanocomposites were synthesised and characterized and their electrochemical properties were also studied. A series of water-soluble nanocomposite modified electrodes were constructed by the immobilization of enzyme and nucleic acid probes for highly sensitive detection of hydroquinone, catechol, MnP and CDH functional genes in composting.
     Water soluble graphene-platinum nanocomposite was prepared by the combination of chemical reduction using sodium borohydride and covalent modification with L-cysteine. A new electrochemical sensor based on the nanocomposite was developed for simultaneous detection of hydroquinone and catechol in composting. The good solubility and biocompatibility of nanocomposite could greatly improve the effective specific surface area, conductivity and catalytic activity of the electrode. The concentrations of hydroquinone and catechol in the compost extract were determined by differential pulse voltammetry, which showed that the detection limits of the two phenol compounds were2.0×10-8M and1.0×10-8M, respectively. This sensor exhibited good selectivity, stability, sensitivity and excellent capacity of resisting disturbance and it would be an effective approach for rapid and on-line detection of phenol compounds.
     A laccase biosensor was constructed based on the water-soluble carbon nanotubes/L-lysine/gold nanoparticles for highly sensitive detection of hydroquinone and catechol. After modification of gold nanoparticles, the L-lysine was decorated on the glassy carbon electrode by the electrochemical polymerization. Carbon nanotubes was functionalized by Congo red and the solution was cast on the modified electrode. Then the laccase was immobilized on the electrode using covalently crosslinking with glutaraldehyde. The immobilization of laccase showed good biological activity which significantly enhanced the catalytic capability of electrode. The conductivity and surface area was also improved by the synergy of carbon nanotubes and gold nanoparticles. This laccase biosensor was simple and response fast with high sensitivity and selectivity. The detection limits of hydroquinone and catechol were1.0×10-8M and1.0×10-9M, respectively. This sensor can be used for the real-time determination of all kinds of phenol compounds.
     An electrochemical DNA sensor based on horseradish peroxidase (HRP) and laccase (LAC) labels was developed by the incorporation of polymerase chain reaction and restriction endonuclease digestion with sensor technology for simultaneous detection of manganese peroxidase and cellobiose dehydrogenase functional genes. The target sequences were immobilized by hybridization with both capture probes modified with thiol and detection probes labeled with HRP and LAC, which were applied for enzyme-amplified amperometric measurement. Under the optimal conditions, the amperometric current responses by chronoamperometry were linearly related to the common logarithm of two target nucleic acids concentrations and the detection limits were6.2×10-12M and3.0×10-11M, respectively. The DNA biosensor exhibited good selectivity, precision, stability and reproducibility. The DNA sensor presented here is a promising step to study the mutual relationship between two functional genes for environmental pollutant biodegradation.
     An electrochemical sensor based on gold nanoparticles (GNPs)/multiwalled carbon nanotubes (MWCNTs)/poly (1,5-naphthalenediamine) films modified glassy carbon electrode for rapid detection of cellobiose dehydrogenase gene was fabricated. The monomer of1,5-naphthalenediamine was electropolymerized on the GCE surface with abundant free amino groups which enhanced the stability of MWCNTs modified electrode. Congo red-functionalized MWCNTs possess excellent conductivity as well as high solubility in water. It created a large number of binding sites for electrodeposition of GNPs and improved the DNA immobilization amount and biological catalytic activity. Scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to investigate the film assembly and DNA hybridization processes. The electrochemical biosensor exhibited high sensitivity, selectivity, easy operation and low cost, with the detection limit of1.2×10-16M. It offered a possible method for "on-the-spot" monitoring in life sciences, clinical medicine and environmental pollution control systems.
     A sensitive electrochemical DNA sensor based on gold nanoparticles/multiwalled carbon nanotubes/graphene composite films modified glassy carbon electrode was fabricated for the determination of manganese peroxidase gene. After functionalization with Congo red (CR) and L-cysteine (Cys), the MWCNT-CR/GR-Cys nanocomposite exhibited high solubility in water, excellent conductivity as well as good biocompatibility, which created a large number of binding sites for electrodeposition of GNPs, greatly enhanced the surface area and DNA immobilization amount. The characteristics of the modified electrode were investigated by transmission electron microscopy, scanning electron microscopy and fouriertrans-form infrared spectroscopy. Under the optimal conditions, the current improvement catalyzed by HRP was linearly related to the common logarithm of MnP target sequences in the detection limit of2.0×10-17M. In addition, this DNA sensor exhibited high sensitivity, good selectivity and stability. The biosensor was easy to prepare and cost low, which could be further used for the rapid and sensitive determination of other specific ssDNA sequence in environment.
