凡纳滨对虾对蛋白质饲料原料消化率的研究及饲料配方实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以凡纳滨对虾(Litopeaneus vannamei)为试验动物,分别采用离体消化法和体内消化法研究其对不同蛋白原料的消化率。根据蛋白原料消化率的测定结果配制鱼粉添加比例不同但可消化粗蛋白和可消化氨基酸相同的5种饲料,并进行饲养试验,通过测定生长性能、饲料表观消化率、消化酶活性和血液生化指标,评价这5种饲料的饲喂效果,探讨基于可消化蛋白质和可消化氨基酸设计饲料配方的可行性。此外,试验还探讨了花生粕替代鱼粉对凡纳滨对虾的饲喂效果。
     试验一:采用离体消化法研究了凡纳滨对虾的胃、中肠腺及肠道粗酶液对鱼粉、豆粕、菜粕和花生粕的离体消化率和酶解动力学。结果表明:凡纳滨对虾不同消化部位对干物质消化率的大小顺序为:胃>中肠腺>肠道,且鱼粉在胃部的消化率显著高于中肠腺和肠道(P<0.05),花生粕在肠道的消化率显著低于胃和中肠腺(P<0.05);对蛋白质消化率的大小顺序为:中肠腺>胃>肠道,且菜粕和花生粕在肠道的消化率显著低于胃和中肠腺(P<0.05),鱼粉在肠道和胃的消化率显著低于中肠腺(P<0.05);粗酶液对4种原料干物质的消化率高低依次为:豆粕50.78%、菜粕42.02%、花生粕39.67%、鱼粉36.50%;对粗蛋白的消化率高低依次为:花生粕60.40%、豆粕56.45%、鱼粉46.28%、菜粕43.28%。在0~4 h内,粗酶液酶解4种蛋白原料时氨基酸的生成量呈增加趋势;不同消化部位酶解产生的氨基酸总量不同,高低顺序依次为中肠腺(96.72 mg)>胃(31.28 mg)>肠道(27.58 mg);不同蛋白原料酶解时的氨基酸生成速率大小顺序为花生粕(3.9154 mg/h)>鱼粉(3.4774 mg/h)>豆粕(2.8316 mg/h)>菜粕(2.7404 mg/h)。
     试验二:选取12种常见蛋白质饲料原料,按照70%基础饲料+30%试验原料(血粉按85%+15%)的原则配制饲料,以三氧化二铬(Cr2O3)作为外源指示剂,测定了凡纳滨对虾(4.45±0.21 g)对蛋白原料干物质、粗蛋白、粗脂肪、灰分、能量和氨基酸的表观消化率。结果表明:各种蛋白原料干物质表观消化率在48.61%~86.98%之间;粗蛋白表观消化率在55.74%~92.35%之间;粗脂肪的表观消化率在-0.23%~92.64%之间;灰分表观消化率在60.83%~96.30%之间;总能表观消化率在51.11%~97.27%之间。鱼粉、豆粕和花生粕的总氨基酸表观消化率分别为90.56%、92.67%和90.61%,显著高于其他蛋白原料(P<0.05);玉米蛋白粉的总氨基酸表观消化率最低,仅为59.15%,显著低于其他蛋白原料(P<0.05)。12种蛋白原料总氨基酸表观消化率高低顺序为:豆粕>花生粕>鱼粉>鸡肉粉>虾头粉>饲料酵母>菜粕>肉骨粉>乌贼内脏粉>血粉>棉粕>玉米蛋白粉。
     试验三:以可消化粗蛋白和氨基酸为基础,设计可消化蛋白水平和可消化赖氨酸、蛋氨酸和精氨酸水平相同、但鱼粉添加比例不同的5种饲料配方(分别为30%、25%、20%、15%和10%),配制试验饲料,并比较这些饲料对凡纳滨对虾的饲喂效果。结果表明:随着饲料中鱼粉比例下降,饲料系数和摄食率逐渐升高,蛋白质效率、干物质、粗蛋白和粗脂肪表观消化率逐渐降低。饲料中鱼粉比例为10%时,对虾增重率、存活率、特定生长率和胃蛋白酶活性显著低于其他试验组(P<0.05),肝体指数、血清尿素氮含量和溶菌酶活性显著升高(P<0.05)。利用可消化蛋白及主要限制性氨基酸配制饲料,可使饲料中鱼粉添加比例降低至15%而不影响凡纳滨对虾的生长性能、饲料利用及营养状况。
     试验四:以花生粕作为鱼粉蛋白替代原料,配制6种等氮等脂的试验饲料,其中花生粕的添加比例分别为0、7、14、21、28和35%,分别替代0、15、30、45、60和75%的鱼粉蛋白,同时以一种市售凡纳滨对虾饲料做参考饲料(RD)。饲料中添加Cr2O3作为外源指示剂用于消化率测定。结果表明:花生粕在饲料中比例增加到21%以上时,增重率显著低于对照组(P<0.05);花生粕比例增加到14%以上时,饲料效率、饲料蛋白质效率和存活率显著低于对照组(P<0.05);花生粕比例增加至35%时对虾摄食率显著低于对照组(P<0.05)。随花生粕添加比例增加,虾体水分含量呈升高趋势,粗蛋白和灰分含量则呈下降趋势,但粗脂肪含量变化不明显。饲料干物质、粗蛋白、粗脂肪和灰分的消化率随花生粕添加比例增加而降低,替代比例越高,消化率下降程度则越大。对虾胃蛋白酶和肝胰蛋白酶活性,血清中的超氧化物歧化酶、过氧化物酶、酸性磷酸酶和碱性磷酸酶活性变化趋势与消化率的变化趋势一致,铜蓝蛋白含量变化趋势则相反。花生粕不同替代比例对对虾血清溶菌酶活性没有显著影响(P>0.05)。
In this paper, the nutrient digestibility of different protein feed ingredients were evaluated using in vitro and in vivo methods for Pacific white shrimp, Litopenaeus vannamei. Based on digestibility of these protein feed ingredients, five practical diets were formulated to contain the same level of digestible crude protein and digestible amino acids for the shrimp, and their effect on growth performance, body compositions, feed utilization, digestive enzyme activity and biochemical parameters were assessed. In addition, the effect of replacement fish meal by peanut meal in practical diets on growth performance for the shrimp was also investigated. The results were as follows:
     Experiment 1: The digestibility of four protein feed ingredients [fish meal (FM), soybean meal (SM), rapeseed meal (RM) and peanut meal (PM)] were determined using the in vitro method and kinetics of hydrolysis of digestive enzymes in stomach, hepatopancreas and intestine of Pacific white shrimp were studied. The results showed that the order of digestion of different digestive organs for dry matter was stomach > hepatopancreas > intestine, and stomach had significantly higher dry matter digestibility of FM than hepatopancreas and intestine (P<0.05), but intestine got significantly lower dry matter digestibility of PM than stomach and hepatopancreas (P<0.05). The order of digestion of different digestive organs for crude protein was hepatopancreas > stomach > intestine, and the digestibility of PM and RM in intestin were significantly lower than in stomach and hepatopancreas (P<0.05), but the digestibility of FM in hepatopancreas was significantly higher than in stomach and intestine (P<0.05). The order of proteins for digestibility of dry matter was SM (50.78%) > RM (42.02%) > PM (39.67%) > FM (36.50%). The order proteins for digestibility of crude protein was PM (60.40%) > SM (56.45%) > FM (46.28%) > RM (43.28%). The amino acids production of enzymolysis reaction was hepatopancreas (96.72 mg) > stomach (31.28 mg) > intestine (27.58 mg); the order of enzymolysis rate for amino acid was PM (3.9154 mg/h) > FM (3.4774 mg/h) > SM (2.8316 mg/h) > RM (2.7404 mg/h).