引文
[1]曾光明,黄国和,袁兴中.堆肥环境生物与控制.北京:科学出版社,2006,458-461
    [2]方云.堆肥法生物修复多环芳烃污染土壤:[西南大学硕士学位论文].重庆:西南大学环境学院,2010,5-8
    [3]单宝来.堆肥处理多环芳烃污染的土壤:[中国石油大学硕士学位论文].北京:中国石油大学环境学院,2010,11-14
    [4]Sayara T, Borras E, Caminal G, et al. Bioremediation of PAHs-contaminated soil through composting:Influence of bioaugmentation and biostimulation on contaminant biodegradation. International Biodeterioration & Biodegradation, 2011,65(6):859-865
    [5]Antizar-Ladislao B, Lopez-Real J, Beck A J. Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions. Environmental Pollution,2006,141(3): 459-468
    [6]Cai Q Y, Mo C H, Wu Q T, et al. Bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated sewage sludge by different composting processes. Journal of Hazardous Materials,2007,142(1-2):535-542
    [7]石守业.污泥堆肥过程中多环芳烃降解及转化的研究:[中国海洋大学硕士学位论文].青岛:中国海洋大学环境学院,2008,16-18
    [8]梁晶,彭喜玲,方海兰,等.污泥堆腐过程中多环芳烃(PAHs)的降解.环境科学与技术,2011,34(1):114-116
    [9]潘飞,陈悟,张雅琴,等.多环芳烃在污泥与菜籽饼堆肥中的降解规律.环境科学,2009,30(12):3718-3723
    [10]赵飞,刘翔,杨建刚.降解菌对堆肥中多环芳烃降解作用的研究.环境污染治理技术与设备,2005,6(1):47-49
    [11]蒋挺大.木质素.北京:化学工业出版社,2001,16-18
    [12]王蓓,王圆,周晓云.锰过氧化物酶(MnP)的研究进展.化工技术与开发,2005,34(4):28-31
    [13]Kenneth E H. Extracellular free radical biochemistry of ligninolytic fungi. New Journal of Chemistry,1996,20(2):195-198
    [14]方靖,刘穗,高培基.纤维二糖脱氢酶抑制酚型化合物聚合及促进木素降 解的研究.生物化学与生物物理学报,1999,31(4):415-419
    [15]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review. Bioresource Technology,2000,72(2): 169-183
    [16]陈芙蓉,曾光明,郁红艳,等.堆肥化中木质素的生物降解.微生物学杂志,2008,28(1):88-93
    [17]黄红丽,曾光明,黄国和,等.堆肥中木质素降解微生物对腐殖质形成的作用.中国生物工程杂志,2004,24(8):29-31
    [18]Feng C L, Zeng G M, Huang D L, et al. Effect of ligninolytic enzymes on lignin degradation and carbon utilization during lignocellulosic waste composting. Process Biochemistry,2011,46(7):1515-1520
    [19]Huang D L, Zeng G M, Feng C L, et al. Changes of microbial population structure related to lignin degradation during lignocellulosic waste composting. Bioresource Technology,2010,101(11):4062-4067
    [20]黄丹莲,曾光明,胡天觉,等.白腐菌应用于堆肥处理含木质素废物的研究.环境污染治理技术与设备,2005,12(2):29-32
    [21]赵美花,曾光明,黄丹莲,等.木质素降解酶在不同堆肥基质中的吸附传输特性研究.环境科学,2010,31(6):1647-1654
    [22]纪晓红,张莉,邱娟.高效液相色谱法测定间苯二酚反应液中间苯二酚的含量.化学分析计量,2010,19(4):69-70
    [23]范云场,胡正良,陈梅兰,等.离子液体液-液萃取-高效液相色谱测定水中酚类化合物.分析化学,2008,8(9):1157-1161
    [24]叶存玲,刘清玲,王治科.分散液相微萃取-高效液相色谱法测定水中α-萘酚和β-萘酚.分析试验室,2010,29(8):40-43
    [25]Reiner G N, Labuckas D O, Garcia D A. Lipophilicity of some GABAergic phenols and related compounds determined by HPLC and partition coefficients in different systems. Journal of Pharmaceutical and Biomedical Analysis,2009, 49(3):686-691
    [26]Rathore R, Jain J P, Srivastava A, et al. Simultaneous determination of hydrazinocurcumin and phenol red in samples from rat intestinal permeability studies:HPLC method development and validation. Journal of Pharmaceutical and Biomedical Analysis,2008,46(2):374-380
    [27]Ye X, Tao L J, Needham L L, et al. Automated on-line column-switching HPLC-MS/MS method for measuring environmental phenols and parabens in serum. Talanta,2008,76(4):865-871
    [28]殷程鹏,丁欣宇,施磊.邻苯二酚和对苯二酚的气相色潜法分析.化工环保,2004,24(S1):384-386
    [29]Moldoveanu S C, Kiser M. Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke. Journal of Chromatography A,2007,1141(1): 90-97
    [30]Kim K R, Kim H. Gas chromatographic profiling and screening for phenols as isobutoxycarbonyl derivatives in aqueous samples. Journal of Chromatography A,2000,866(1):87-96
    [31]钟颖,于赤灵,彭平安.固相萃取-离子色谱/气相色谱-质谱法联合检测油田水中的有机酸和酚类化合物.色谱,2010,28(10):923-928
    [32]夏新,李茜,吴志强,等.4-氨基安替比林萃取分光光度法测定水中挥发酚的质量控制指标研究.环境监测管理与技术,2011,23(6):48-51
    [33]杨佳艳.4-氨基安替比林直接分光光度法测定废水中挥发酚方法改进.环境科学与管理,2011,36(8):143-146
    [34]Lupetti K O, Rocha F R P, Fatibello-Filho O. An improved flow system for phenols determination exploiting multicommutation and long pathlength spectrophotometry. Talanta,2004,62(3):463-467
    [35]Quaresma M C B, Cassella R J, Carvalho M F B, et al. Focussed microwave-assisted sample preparation:total phenol determination in petroleum refinery effluents by flow injection spectrophotometry. Microchemical Journal,2004,78(1):35-40
    [36]Yu J, Liu S, Ju H. Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. Biosensors and Bioelectronics,2003,19(5):509-514
    [37]崔莉凤,韦兰春,赵进.利用溶胶-凝胶生物传感器测定饱和苯系物废水中酚类化合物.分析科学学报,2005,21(4):417-419
    [38]Hervas Perez J P, Sanchez-Paniagua Lopez M, Lopez-Cabarcos E, et al. Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosensors and Bioelectronics,2006,22(3):429-439
    [39]韩瑞霞,邱岩岩,艾仕云.基于纳米ZnO-壳聚糖-酪氨酸酶生物传感器对邻苯二酚的测定.化学传感器,2010,30(3):54-58
    [40]Solna R, Sapelnikova S, Skladal P, et al. Multienzyme electrochemical array sensor for determination of phenols and pesticides. Talanta,2005,65(2): 349-357
    [41]Chang S C, Rawson K, McNeil C J. Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. Biosensors and Bioelectronics,2002,17(11-12):1015-1023
    [42]Kochana J, Nowak P, Jarosz-Wilkolazka A, et al. Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds. Microchemical Journal,2008,89(2):171-174
    [43]Roy J J, Abraham T E, Abhijith K S, et al. Biosensor for the determination of phenols based on Cross-Linked Enzyme Crystals (CLEC) of laccase. Biosensors and Bioelectronics,2005,21(1):206-211
    [44]Diaconu M, Litescu S C, Radu G L. Laccase-MWCNT-chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sensors and Actuators B:Chemical,2010,145(2):800-806
    [45]Freire R S, Duran N, Kubota L T. Development of a laccase-based flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of Kraft E1 paper mill effluent. Analytica Chimica Acta,2002,463(2):229-238
    [46]Yin H, Zhou Y, Xu J, et al. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Analytica Chimica Acta,2010,659(1-2):144-150
    [47]Wang S, Tan Y, Zhao D, et al. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosensors and Bioelectronics, 2008,23(12):1781-1787
    [48]Zhang Y, Zeng G M, Tang L, et al. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosensors and Bioelectronics,2007,22(9-10):2121-2126
    [49]Chawla S, Rawal R, Pundir C S. Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode. Journal of Biotechnology, 2011,156(1):39-45
    [50]Rawal R, Chawla S, Pundir C S. Polyphenol biosensor based on laccase immobilized onto silver nanoparticles/multiwalled carbon nanotube/polyanil-ine gold electrode. Analytical Biochemistry,2011,419(2):196-204
    [51]Wellington E M H, Berry A, Krsek M. Resolving functional diversity in relation to microbial community structure in soil:Exploiting genomics and stable isotope probing. Current Opinion in Microbiology,2003,6(2):295-301
    [52]Henriksson G, Zhang L M, Li J B. Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme. Biochimica et Biophysica Acta,2000,1480(1):83-91
    [53]Hildena L, Johanssonb G, Petterssonb G. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation. Federation of European Biochemical Societies,2000,477(2): 79-83
    [54]Shleev S, Persson P, Shumakovich G. Interaction of fungal laccases and laccase-mediator systems with lignin. Enzyme and Microbial Technology, 2006,39(7):841-847
    [55]池玉杰.6种白腐菌腐朽后的山杨木材和木质素官能团变化的红外光谱分析.林业科学,2005,41(2):136-140
    [56]Varela E, Martinez A T, Martinez M J. Southern blot screening for lignin peroxidase and aryl-alcohol oxidase genes in 30 fungal species. Journal of Biotechnology,2000,83(3):245-251
    [57]江明锋,张义正.培养于天然冷杉木片的黄孢原毛平革菌木质素过氧化物酶基因表达的RT-PCR分析.微生物学报,2003,43(1):65-72
    [58]Patel D S, Aithal R K, Krishna G. Nano-assembly of lignin peroxidase and manganese peroxidase from phanerochaete chrysosporium for oxidation of organic compounds. Institute for Micromanufacturing/Chemical Engineering, 2003,89(3):331
    [59]Shleev S, Persson P, Shumakovich G. Laccase-based biosensors for monitoring lignin. Enzyme and Microbial Technology,2006,39(6):835-840
    [60]Tang L, Zeng G M, Wang H. Amperometric detection of lignin-degrading peroxidase activities from Phanerochaete chrysosporium. Enzyme and Microbial Technology,2005,36(7):960-966
    [61]Tang L, Zeng G M, Shen G L. Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Analytica Chimica Acta,2006, 579(1):109-116
    [62]Evdokimov I, Skuridin S G, Salianov V I. Nucleic acids as a basis for creating biosensor. Molecular Biology,1989,23(6):1581
    [63]王爱杰,任南琪.环境中的分子生物学诊断技术.北京:化学工业出版社,2004,36-49
    [64]吴健民.临床化学自动化免疫分析.北京:科学出版社,2000,120-149
    [65]Maeda M. Biosensor comprising DNA as receptive component. Nippon Rinshon,1993,51(10):2769
    [66]Xie H, Zhang C Y, Gao Z Q. Amperometric Detection of Nucleic Acid at Femtomolar Levels with a Nucleic Acid/Electrochemical Activator Bilayer on Gold Electrode. Analytical Chemistry,2004,76(14):1611-1617
    [67]Lim S H, Wei J, Lin J, et al. A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosensors and Bioelectronics,2005,20(11):2341-2346
    [68]Manso J, Mena M L, Yanez-Sedeno P, et al. Electrochemical biosensors based on colloidal gold-carbon nanotubes composite electrodes. Journal of Electroa-nalytical Chemistry,2007,603(1):1-7
    [69]Qiu J D, Zhou W M, Guo J, et al. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Analytical Biochemistry,2009, 385(2):264-269
    [70]Meng L, Jin J, Yang G, et al. Nonenzymatic Electrochemical Detection of Glucose Based on Palladium-Single-Walled Carbon Nanotube Hybrid Nanostructures. Analytical Chemistry,2009,81(17):7271-7280
    [71]Zhang X Z, Jiao K, Liu S F, et al. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. Analytical Chemistry,2009,81(15):6006-6012
    [72]Tam P D, Van Hieu N, Chien N D, et al. DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. Journal of Immunological Methods,2009,350(1-2):118-124
    [73]Shen Q, Wang X. Simultaneous determination of adenine, guanine and thymine based on (3-cyclodextrin/MWNTs modified electrode. Journal of Electroanalytical Chemistry,2009,632(1-2):149-153
    [74]Yapasan E, Caliskan A, Karadeniz H, et al. Electrochemical investigation of biomolecular interactions between platinum derivatives and DNA by carbon nanotubes modified sensors. Materials Science and Engineering:B,2010, 169(1-3):169-173
    [75]Wang Z, Zhou X, Zhang J, et al. Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase. The Journal of Physical Chemistry C,2009,113(32):14071-14075
    [76]Kang X, Wang J, Wu H, et al. Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors and Bioelectronics,2009,25(4):901-905
    [77]Xu H, Dai H, Chen G. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta,2010,81(1-2):334-338