     Experiment 2: A feeding trial was conducted to determined apparent digestibility coefficients (ADC) of dry matter, crude protein, crude lipid, ash, energy and amino acids for twelve protein feed ingredients (i.e. fish meal, blood meal, meat and bone meal, poultry by-products meal, shrimp head meal, squid visceral meal, soybean meal, rapeseed meal, cottonseed meal, peanut meal, corn gluten meal and brewers yeast) for Pacific white shrimp (4.45±0.21 g). A reference diet and test diets (consisted of 70% reference diet and 30% of the raw feedstuff, except for blood meal with a ratio of 85%:15%) were used with Cr2O3 as external indicator. The results showed that the ADC of dry matter ranged from 48.61% to 86.98%, the ADC of energy ranged from 51.11% to 97.27%, the ADC of crude protein ranged from 55.74% to 92.35%, the ADC of crude lipid ranged from -0.23% to 92.64%, and the ADC of ash between 60.83% and 96.30%. The ADCs of total amino acids for fish meal, soybean meal and peanut meal were significantly higher than that for other meals (P<0.05), while corn gluten meal was significantly lower than that for other meals (P<0.05), and those feed ingredients were: soybean meal (92.67%) > peanut meal (90.61%) > fish meal (90.56%)> poultry by-products (89.81%) > shrimp head meal (88.82%) > brewers yeast (86.23%) > rapeseed meal (84.84%) > meat-bone meal (83.87%) > squid visceral meal (83.72%) > blood meal (77.25%) > cottonseed meal (72.82%) > corn gluten meal (59.15%).
     Experiment 3: A feeding trial was conducted to evaluate the effect of five practical diets formulated on the same level of digestible crude protein, lysine, methionine and arginine on growth performance, body composition, feed utilization, digestive enzyme activity and values of biochemical parameters for the shrimp. The results showed that weight gain rate, survival, specific growth rate and protease activity in stomach in shrimp fed the diet at the fish meal inclusion level of 10% were significantly lower than that of shrimp fed the diets at the level of 15% or higher (P<0.05), while hepatosomatic indexes, blood urea nitrogen and lysozyme activities increased significantly (P<0.05). There were no differences in growth performance, body composition, digestive enzyme activity, blood urea nitrogen level, glutamic-pyruvic transaminase, glutamic-oxalacetic transaminase and lysozyme activities between the fish meal diets at the inclusion level of 15% or higher (P>0.05). Feed conversion rate and feeding rate increased, while protein efficiency ratio and apparent digestibility coefficients of dry matter, crude protein and crude lipid decreased with the reduction in dietary fish meal inclusion level.
     Experiment 4: Six isonitrogenous (crude protein 41%) and isolipidic (crude lipid 8.5%) diets were formulated to contain 0%, 7%, 14%, 21%, 28% and 35% of peanut meal (PM), replacing 0%, 15%, 30%, 45%, 60% and 75% of fish meal (FM) protein respectively. Chromic oxide was used as the inert indicator for digestibility. The results showed that weight gain rate decreased significantly when dietary PM inclusion was raised above 21% (P<0.05). Protein efficiency ratio and survival rate decreased significantly but feed conversion rate increased significantly as PM inclusion level above 14% (P<0.05). Feeding rate in 21% PM inclusion group was significantly higher than that in 28% and 35% PM inclusion groups (P<0.05). Body crude protein and ash content significantly decreased, but body moisture significantly increased when dietary PM inclusion was higher than 14% (P<0.05). The apparent digestibility for dry matter, crude protein, crude lipids and ash decreased gradually as the level of PM replacement increased. Protease activities in stomach and hepatopancreas of 0~14% PM inclusion groups were significantly higher than in other groups (P<0.05). There was a similar trend as digestibility for the activities of superoxide dismutase (SOD), peroxidase (POD), acid phosphatase (ACP) and alkaline phosphatase (AKP) in serum, but ceruloplasmin (CP) content displayed adverse tendency. Body lipid and lysozyme activity was not affected by all treatments (P>0.05).
引文
[1]郭沛涌,王运涛.水产养殖饲料蛋白源开发利用研究现状[J].中国水产科学, 2000, 7 (4): 108-112.
    [2]任和,占秀安.水产动物氨基酸营养研究进展[J].饲料研究, 2006, 2: 41-43.
    [3]农业部渔业局.中国渔业年鉴2007[M].北京:中国农业出版社, 2007.
    [4] Luzzana U. Recent advances in the development of innovative chemical methods for determining the nutritional value of fish meals and aquafeeds [J]. Aquaculture Research, 2001, 32 (8): 661-670.
    [5] Suárez J, Gaxiola G, Mendoza R, et al. Substitution of fish meal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei (Boone, 1931) [J]. Aquaculture, 2009, 289 (1-2): 118-123.
    [6] Yang Q, Zhou X, Zhou Q, et al. Apparent digestibility of selected feed ingredients for white shrimp Litopenaeus vannamei, Boone [J]. Aquaculture Research, 2009, 41 (1): 78-86.