    [78]Wang L, Zhang X, Xiong H, et al. A novel nitromethane biosensor based on biocompatible conductive redox graphene-chitosan/hemoglobin/graphene/ room temperature ionic liquid matrix. Biosensors and Bioelectronics,2010, 26(3):991-995
    [79]Zeng Q, Cheng J, Tang L, et al. Self-Assembled Graphene-Enzyme Hierarchical Nanostructures for Electrochemical Biosensing. Advanced Functional Materials,2010,20(19):3366-3372
    [80]Zhou K F, Zhu Y H, Yang X L, et al. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochimica Acta, 2010,55(9):3055-3060
    [81]Lu Q, Dong X, Li L J, et al. Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet-enzyme composite film. Talanta,2010,82(4):1344-1348
    [82]Song W, Li D W, Li Y T, et al. Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles. Biosensors and Bioelectronics,2011,26(7):3181-3186
    [83]Zhao J, Chen G, Zhu L, et al. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochemistry Communications, 2011,13(1):31-33
    [84]Bo Y, Wang W, Qi J, et al. A DNA biosensor based on graphene paste electrode modified with Prussian blue and chitosan. Analyst,2011,136(9): 1946-1951
    [85]Bo Y, Yang H, Hu Y, et al. A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochimica Acta,2011,56(6): 2676-2681
    [86]Du M, Yang T, Li X, et al. Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization. Talanta,2012,88:439-444
    [87]Huang K J, Niu D J, Sun J Y, et al. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids and Surfaces B:Biointerfaces,2011,82(2):543-549
    [88]Jayakumar K, Rajesh R, Dharuman V, et al. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing. Biosensors and Bioelectronics, 2012,31(1):406-412
    [89]周全法,刘维桥,尚通明.贵金属纳米材料.北京:化学工业出版社,2008,33-41
    [90]Carralero Sanz V, Mena M L, Gonzalez-Cortes A, et al. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes:Application to the measurement of a bioelectrochemical polyphenols index in wines. Analytica Chimica Acta,2005,528(1):1-8
    [91]Zhang S, Wang N, Yu H, et al. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry,2005,67(1):15-22
    [92]Shulga O, Kirchhoff J R. An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochemistry Communications,2007,9(5):935-940
    [93]Yang W, Wang J, Zhao S, et al. Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Electrochemistry Communications,2006,8(4):665-672
    [94]Xiao Y, Ju H X, Chen H Y. Direct Electrochemistry of Horseradish Peroxidase Immobilized on a Colloid/Cysteamine-Modified Gold Electrode. Analytical Biochemistry,2000,278(1):22-28
    [95]Jia J, Wang B, Wu A, et al. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor:Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network. Analytical Chemistry,2002, 74(9):2217-2223
    [96]Jena B K, Raj C R. Electrochemical Biosensor Based on Integrated Assembly of Dehydrogenase Enzymes and Gold Nanoparticles. Analytical Chemistry, 2006,78(18):6332-6339
    [97]Wang M, Sun C, Wang L, et al. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. Journal of Pharmaceutical and Biomedical Analysis,2003,33(5):1117-1125
    [98]Kang J, Li X, Wu G, et al. A new scheme of hybridization based on the Aunano-DNA modified glassy carbon electrode. Analytical Biochemistry, 2007,364(2):165-170
    [99]Wang J, Xu D, Kawde A N, et al. Metal Nanoparticle-Based Electrochemical Stripping Potentiometric Detection of DNA Hybridization. Analytical Chemistry,2001,73(22):5576-5581
    [100]Cai H, Wang Y, He P, et al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica Acta, 2002,469(2):165-172
    [101]李凤生,杨毅,马振叶.纳米功能复合材料及应用.北京:国防工业出版社,2003,16-33
    [102]Narang J, Chauhan N, Jain P, et al. Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. International Journal of Biological Macromolecules,2012,50(3):672-678
    [103]Teymourian H, Salimi A, Hallaj R. Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite:Fabrication of integrated dehydrogenase-based lactate biosensor. Biosensors and Bioelectronics,2012,33(1):60-68
    [104]Li S, Zhu X, Zhang W, et al. Hydrogen peroxide biosensor based on gold nanoparticles/thionine/goldnanoparticles/multi-walledcarbon nanotubes-chito-sans composite film-modified electrode. Applied Surface Science,2012, 258(7):2802-2807
    [105]Sheng Q, Wang M, Zheng J. A novel hydrogen peroxide biosensor based on enzymatically induced deposition of polyaniline on the functionalized graphene-carbon nanotube hybrid materials. Sensors and Actuators B: Chemical,2011,160(1):1070-1077
    [106]Ge S, Yan M, Lu J, et al. Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis. Biosensors and Bioelectronics,2012,31(1):49-54
    [107]Zeng Q, Cheng J-S, Liu X-F, et al. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosensors and Bioelectronics,2011,26(8):3456-3463
    [108]Wu H, Wang J, Kang X, et al. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta,2009,80(1):403-406
    [109]Chauhan N, Pundir C S. An amperometric uric acid biosensor based on multiwalled carbon nanotube-gold nanoparticle composite. Analytical Biochemistry.2011,413(2):97-103
    [110]Ryu S W, Kim C H, Han J W, et al. Gold nanoparticle embedded silicon nanowire biosensor for applications of label-free DNA detection. Biosensors and Bioelectronics,2010,25(9):2182-2185
    [111]Pundir C S, Chauhan N, Rajneesh, et al. A novel amperometric biosensor for oxalate determination using multi-walled carbon nanotube-gold nanoparticle composite. Sensors and Actuators B:Chemical,2011,155(2):796-803
    [112]Cui R, Huang H, Yin Z, et al. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosensors and Bioelectronics,2008,23(11):1666-1673
    [113]Ahmed S, Rasul M G, Brown R, et al. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater:A short review. Journal of Environmental Management,2011,92(3):311-330
    [114]Gogate P R. Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation:A review of the current status and the way forward. Ultrasonics Sonochemistry,2008,15(1):1-15
    [115]Jagetia G C, Menon K S L, Jain V. Genotoxic effect of hydroquinone on the cultured mouse spleenocytes. Toxicology Letters,2001,121(1):15-20
    [116]O'Donoghue J, Barber E D, Hill T, et al. Hydroquinone:Genotoxicity and Prevention of Genotoxicity Following Ingestion. Food and Chemical Toxicology,1999,37(9-10):931-936
    [117]Chang Chien S W, Chen H L, Wang M C, et al. Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol catalyzed by birnessite. Chemosphere,2009,74(8):1125-1133
    [118]Kerzic P J, Liu W S, Pan M T, et al. Analysis of hydroquinone and catechol in peripheral blood of benzene-exposed workers. Chemico-Biological Interactions,2010,184(1-2):182-188
    [119]Latkar M, Swaminathan K, Chakrabarti T. Kinetics of anaerobic biodegradation of resorcinol catechol and hydroquinone in upflow fixed film-fixed bed reactors. Bioresource Technology,2003,88(1):69-74
    [120]Guo Q, Huang J, Chen P, et al. Simultaneous determination of catechol and hydroquinone using electrospun carbon nanofibers modified electrode. Sensors and Actuators B:Chemical,2012.163(1):179-185
    [121]Liu Z, Wang Z, Cao Y, et al. High sensitive simultaneous determination of hydroquinone and catechol based on graphene/BMIMPF6 nanocomposite modified electrode. Sensors and Actuators B:Chemical,2011,157(2):540-546
    [122]Ahammad A J S, Rahman M M, Xu G-R, et al. Highly sensitive and simultaneous determination of hydroquinone and catechol at poly(thionine) modified glassy carbon electrode. Electrochimica Acta,2011,56(14): 5266-5271
    [123]Bu C, Liu X, Zhang Y, et al. A sensor based on the carbon nanotubes-ionic liquid composite for simultaneous determination of hydroquinone and catechol. Colloids and Surfaces B:Biointerfaces,2011,88(1):292-296
    [124]Yu J, Du W, Zhao F, et al. High sensitive simultaneous determination of catechol and hydroquinone at mesoporous carbon CMK-3 electrode in comparison with multi-walled carbon nanotubes and Vulcan XC-72 carbon electrodes. Electrochimica Acta,2009,54(3):984-988
    [125]Zhao D M, Zhang X H, Feng L J, et al. Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Colloids and Surfaces B:Biointerfaces,2009,74(1):317-321
    [126]Bai J, Huang Y. Fabrication and electrical properties of graphene nanoribbons. Materials Science and Engineering:R:Reports,2010,70(3-6):341-353
    [127]Cui F, Zhang X. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. Journal of Electroanalytical Chemistry,2012,669(1):35-41
    [128]Pumera M, Ambrosi A, Bonanni A, et al. Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry,2010,29(9):954-965
    [129]Liu L, Zhang F, Xi F, et al. Highly sensitive biosensor based on bionanomultilayer with water-soluble multiwall carbon nanotubes for determination of phenolics. Biosensors and Bioelectronics,2008,24(2): 306-312
    [130]Zhang T, Xi K, Gu M, et al. Phosphoryl choline-grafted water-soluble carbon nanotube. Chinese Chemical Letters,2008,19(1):105-109
    [131]Zhang T, Xu M, He L, et al. Synthesis, characterization and cytotoxicity of phosphoryl choline-grafted water-soluble carbon nanotubes. Carbon,2008, 46(13):1782-1791
    [132]Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy,2012,1(1):107-131
    [133]Artiles M S, Rout C S, Fisher T S. Graphene-based hybrid materials and devices for biosensing. Advanced Drug Delivery Reviews,2011,63(14-15): 1352-1360
    [134]Siamaki A R, Khder A E R S, Abdelsayed V, et al. Microwave-assisted synthesis of palladium nanoparticles supported on graphene:A highly active and recyclable catalyst for carbon-carbon cross-coupling reactions. Journal of Catalysis,2011,279(1):1-11
    [135]Sanchez-Obrero G, Cano M, Avila J L, et al. A gold nanoparticle-modified PVC/TTF-TCNQ composite amperometric biosensor for glucose determination. Journal of Electroanalytical Chemistry,2009,634(1):59-63
    [136]Xuan J, Jia X D, Jiang L P, et al. Gold nanoparticle-assembled capsules and their application as hydrogen peroxide biosensor based on hemoglobin. Bioelectrochemistry,2012,84(1):32-37
    [137]Yagati A K, Lee T, Min J, et al. Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection. Colloids and Surfaces B:Biointerfaces,2012,92(1):161-167
    [138]Gu Z G, Yang S P, Li Z J, et al. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Electrochimica Acta,2011,56(25):9162-9167
    [139]Shan C S, Yang H F, Han D X, et al. Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-1-lysine. Langmuir,2009,25(20): 12030-12033
    [140]Zeng G M, Tang L, Shen G L. Determination of trace chromium(VI) by an inhibition-based enzyme biosensor incorporating an electropolymerized aniline membrane and ferrocene as electron transfer mediat. International Journal of Environment Analytical Chemistry,2004,84(10):761-774