    [7] Cruz-Suárez L E, Tapia-Salazar M, Villarreal-Cavazos D, et al. Apparent dry matter, energy, protein and amino acid digestibility of four soybean ingredients in white shrimp Litopenaeus vannamei juveniles [J]. Aquaculture, 2009, 292 (1-2): 87-94.
    [8]韩斌,周洪琪,华雪铭.凡纳滨对虾对玉米蛋白粉表观消化率的研究[J].饲料工业, 2009, 30 (4): 24-25.
    [9]杨志强,曹俊明,朱选,等.凡纳滨对虾对7种蛋白原料的蛋白质和氨基酸的消化率[J].饲料工业, 2010, 31 (2): 24-27.
    [10]罗杰,钟志华,罗伟林.凡纳滨对虾(Litopenaeus Vannamei)高位池养殖中几个单项因子试验[J].海洋湖沼通报, 2005, (3): 38-43.
    [11]王兴强,马甡,董双林.凡纳滨对虾生物学及养殖生态学研究进展[J].海洋湖沼通报, 2004, (4): 94-100.
    [12]王广军.南美白对虾的生物学特性及繁殖技术[J].水产科技情报, 2000, 27 (3): 128-129.
    [13]王吉桥.南美白对虾的健康养殖技术5.主要疾病的诊断与防治[J].水产科学, 2003, 22 (3): 51-52.
    [14] Lightner D, Redman R. Shrimp diseases and current diagnostic methods [J]. Aquaculture, 1998, 164 (1-4): 201-220.
    [15]臧维玲,戴习林,徐嘉波,等.室内凡纳滨对虾工厂化养殖循环水调控技术与模式[J].水产学报, 2008, 32 (5): 749-757.
    [16]岑剑伟,王剑河,李来好,等.不同养殖模式的凡纳滨对虾品质的比较[J].水产学报, 2008, 32 (1): 39-44.
    [17] Lim C, Akiyama D, Sessa D. Nutrient requirements of penaeid shrimp [M]. Nutrition and Utilization Technology in Aquaculture, 1995: 60-73.
    [18] Velasco M, Lawrence A, Castille F, et al. Dietary protein requirement for Litopenaeus vannamei [C]. Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola (ed. by Cruz-Suárez L E, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa M. & Civera-Cerecedo R), 2000: 181-192.
    [19] Colvin L, Brand C. The protein requirement of penaeid shrimp at various life stages with compounded diets in a controlled environment system [J]. World Mariculture Society, 1977, 8: 821-840.
    [20] Smith L L, Lee P G, Lawrence A L, et al. Growth and digestibility by three sizes of Penaeus vannamei Boone: effects of dietary protein level and protein source [J]. Aquaculture, 1985, 46 (2): 85-96.
    [21] Andrew N, Pepperell J. The by-catch of shrimp trawl fisheries [J]. Oceanography and Marine Biology, 1992, 30: 527-565.
    [22]李广丽,朱春华,周歧存.不同蛋白质水平的饲料对南美白对虾生长的影响[J].海洋科学, 2001, 25 (4): 1-4.
    [23] Kureshy N, Davis D A. Protein requirement for maintenance and maximum weight gain for the Pacific white shrimp, Litopenaeus vannamei [J]. Aquaculture, 2002, 204 (1-2): 125-143.
    [24] Lei C H, Hsieh L Y, Chen C K. Effects of salinity on the oxygen consumption and ammonia-N excretion of young juveniles of the grass shrimp, Penaeus monodon Fabricius [J]. Bulletin of the Institute of Zoology, Academia Sinica, 1989, 28: 245-256.
    [25] Shiau S, Chou B. Effects of dietary protein and energy on growth performance of tiger shrimp Penaeus monodon reared in seawater [J]. Bulletin of the Japanese Society of Scientific Fisheries (Japan), 1991, 57 (12): 2271-2276.
    [26] Robertson L, Lawrence A L, Castille F. Effect of feeding frequency and feeding time on growth of Penaeus vannamei (Boone) [J]. Aquaculture Research, 1993, 24 (1): 1-6.
    [27]黄凯,王武,卢洁.南美白对虾幼虾饲料蛋白质的需要量[J].中国水产科学, 2003, 10 (4): 318-324.
    [28] Akiyama D M. Future considerations for shrimp nutrition and the aquaculture feed industry [C]. In: Wyban J. (Editor). Proceeding of the Special Session on Shrimp Farming World Acuaculture Society. Baton Rouge USA, 1992: 198-205.
    [29] McVey J P, Fox J M. Hatchery techniques for penaeid shrimp utilized by Texas A&M-NMFS Galveston laboratory program [J]. CRC Handbook of Mariculture, 1983, 1: 129-154.
    [30] Fox J M, Lawrence A L, Li-Chan E. Dietary requirement for lysine by juvenile Penaeus vannamei using intact and free amino acid sources [J]. Aquaculture, 1995, 131 (3-4): 279-290.
    [31] Millamena O, Bautista-Teruel M, Reyes O, et al. Requirements of juvenile marine shrimp, Penaeus monodon (Fabricius) for lysine and arginine [J]. Aquaculture, 1998, 164 (1-4): 95-104.
    [32] Shiau S Y. Nutrient requirements of penaeid shrimps [J]. Aquaculture, 1998, 164 (1-4): 77-93.
    [33] Duerr E, Walsh W. Evaluation of cholesterol additions to a soyabean meal-based diet for juvenile Pacific white shrimp, Penaeus vannamei (Boone), in an outdoor growth trial [J]. Aquaculture Nutrition, 1996, 2 (2): 111-116.
    [34] Mourente G, Medina A, Gonzalez S, et al. Variations in lipid content and nutritional status during larval development of the marine shrimp Penaeus kerathurus [J]. Aquaculture, 1995, 130 (2-3): 187-199.
    [35] Davis D A, Arnold C. Evaluation of five carbohydrate sources for Penaeus vannamei [J]. Aquaculture, 1993, 114 (3-4): 285-292.
    [36] Cruz-Suárez L E, Ricque-Marie D, Pinal-Mansilla J, et al. Effect of different carbohydrate sources on the growth of Penaeus vannamei: economical impact [J]. Aquaculture, 1994, 123 (3-4): 349-360.