    [141]Chapuis-Lardy L, Contour-Ansel D, Bernhard-Reversat F. High-performance liquid chromatography of water-soluble phenolics in leaf litter of three Eucalyptus hybrids. Plant Science,2002,163(2):217-222
    [142]Li Y M, Tang L H, Li J H. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochemistry Communications,2009,11(4):846-849
    [143]Zhao D M, Zhang X H, Feng L J, et al. Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Colloids and Surfaces B:Biointerfaces,2009,74(1):317-321
    [144]Du H, Ye J, Zhang J, et al. A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. Journal of Electroanalytical Chemistry,2011,650(2):209-213
    [145]Almeida T D O, Talens-Alesson F I. Removal of phenylamine and catechol by adsorptive micellar flocculation. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,279(1-3):28-33
    [146]Mandal A, Ojha K, De A K, et al. Removal of catechol from aqueous solution by advanced photo-oxidation process. Chemical Engineering Journal,2004, 102(2):203-208
    [147]Topping D C, Bernard L G, O'Donoghue J L, et al. Hydroquinone:Acute and subchronic toxicity studies with emphasis on neurobehavioral and nephrotoxic effects. Food and Chemical Toxicology,2007,45(1):70-78
    [148]Cohen S, Belinky P A, Hadar Y, et al. Characterization of catechol derivative removal by lignin peroxidase in aqueous mixture. Bioresource Technology, 2009,100(7):2247-2253
    [149]Subramanyam R, Mishra I M. Biodegradation of catechol (2-hydroxy phenol) bearing wastewater in an UASB reactor. Chemosphere,2007,69(5):816-824
    [150]Galliker P, Hommes G, Schlosser D, et al. Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds. Journal of Colloid and Interface Science,2010,349(1):98-105
    [151]Odaci D, Timur S, Pazarlioglu N, et al. Determination of phenolic acids using Trametes versicolor laccase. Talanta,2007,71(1):312-317
    [152]Itoh K, Fujita M, Kumano K, et al. Phenolic acids affect transformations of chlorophenols by a Coriolus versicolor laccase. Soil Biology and Biochemistry, 2000,32(1):85-91
    [153]Tsioulpas A, Dimou D, Iconomou D, et al. Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresource Technology,2002,84(3):251-257
    [154]Xiong Y, Gao J, Zheng J, et al. Effects of Succinic Anhydride Modification on Laccase Stability and Phenolics Removal Efficiency. Chinese Journal of Catalysis,2011,32(9-10):1584-1591
    [155]Santhiago M, Vieira I C. L-Cysteine determination in pharmaceutical formulations using a biosensor based on laccase from Aspergillus oryzae. Sensors and Actuators B:Chemical,2007,128(1):279-285
    [156]Haghighi B, Bozorgzadeh S. Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles:A novel route for the fabrication of an oxygen sensor and a glucose biosensor. Analytica Chimica Acta,2011,697(1-2):90-97
    [157]Jiang C, Yang T, Jiao K, et al. A DNA electrochemical sensor with poly-1-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochimica Acta,2008,53(6):2917-2924
    [158]Tam P D, Van Hieu N, Chien N D, et al. DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. Journal of Immunological Methods,2009,350(1-2):118-124
    [159]Hu C G, Yang C H, Hu S S. Hydrophobic adsorption of surfactants on water-soluble carbon nanotubes:A simple approach to improve sensitivity and antifouling capacity of carbon nanotubes-based electrochemical sensors. Electrochemistry Communications,2007,9(1):128-134
    [160]Zhang L, Ni Q Q, Fu Y Q, et al. One-step preparation of water-soluble single-walled carbon nanotubes. Applied Surface Science,2009,255(15): 7095-7099
    [161]Zhang T, Xi K, Gu M, et al. Phosphoryl choline-grafted water-soluble carbon nanotube. Chinese Chemical Letters,2008,19(1):105-109
    [162]Liu L, Zhang F, Xi F, et al. Highly sensitive biosensor based on bionanomultilayer with water-soluble multiwall carbon nanotubes for determination of phenolics. Biosensors and Bioelectronics,2008,24(2): 306-312
    [163]Hu C, Chen X, Hu S. Water-soluble single-walled carbon nanotubes films: Preparation, characterization and applications as electrochemical sensing films. Journal of Electroanalytical Chemistry,2006,586(1):77-85
    [164]Cullen D. Recent advances on the molecular genetics of ligninolytic fungi. Journal of Biotechnology,1997,53(2-3):273-289
    [165]Hofrichter M. Review:lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology,2002,30(4):454-466
    [166]Maritnez A T. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme and Microbial Technology,2002,30(4):425-444
    [167]Ander P. The cellobiose-oxidizing enzymes CBQ and CBO as related to lignin and cellulose degradation—a review. FEMS Microbiology Review,1994, 13(2-3):297-312
    [168]Fang J, Huang F, Gao P J. Optimization of cellobiose dehydrogenase production by Schizophyllum commune and effect of the enzyme on kraft pulp bleaching by ligninases. Process Biochemistry,1999,34(9):957-961
    [169]Hilden L, Johansson G, Pettersson G, et al. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation. FEBS Letters,2000,477(1-2):79-83
    [170]Henriksson G, Zhang L M, Li J B. Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme. Biochimica et Biophysica Acta,2000,1480(1-2):83-91
    [171]Stoica L, Ruzgas T, Gorton L. Electrochemical evidence of self-substrate inhibition as functions regulation for cellobiose dehydrogenase from Phanerochaete chrysosporium. Bioelectrochemistry,2009,76(1-2):42-52
    [172]张学记,鞠熀先.电化学与生物传感器.北京:化学工业出版社,2009,370-376
    [173]Cullen D. Recent advances on the molecular genetics of ligninolytic fungi. Journal of Biotechnology,1997,53(3):273-289
    [174]Arora K, Prabhakar N, Chand S, et al. Escherichia coli Genosensor Based on Polyaniline. Analytical Chemistry,2007,79(16):6152-6158
    [175]Kara P, Cavdar S, Berdeli A, et al. Electrochemical Genoassay Design for Allele-Specific Detection of Toll-Like Receptor-2 Gene Polymorphism Electroanalysis,2007,19(18):1875-1882
    [176]Tang L, Zeng G M, Shen G L. Sensitive detection of lip genes by electrochemical DNA sensor and its application in polymerase chain reaction amplicons from Phanerochaete chrysosporium. Biosensors and Bioelectronics, 2009,24(5):1474-1479
    [177]Herne T M, Tarlov M J. Characterization of DNA Probes Immobilized on Gold Surfaces. Journal of the American Chemical Society,1997,119(38): 8916-8920
    [178]Haghighi B, Gorton L, Ruzgas T, et al. Characterization of graphite electrodes modified with laccase from Trametes versicolor and their use for bioelectrochemical monitoring of phenolic compounds in flow injection analysis. Analytica Chimica Acta,2003,487(1):3-14
    [179]Aitichou M, Henkens R, Sultana A M, et al. Detection of Staphylococcus aureus enterotoxin A and B genes with PCR-EIA and a hand-held electrochemical sensor. Molecular and Cellular Probes 2004,18(4):373-377
    [180]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment:a review. Bioresource Technology,2000,72(2): 169-183
    [181]Mansfield S D, DeJong E, Saddler J N. Cellobiose dehydrogenase, an active agent incellulose depolymerization. Applied and Environment Microbiology. 1997,63(4):3804-3809
    [182]Baminger U, Nidetzky B, Kulbe K D, et al. A simple assay for measuring cellobiose dehydrogenase in the presence of laccase. Journal of Microbiological Methods,1999,35(3):253-259
    [183]Kajisa T, Yoshida M, Igarashi K, et al. Characterization and Molecular Cloning of Cellobiose Dehydrogenase from the Brown-Rot Fungus Coniophora puteana. Journal of Bioscience and Bioengineering,2004,98(1):57-63
    [184]Mao X, Jiang J H, Xu X M, et al. Enzymatic amplification detection of DNA based on "molecular beacon" biosensors. Biosensors and Bioelectronics,2008, 23(10):1555-1561
    [185]Tang L, Zeng G M, Liu J X, et al. Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Analytical and Bioanalytical Chemistry,2008,391(2):679-685
    [186]Tang L, Zeng G M, Shen G L, et al. Sensitive detection of lip genes by electrochemical DNA sensor and its application in polymerase chain reaction amplicons from Phanerochaete chrysosporium. Biosensors and Bioelectronics, 2009,24(5):1474-1479
    [187]Ribeiro J A, Carreira C A, Lee H J, et al. Voltammetric determination of paraquatat DNA-gold nanoparticle composite electrodes. Electrochimica Acta, 2010,55:7892-7896
    [188]Sadik O A, Mwilu S K, Aluoch A. Smart electrochemical biosensors:From advanced materials to ultrasensitive devices. Electrochimica Acta,2010, 55(14):4287-4295
    [189]Moore R R, Banks C E, Compton R G. Basal Plane Pyrolytic Graphite Modified Electrodes:□ Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts. Analytical Chemistry,2004,76(10):2677-2682
    [190]Pedano M L, Rivas G A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes. Electrochemistry Communication,2004, 6(1):10-16
    [191]Sun W, Qin P, Gao H W, et al. Electrochemical DNA biosensor based on chitosan/nano-V2O5/MWCNTs composite film modified carbon ionic liquid electrode and its application to the LAMP product of Yersinia enterocolitica gene sequence. Biosensors and Bioelectronics,2010,25(6):1264-1270
    [192]Pingarron J M, Yanez-Sedeno P, Gonzalez-Cortes. Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta,2008,53(19):5848-5866
    [193]Tsai Y C, Li S C, Liao S W. Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose. Biosensors and Bioelectronics,2006,22(4):495-500
    [194]Capek I. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Advances in Colloid and Interface Science,2009,150(2): 63-89
    [195]Ellis A V, Vijayamohanan K, Goswami R, et al. Hydrophobic Anchoring of Monolayer-Protected Gold Nanoclusters to Carbon Nanotubes. Nano Letters, 2003,3(3):279-282
    [196]Valentini F, Amine A, Orlanducci S, et al. Carbon Nanotube Purification:□ Preparation and Characterization of Carbon Nanotube Paste Electrodes. Analytical Chemistry,2003,75(20):5413-5421
    [197]Mahe E, Devilliers D, Comninellis C. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes. Electrochimica Acta,2005,50(11):2263-2277
    [198]Pappa-Louisi A, Agrafiotou P, Georgiadis I. Separation optimization in reversed-phase liquid chromatography by using alkanol additives in the mobile phase:Application to amino acids. Talanta,2011,85(4):2241-2245
    [199]Islam R U, Witcomb M J, Scurrell M S, et al. In situ synthesis of a Pd-poly (1,8-diaminonaphthalene) nanocomposite:An efficient catalyst for Heck reactions under phosphine-free conditions. Catalysis Communications,2010, 12(2):116-121
    [200]Tamburri E, Orlanducci S, Terranova M L, et al. Modulation of electrical properties in single-walled carbon nanotube/conducting polymer composites. Carbon,2005,43(6):1213-1221