    [37]黄勃,彭士明,姚发盛,等.对虾营养需求理论与应用[J].渔业现代化, 2003, (6): 41-42.
    [38] Cousin M, Cuzon G, Guillaume J. Digestibility of starch in Penaeus vannamei: in vivo and in vitro study on eight samples of various origin [J]. Aquaculture, 1996, 140 (4): 361-372.
    [39] He H, Lawrence A L, Liu R. Evaluation of dietary essentiality of fat-soluble vitamins, A, D, E and K for penaeid shrimp (Penaeus vannamei) [J]. Aquaculture, 1992, 103 (2): 177-185.
    [40] He H, Lawrence A L. Vitamin C requirements of the shrimp Penaeus vannamei [J]. Aquaculture, 1993, 114 (3-4): 305-316.
    [41] Lavens P, Sorgeloos P. Experiences on importance of diet for shrimp postlarval quality [J]. Aquaculture, 2000, 191 (1-3): 169-176.
    [42]周歧存,丁燏,郑石轩,等.维生素C对凡纳滨对虾生长及抗病力的影响[J].水生生物学报, 2004, 28 (6): 592-598.
    [43] Jiang D H, Lawrence A L, Neill W H, et al. Effects of temperature and salinity on nitrogenous excretion by Litopenaeus vannamei juveniles [J]. Journal of experimental marine biology and ecology, 2000, 253 (2): 193-209.
    [44] Davis D, Arnold C. Estimation of apparent phosphorus availability from inorganic phosphorus sources for Penaeus vannamei [J]. Aquaculture, 1994, 127 (2-3): 245-254.
    [45] Liu F Y, Lawrence A. Dietary manganese requirement of Penaeus vannamei [J]. Chinese Journal of Oceanology and Limnology, 1997, 15 (2): 163-167.
    [46] Davis D A, Lawrence A L, Gatlin III D M. Evaluation of the dietary zinc requirement of Penaeus vannamei and effects of phytic acid on zinc and phosphorus bioavailability [J]. Journal of the World Aquaculture Society, 1993, 24 (1): 40-47.
    [47]石文雷.水产动物营养与健康养殖[J].内陆水产, 2000, 25 (12): 24-26.
    [48] Higgs D, Dosanjh B, Prendergast A, et al. Use of rapeseed/canola protein products in finfish diets [J]. Nutrition and Utilization Technology in Aquaculture, 1995: 130-156.
    [49] Lim C, Beames R, Eales J, et al. Nutritive values of low and high fibre canola meals for shrimp (Penaeus vannamei) [J]. Aquaculture Nutrition, 1997, 3 (4): 269-279.
    [50] Hardy R W, Tacon A G J. Fish meal: historical uses, production trends and future outlook for sustainable supplies [C]. In: Stickney, R.R., MacVey, J.P. (Eds.), Responsible marine aquaculture, CABI Publishing, New York 2002: 311-325.
    [51] Gatlin III D. Nutrition and fish health [M]. Fish Nutrition, 2002: 671-702.
    [52] Costa-Pierce B A. Environmental impacts of nutrients from aquaculture: Towards the evolution of sustainable aquaculture systems [C]. In: Baird J D, Beveridge M C M, Kelly L A, Muir J F (Eds.), Aquaculture and Water Resource Management, Blackwell, UK, 1996: 81-113.
    [53] Cho C Y, Bureau D. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture [J]. Aquaculture Research, 2001, 32 (S1): 349-360.
    [54] Talbot C, Hole R. Fish diets and the control of eutrophication resulting from aquaculture [J]. Journal of Applied Ichthyology, 1994, 10 (4): 258-270.
    [55] Kureshy N, Davis D A, Arnold C. Partial replacement of fish meal with meat-and-bone meal, flash-dried poultry by-product meal, and enzyme-digested poultry by-product meal in practical diets for juvenile red drum [J]. North American Journal of Aquaculture, 2000, 62 (4): 266-272.
    [56] Forster I, Dominy W, Obaldo L, et al. Rendered meat and bone meals as ingredients of diets for shrimp Litopenaeus vannamei (Boone, 1931) [J]. Aquaculture, 2003, 219 (1-4): 655-670.
    [57] Tan B, Mai K, Zheng S, et al. Replacement of fish meal by meat and bone meal in practical diets for the white shrimp Litopenaeus vannamai (Boone) [J]. Aquaculture Research, 2005, 36 (5): 439-444.
    [58] Hernández C, Olvera-Novoa M A, Aguilar-Vejar K, et al. Partial replacement of fish meal by porcine meat meal in practical diets for Pacific white shrimp (Litopenaeus vannamei) [J]. Aquaculture, 2008, 277 (3-4): 244-250.
    [59] Yang Y, Xie S, Lei W, et al. Effect of replacement of fish meal by meat and bone meal and poultryby-product meal in diets on the growth and immune response of Macrobrachium nipponense [J]. Fish & Shellfish Immunology, 2004, 17 (2): 105-114.
    [60] Zhu W, Mai K, Zhang B, et al. A study on the meat and bone meal and poultry by-product meal as protein substitutes of fish meal in practical diets for Litopenaeus vannamei juveniles [J]. Journal of Ocean University of China (English Edition), 2004, 3 (2): 157-160.
    [61] Cruz-Suárez L E, Nieto-López M, Guajardo-Barbosa C, et al. Replacement of fish meal with poultry by-product meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets [J]. Aquaculture, 2007, 272 (1-4): 466-476.
    [62] Saoud I, Rodgers L, Davis D, et al. Replacement of fish meal with poultry by-product meal in practical diets for redclaw crayfish (Cherax quadricarinatus) [J]. Aquaculture Nutrition, 2008, 14 (2): 139-142.
    [63] Samocha T M, Davis D A, Saoud I P, et al. Substitution of fish meal by co-extruded soybean poultry by-product meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei [J]. Aquaculture, 2004, 231 (1-4): 197-203.
    [64] Chi S, Tan B, Mai K, et al. Growth and feed efficiency of juvenile shrimp Litopenaeus vannamei fed formulated diets containing different levels of poultry by-product meal [J]. Journal of Ocean University of China (English Edition), 2009, 8 (4): 399-403.
    [65] Markey J C, Amaya E, Davis D A. Replacement of Poultry By-product Meal in Production Diets for the Pacific White Shrimp, Litopenaeus vannamei [J]. Journal of the World Aquaculture Society, 2010, 41 (6): 893-902.
    [66] Cheng Z J, Behnke K C, Dominy W G. Effect of feather meal on growth and body composition of the juvenile Pacific white shrimp, Litopenaeus vannamei [J]. Journal of Applied Aquaculture, 2002, 12 (1): 57-69.
    [67] Dominy W G, Ako H. The utilization of blood meal as a protein ingredient in the diet of the marine shrimp Penaeus vannamei [J]. Aquaculture, 1988, 70 (3): 289-299.
    [68] Córdova-Murueta J H, Garcia-Carreno F L. Nutritive value of squid and hydrolyzed protein supplement in shrimp feed [J]. Aquaculture, 2002, 210 (1-4): 371-384.
    [69] Cruz-Suárez L E, Ricque D. Effect of squid meal on growth of Penaeus monodon juveniles reared in pond pens and tanks [J]. Aquaculture, 1992, 106 (3-4): 293-299.
    [70] Smith D M, Allan G L, Williams K C, et al. Fishmeal replacement research for shrimp feed in Australia [C]. Aquaculture,: In Cruz-Suarez L.E., Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa M A. and Civera-Cerecedo E (eds.). Avances en Nutricion Acuicola. Memorias de V Simposium Internacional de Nutricion Acuicola. 19-22 November 2000. Merida, Yucatan, 2000 : 277-286.
    [71] Fox C, Blow P, Brown J, et al. The effect of various processing methods on the physical and biochemical properties of shrimp head meals and their utilization by juvenile Penaeus monodon Fab [J]. Aquaculture, 1994, 122 (2-3): 209-226.
    [72] Goytortúa-Bores E, Civera-Cerecedo R, Rocha-Meza S, et al. Partial replacement of red crab (Pleuroncodes planipes) meal for fish meal in practical diets for the white shrimp Litopenaeus vannamei. Effects on growth and in vivo digestibility [J]. Aquaculture, 2006, 256 (1-4): 414-422.
    [73] Nunes A J P, SáM V C, Sabry-Neto H. Growth performance of the white shrimp, Litopenaeus vannamei, fed on practical diets with increasing levels of the Antarctic krill meal, Euphausia superba, reared in clear-versus green-water culture tanks [J]. Aquaculture Nutrition, 2011, 17 (2): e511-e520.
    [74] Francis G, Makkar H P S, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish [J]. Aquaculture, 2001, 199 (3-4): 197-227.
    [75] Abery N W, Gunasekera R M, De Silva S S. Growth and nutrient utilization of Murray cod Maccullochella peelii peelii (Mitchell) fingerlings fed diets with varying levels of soybean meal and blood meal [J]. Aquaculture Research, 2002, 33 (4): 279-289.
    [76] Peres H, Lim C, Klesius P H. Nutritional value of heat-treated soybean meal for channel catfish (Ictalurus punctatus) [J]. Aquaculture, 2003, 225 (1-4): 67-82.
    [77] Lim C, Dominy W. Evaluation of soybean meal as a replacement for marine animal protein in diets for shrimp (Penaeus vannamei) [J]. Aquaculture, 1990, 87 (1): 53-63.
    [78] Piedad-Pascual F, Cruz E M, Sumalangcay Jr A. Supplemental feeding of Penaeus monodon juveniles with diets containing various levels of defatted soybean meal [J]. Aquaculture, 1990, 89 (2): 183-191.
    [79] Cruz-Suárez L E, Ricque-Marie D, Tapia-Salazar M, et al. Assessment of differently processed feed pea (Pisum sativum) meals and canola meal (Brassica sp.) in diets for blue shrimp (Litopenaeus stylirostris) [J]. Aquaculture, 2001, 196 (1-2): 87-104.
    [80] Alvarez J S, Hernández-Llamas A, Galindo J, et al. Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti (Pérez-Farfante & Kensley 1997) [J]. Aquaculture Research, 2007, 38 (7): 689-695.
    [81] Suárez J, Gaxiola G, Mendoza R, et al. Substitution of fish meal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei (Boone, 1931) [J]. Aquaculture, 2009, 289 (1-2): 118-123.
    [82] Luo Z, Li X D, Wang W M, et al. Partial replacement of fish meal by a mixture of soybean meal and rapeseed meal in practical diets for juvenile Chinese mitten crab Eriocheir sinensis: effects on growth performance and in vivo digestibility [J]. Aquaculture Research, 2010 : Available online DOI:10.1111/j.1365-2109.2010.02751.x
    [83] Robinson E H, Li M H. Use of plant proteins in catfish feeds: replacement of soybean meal with cottonseed meal and replacement of fish meal with soybean meal and cottonseed meal [J]. Journal of the World Aquaculture Society, 1994, 25 (2): 271-276.
    [84]曹光辛.鱼类饲料中的抗营养因子和毒素[J].中国饲料, 1996, (22): 17-18.
    [85]高立海,曲悦,梁海平.水产饲料中棉籽饼粕替代鱼粉的研究进展[J].水利渔业, 2004, 24 (4): 66-67.
    [86] Lim C. Substitution of cottonseed meal for marine animal protein in diets for Penaeus vannamei [J]. Journal of the World Aquaculture Society, 1996, 27 (4): 402-409.
    [87]陈杰,方志伟,徐鹤龙,等.花生粕的主要特征、营养成分及综合开发利用[J].广东农业科学, 2008, (11): 70-71.
    [88] Lim C. Replacement of marine animal protein with peanut meal in diets for juvenile white shrimp, Penaeus vannamei [J]. Journal of Applied Aquaculture, 1997, 7 (3): 67-78.
    [89]刘立鹤,黄峰,侯永清,等.饲料中用花生粕替代鱼粉对凡纳对虾生长和氨基酸组成的影响[J].大连水产学院学报, 2008, 23 (5): 370-375.
    [90] Cuzon G, Santos R D, Hew M, et al. Use of Spirulina in Shrimp (Penaeus japonicus) diet [J]. Journal of the World Mariculture Society, 1981, 12 (2): 282-291.
    [91] Nandeesha M, Gangadhar B, Varghese T, et al. Effect of feeding Spirulina platensis on the growth,proximate composition and organoleptic quality of common carp, Cyprinus carpio L [J]. Aquaculture Research, 1998, 29 (5): 305-312.
    [92]张淑华.饲料酵母代替秘鲁鱼粉的对虾饵料消化率研究[J].齐鲁渔业, 1992, (5): 32-34.