    [201]Nenkova R, Ivanova D, Vladimirova J, et al. New amperometric glucose biosensor based on cross-linking of glucose oxidase on silica gel/multiwalled carbon nanotubes/polyacrylonitrile nanocomposite film. Sensors and Actuators B:Chemical.2010,148(1):59-65
    [202]Wu J, Zou Y H, Li X L, et al. A biosensor monitoring DNA hybridization based on polyaniline intercalated graphite oxide nanocomposite. Sensors and Actuators B:Chemical,2005,104(1):43-49
    [203]Hu C G, Chen Z L, Shen A G, et al. Water-soluble single-walled carbon nanotubes via noncovalent functionalization by a rigid, planar and conjugated diazo dye. Carbon,2006,44(3):428-434
    [204]Urek R 0, Pazarlio lu N K. Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Process Biochemistry,2005,40(1):83-87
    [205]Zhang X, Wang Y, Wang L, et al. Site-directed mutagenesis of manganese peroxidase from Phanerochaete chrysosporium in an in vitro expression system. Journal of Biotechnology,2009,139(2):176-178
    [206]Acevedo F, Pizzul L, Castillo M d, et al. Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere,2010,80(3):271-278
    [207]Inoue Y, Hata T, Kawai S, et al. Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. Journal of Hazardous materials, 2010,180(1-3):764-767
    [208]Sundaramoorthy M, Gold M H, Poulos T L. Ultrahigh resolution structure of manganese peroxidase from Phanerochaete chrysosporium:Implications for the catalytic mechanism. Journal of Inorganic Biochemistry,2010,104(6): 683-690
    [209]Li D, Li N, Ma B, et al. Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalens. Biochimica et Biophysica Acta,1999,1434(2):356-364
    [210]Lobos S, Larrondo L, Salas L, et al. Cloning and molecular analysis of a cDNA and the Cs-mnpl gene encoding a manganese peroxidase isoenzyme from the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Gene,1998, 206(2):185-193
    [211]Alvarez J M, Canessa P, Mancilla R A, et al. Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE 1-like copper-fist transcription factor. Fungal Genetics and Biology,2009,46(1):104-111
    [212]Tello M, Corsini G, Larrondo L F, et al. Characterization of three new manganese peroxidase genes from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochimica et Biophysica Acta,2000,1490(1-2):137-144
    [213]Guo Q, Bao Y, Yang X, et al. Amplified electrochemical DNA sensor using peroxidase-like DNAzyme. Talanta,2010,83(2):500-504
    [214]Patel M K, Solanki P R, Kumar A, et al. Electrochemical DNA sensor for Neisseria meningitidis detection. Biosensors and Bioelectronics,2010,25(12): 2586-2591
    [215]Bo Y, Yang H, Hu Y, et al. A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochimica Acta,2011,56(6): 2676-2681
    [216]Jha N, Jafri R I, Rajalakshmi N, et al. Graphene-multi walled carbon nanotube hybrid electrocatalyst support material for direct methanol fuel cell. International Journal of Hydrogen Energy,2011,36(12):7284-7290
    [217]Lu J, Liu S, Ge S, et al. Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosensors and Bioelectronics,2012, 33(1):29-35
    [218]Lu T, Pan L, Li H, et al. Reduced graphene oxide-carbon nanotubes composite films by electrophoretic deposition method for supercapacitors. Journal of Electroanalytical Chemistry,2011,661(1):270-273
    [219]Liu Z, Liu L, Li H, et al. "Green" polymer solar cell based on water-soluble poly [3-(potassium-6-hexanoate) thiophene-2,5-diyl] and aqueous-dispersible noncovalent functionalized graphene sheets. Solar Energy Materials and Solar Cells,2012,97(1):28-33
    [220]Park Y J, Park S Y, In I. Preparation of water soluble graphene using polyethylene glycol:Comparison of covalent approach and noncovalent approach. Journal of the Indian of Chemistry,2011,17(2):298-303
    [221]Feng D, Wang F, Chen Z. Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sensors and Actuators B,2009,138(2):539-544
    [222]Zhang J, Lei J, Pan R, et al. Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosensors and Bioelectronics,2010,26(2): 371-376
    [223]Guo Y, Guo S, Fang Y, et al. Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan. Electrochimica Acta,2010,55(12):3927-3931
    [224]Jiang H J, Zhao Y, Yang H, et al. Synthesis and electrochemical properties of single-walled carbon nanotube-gold nanoparticle composites. Materials Chemistry and Physics,2009,114(2-3):879-883
    [225]Huang J, Xing X, Zhang X, et al. A molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine. Food Research International,2011, 44(1):276-281
    [226]Lin J, He C, Zhang L, et al. Sensitive amperometric immunosensor for a-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Analytical Biochemistry,2009,384(1):130-135
    [227]Leinonen H, Pettersson M, Lajunen M. Water-soluble carbon nanotubes through sugar azide functionalization. Carbon,2011,49(4):1299-1304
    [228]Zhang L, Ni Q-Q, Fu Y, et al. One-step preparation of water-soluble single-walled carbon nanotubes. Applied Surface Science,2009,255(15): 7095-7099
    [229]Park C, Yoon T H. L-Cysteine-induced photoluminescence enhancement of CdSe/ZnSe quantum dots in aqueous solution. Colloids and Surfaces B: Biointerfaces,2010,75(2):472-477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700