    [93] Burgents J E, Burnett K G, Burnett L E. Disease resistance of Pacific white shrimp, Litopenaeus vannamei, following the dietary administration of a yeast culture food supplement [J]. Aquaculture, 2004, 231 (1-4): 1-8.
    [94] Suphantharika M, Khunrae P, Thanardkit P, et al. Preparation of spent brewer's yeast [beta]-glucans with a potential application as an immunostimulant for black tiger shrimp, Penaeus monodon [J]. Bioresource technology, 2003, 88 (1): 55-60.
    [95]李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社, 1996.
    [96]叶元土.水产饲料离体消化率测定方法及其应用[J].饲料广角, 2004, (8): 25-27.
    [97] Fox J M, Lawrence A L. Evaluation of In Vitro Apparent Protein Digestibility by Shrimp Using Gut Enzyme Extracts [J]. Journal of the World Aquaculture Society, 2009, 40 (3): 325-336.
    [98]林仕梅,罗莉,叶元土.鱼饲料消化率测定方法的研究[J].渔业现代化, 2002, (5): 23-27.
    [99]黄小燕,吴天星.鱼饲料表观消化率测定方法的综述[J].饲料工业, 2005, 26 (2): 52-55.
    [100] Vandenberg G, De La Noüe J. Apparent digestibility comparison in rainbow trout (Oncorhynchus mykiss) assessed using three methods of faeces collection and three digestibility markers [J]. Aquaculture Nutrition, 2001, 7 (4): 237-245.
    [101] Smith D, Tabrett S. Accurate measurement of in vivo digestibility of shrimp feeds [J]. Aquaculture, 2004, 232 (1-4): 563-580.
    [102]赵万鹏.草鱼对碳水化合物表观消化率测定方法的研究[J].饲料研究, 1999, (4): 11-13.
    [103]林仕梅,罗莉,叶元土.草鱼对17种饲料原料粗蛋白和粗脂肪的表观消化率[J].中国水产科学, 2001, 8 (3): 59-64.
    [104]陈建明,王友慧,叶金云,等.黑鲷对10种饵料原料的表观消化率[J].饲料博览, 2004, (11): 44-46.
    [105] Cruz-Suárez L E, Tapia-Salazar M, Villarreal-Cavazos D, et al. Apparent dry matter, energy, protein and amino acid digestibility of four soybean ingredients in white shrimp Litopenaeus vannamei juveniles [J]. Aquaculture, 2009, 292 (1-2): 87-94.
    [106]叶元土,薛敏,林仕梅,等.草鱼肠道、肝胰脏对饲料蛋白质酶解速度的比较[J].中国水产科学, 2003, 10 (2): 173-176.
    [107]邝雪梅,杨文,潘欢欢,等.草鱼肠道对4种饲料蛋白质氨基酸消化和吸收率的比较分析[J].淡水渔业, 2004, 34 (3): 16-18.
    [108]王永玲,叶元土,屠勇峰.草鱼对蛋白质和氨基酸离体消化率的比较分析[J].水利渔业, 2005, 25 (2): 69-71.
    [109]郭建林,叶元土,伍代勇,等.草鱼对膨化和未膨化的菜籽、大豆离体消化研究[J].饲料研究, 2005, (10): 51-54.
    [110]唐精,方怀义,梁广尧,等.草鱼对血球蛋白粉离体消化的研究[J].饲料工业, 2006, 27 (1): 50-51.
    [111]戴业岭.草鱼对进口和国产菜粕的离体消化分析[J].饲料研究, 2007, (11): 52-53.
    [112]李高锋,叶元土,代晓芳,等.草鱼对四种高蛋白饲料原料的离体消化分析[J].饲料工业, 2007, 28 (20): 19-20.
    [113]杨玉芬,乔建国,刘珠红.草鱼对九种蛋白质饲料体外消化率的测定J].饲料博览:技术版, 2008, (12): 25-28.
    [114]罗莉,林仕梅.长吻鱼危,南方大口鲶和鲤鱼对九种蛋白质饲料的离体消化率测定[J].饲料研究, 1997, (1): 2-5.
    [115]林仕梅,罗莉.岩原鲤对7种饲料消化力离体研究[J].中国水产科学, 2008, 15 (4): 637-643.
    [116]白燕,叶元土.鲫鱼肠道对四种蛋白质饲料的体外消化与其酶解液中氨基酸吸收效率的研究[J].饲料工业, 2006, 27 (10): 33-36.
    [117]罗莉,唐毅,叶元土,等.异育银鲫对饲料膨化前后的酶解动力学研究[J].西南农业大学学报, 2003, 25 (4): 342-345.
    [118]姜光明,刘永贵,陈国风,等.异育银鲫对十种常用饲料原料离体消化率的测定[J].饲料工业, 2009, 30 (2): 20-22.
    [119]向枭,叶元土,周兴华,等.鲇胃肠道、胰脏对7种饲料蛋白质的酶解动力学[J].水生生物学报, 2006, 30 (4): 493-498.
    [120]蒋蓉,叶元土,丁晓峰,等.翘嘴红鲌、花(鱼骨)对18种饲料原料蛋白质、氨基酸离体消化率[J].饲料工业, 2005, 26 (10): 26-28.
    [121]王友慧,叶金云,陈建明,等.翘嘴红鲌消化道生理特征及体外消化率的研究[J].饲料博览, 2005, (2): 3-7.
    [122]向枭,林仕梅,等.铜鱼肠道、肝胰脏对四种蛋白质饲料的离体消化率测定[J].饲料工业, 2003, 24 (1): 50-51.
    [123]向枭,李代金,周兴华,等.铜鱼对4种饲料原料的离体酶解动力学研究[J].动物营养学报, 2010, 22 (2): 335-340.
    [124]周兴华,郑曙明,向枭,等.齐口裂腹鱼对膨化和非膨化饲料粕蛋白质的离体消化率[J].粮食与饲料工业, 2005, 3: 41-43.
    [125]刘丹丹,吉红,范宇友,等.黄鳝和泥鳅对蚕蛹离体消化率的研究[J].湖北农业科学, 2009, 48 (1): 153-155.
    [126]梁萍,林建斌,朱庆国,等.欧洲鳗对几种蛋白质饲料的体外消化研究[J].中国饲料, 2010, (22): 21-24.
    [127]刘红梅.乌鳢对几种饲料原料的离体消化率测定[J].齐鲁渔业, 2010, (5): 19-21.
    [128]张璐,陈立侨,洪美玲,等.中华绒螫蟹对11种饲料原料蛋白质和氨基酸的表观消化率[J].水产学报, 2007, 31 (B09): 116-121.
    [129] Irvin S J, Williams K C. Apparent digestibility of selected marine and terrestrial feed ingredients for tropical spiny lobster Panulirus ornatus [J]. Aquaculture, 2007, 269 (1-4): 456-463.
    [130] Adamidou S, Nengas I, Alexis M, et al. Apparent nutrient digestibility and gastrointestinal evacuation time in European seabass (Dicentrarchus labrax) fed diets containing different levels of legumes [J]. Aquaculture, 2009, 289 (1-2): 106-112.
    [131] Davies S, Gouveia A. Comparison of yttrium and chromic oxides as inert dietary markers for the estimation of apparent digestibility coefficients in mirror carp Cyprinus carpio fed on diets containing soybean-, maize-and fish-derived proteins [J]. Aquaculture Nutrition, 2006, 12 (6): 451-458.
    [132]荣长宽,梁素秀.中国对虾对16种饲料的蛋白质和氨基酸的消化率[J].水产学报, 1994, 18 (2): 131-137.
    [133]吴建开,雍文岳.团头鲂(Megalobramaamblycocephala Yih)对12种饲料原料消化率和可消化能的测定[J].中国水产科学, 1995, 2 (3): 55-62.
    [134]梁丹妮,姜雪姣,刘文斌,等.建鲤对7种饲料原料中营养物质的表观消化率[J].动物营养学报,2010, 6: 1592-1598.
    [135] Zhou Z, Ren Z, Zeng H, et al. Apparent digestibility of various feedstuffs for bluntnose black bream Megalobrama amblycephala Yih [J]. Aquaculture Nutrition, 2008, 14 (2): 153-165.
    [136]许国焕,贺锡勤.鲂对十四种常用商品饲料表现消化率的研究[J].水利渔业, 1995, (1): 19-21.
    [137]雷武,杨云霞.长吻鱼危对鱼粉等六种商品饲料中粗蛋白和能量的消化率[J].水生生物学报, 1996, 20 (2): 113-118.
    [138] Brunson J, Romaire R, Reigh R. Apparent digestibility of selected ingredients in diets for white shrimp Penaeus setiferus L [J]. Aquaculture Nutrition, 1997, 3 (1): 9-16.
    [139]邓利,谢小军.南方鲇的营养学研究:Ⅰ.人工饲料的消化率[J].水生生物学报, 2000, 24 (4): 347-355.
    [140]罗莉,林仕梅,等.草鱼对九种饲料的干物质、蛋白质和脂肪的表观消化率[J].淡水渔业, 2001, 31 (3): 47-50.
    [141]叶元土,林仕梅,莉罗.草鱼对27种饲料原料中氨基酸的表观消化率[J].中国水产科学, 2003, 10 (1): 60-64.
    [142] Lee S M. Apparent digestibility coefficients of various feed ingredients for juvenile and grower rockfish (Sebastes schlegeli) [J]. Aquaculture, 2002, 207 (1-2): 79-95.
    [143]周兴华,向枭,陈建.银鲈对六种饲料原料蛋白质和氨基酸的表观消化率[J].西南农业学报, 2003, 16 (3): 90-93.
    [144] Catacutan M R, Eusebio P S, Teshima S. Apparent digestibility of selected feedstuffs by mud crab, Scylla serrata [J]. Aquaculture, 2003, 216 (1-4): 253-261.
    [145] Tuan V, Anderson A, Luong-van J, et al. Apparent digestibility of some nutrient sources by juvenile mud crab, Scylla serrata (Forskal 1775) [J]. Aquaculture Research, 2006, 37 (4): 359-365.
    [146] Tibbetts S M, Lall S P, Milley J E. Apparent digestibility of common feed ingredients by juvenile haddock, Melanogrammus aeglefinus L [J]. Aquaculture Research, 2004, 35 (7): 643-651.
    [147] Zhou Q C, Tan B P, Mai K S, et al. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum [J]. Aquaculture, 2004, 241 (1-4): 441-451.
    [148]常青,梁萌青,王家林,等.花鲈对不同饲料原料的表观消化率[J].水生生物学报, 2005, 29 (2): 172-176.
    [149] Campana-Torres A, Martinez-Cordova L R, Villarreal-Colmenares H, et al. In vivo dry matter and protein digestibility of three plant-derived and four animal-derived feedstuffs and diets for juvenile Australian redclaw, Cherax quadricarinatus [J]. Aquaculture, 2005, 250 (3-4): 748-754.
    [150] Tibbetts S M, Milley J E, Lall S P. Apparent protein and energy digestibility of common and alternative feed ingredients by Atlantic cod, Gadus morhua (Linnaeus, 1758) [J]. Aquaculture, 2006, 261 (4): 1314-1327.
    [151]李会涛,麦康森,艾庆辉,等.大黄鱼对几种饲料蛋白原料消化率的研究[J].水生生物学报, 2007, 31 (3): 370-376.
    [152] Kumaraguru Vasagam K, Balasubramanian T, Venkatesan R. Apparent digestibility of differently processed grain legumes, cow pea and mung bean in black tiger shrimp, Penaeus monodon Fabricius and associated histological anomalies in hepatopancreas and midgut [J]. Animal feed science and technology, 2007, 132 (3-4): 250-266.
    [153]王广军,吴锐全,谢骏,等.大口黑鲈对四种蛋白质饲料原料的表观消化率研究[J].渔业现代化,2008, 35 (6): 36-39.
    [154]许建刚,李国富.鲤鱼对四种动物性蛋白原料的表观消化率测定[J].安徽农业科学, 2008, 36 (27): 11782-11784.
    [155] Luo Z, Tan X, Chen Y, et al. Apparent digestibility coefficients of selected feed ingredients for Chinese mitten crab Eriocheir sinensis [J]. Aquaculture, 2008, 285 (1-4): 141-145.
    [156]张松,解绶启,朱晓鸣,等.粪便收集时间和饲料中肉骨粉含量对异育银鲫(Carassius auratus gibelio)消化率的影响[J].水生生物学报, 2008, 32 (1): 79-90.
    [157]陈建明,叶金云,沈斌乾,等.花鱼骨鱼种对11种蛋白质饲料原料的消化率[J].水生态学杂志, 2009, 2 (3): 65-68.
    [158]刘修英,王岩,王建华.苏氏圆腹鱼芒对6种常用饲料原料的表观消化率[J].水生生物学报, 2009, 33 (4): 778-781.
    [159]董晓慧,郭云学,叶继丹,等.吉富罗非鱼幼鱼对10种饲料原料表观消化率的研究[J].动物营养学报, 2009, 21(3): 326-334.
    [160]纪文秀,王岩,唐金玉.海水养殖花鲈对几种饲料蛋白原料的表观消化率[J].水产学报, 2010, 34 (1): 65-68.
    [161] Yuan Y, Gong S, Yang H, et al. Apparent digestibility of selected feed ingredients for Chinese sucker, Myxocyprinus asiaticus [J]. Aquaculture, 2010, 306 (1-4): 238-243.
    [162]贺建华.饲料分析与检测[M].北京:中国农业出版社, 2005.
    [163]刘襄河,黄燕华,王国霞,等. pH对凡纳滨对虾蛋白酶和淀粉酶活性的影响[J].水产科学, 2008, 27 (7): 356-359.
    [164]王子淑.人体及动物细胞遗传学实验技术[M].成都:四川大学出版社, 1987.
    [165]叶元土.茚三酮法测定蛋白饲料中水溶蛋白质[J].饲料工业, 1993, 14 (9): 18-20.
    [166] Savose G. Protein digestion in wealting pig: effect of dietery protein source [J]. Journal of Nutrition, 1989, 119: 1093-1099.
    [167]施用辉,乐国伟,刘选珍,等.体外消化过程中蛋白质品质与寡肽释放的研究[J].中国畜牧杂志, 2001, 37 (6): 12-14.
    [168]王丽娟,马秋刚,计成.体外消化过程中低分子量寡肽释放量与饲料品质的关系[J].农业生物技术学报, 2004, 12 (4): 416-421.
    [169]王友慧,李涛,林仕梅. 3种鱼对鱼粉酶解动力学及体外消化率的研究[J].西南农业大学学报, 2002, 24 (3): 259-262.
    [170]邱小琮,赵红雪,王远吉,等.兰州鲇对4种饲料原料的离体消化率和酶解能力[J].淡水渔业, 2008, 38 (2): 31-35.
    [171] Furukawa A, Tsukahara H. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed [J]. Bulletin of the Japanese Society of Scientific Fisheries, 1966, 32 (6): 502-506.
    [172] Ezquerra J, Garcia-Carreno F, Carrillo O. In vitro digestibility of dietary protein sources for white shrimp (Penaeus vannamei) [J]. Aquaculture, 1998, 163 (1-2): 123-136.
    [173] Gamboa-Delgado J, Le Vay L. Natural stable isotopes as indicators of the relative contribution of soy protein and fish meal to tissue growth in Pacific white shrimp (Litopenaeus vannamei) fed compound diets [J]. Aquaculture, 2009, 291 (1-2): 115-123.
    [174] Davis D A, Arnold C. Replacement of fish meal in practical diets for the Pacific white shrimp,Litopenaeus vannamei [J]. Aquaculture, 2000, 185 (3-4): 291-298.
    [175] Amaya E, Davis D A, Rouse D B. Alternative diets for the Pacific white shrimp Litopenaeus vannamei [J]. Aquaculture, 2007, 262 (2-4): 419-425.
    [176] Cuzon G, Lawrence A, Gaxiola G, et al. Nutrition of Litopenaeus vannamei reared in tanks or in ponds [J]. Aquaculture, 2004, 235 (1-4): 513-551.
    [177] Akiyama D, Coelho S, Lawrence A, et al. Apparent digestibility of feedstuffs by the marine shrimp Penaeus vannamei Boone [J]. Nippon Suisan Gakkaishi, 1989, 55 (1): 91-98.
    [178] Opstvedt J, Aksnes A, Hope B, et al. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins [J]. Aquaculture, 2003, 221 (1-4): 365-379.
    [179] Cowey C B, Cho C Y. Nutritional requirements of fish [J]. Proceedings of the Nutrition Society, 1993, 52 (3): 417-426.
    [180] NRC. Nutrient requirements of fish [M]. 1993.
    [181] Leenhouwers J, Adjei-Boateng D, Verreth J, et al. Digesta viscosity, nutrient digestibility and organ weights in African catfish (Clarias gariepinus) fed diets supplemented with different levels of a soluble non-starch polysaccharide [J]. Aquaculture Nutrition, 2006, 12 (2): 111-116.
    [182] Knaus W, Beermann D, Robinson T, et al. Effects of a dietary mixture of meat and bone meal, feather meal, blood meal, and fish meal on nitrogen utilization in finishing Holstein steers [J]. Journal of animal science, 1998, 76 (5): 1481-1487.
    [183] Millamena O M. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides [J]. Aquaculture, 2002, 204 (1-2): 75-84.
    [184] Wang Y, Guo J, Bureau D P, et al. Replacement of fish meal by rendered animal protein ingredients in feeds for cuneate drum (Nibea miichthioides) [J]. Aquaculture, 2006, 252 (2-4): 476-483.
    [185]刘立鹤,郑石轩,徐焕新,等.蜕壳素对凡纳滨对虾生长及表观消化率的影响[J].湛江海洋大学学报, 2003, 23 (4): 30-36.
    [186] Mente E, Coutteau P, Houlihan D, et al. Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source [J]. Journal of experimental biology, 2002, 205: 3107-3122.
    [187] Gui D, Liu W, Shao X, et al. Effects of different dietary levels of cottonseed meal protein hydrolysate on growth, digestibility, body composition and serum biochemical indices in crucian carp (Carassius auratus gibelio) [J]. Animal feed science and technology, 2010, 156 (3-4): 112-120.
    [188] Burel C, Boujard T, Kaushik S, et al. Effects of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in rainbow trout [J]. General and comparative endocrinology, 2001, 124 (3): 343-358.
    [189]韩斌,华雪铭,周洪琪,等.玉米蛋白粉替代部分鱼粉对凡纳滨对虾抗病力及非特异性免疫力的影响[J].安徽农业科学, 2009, 37 (8): 3566-3569.
    [190] Kikuchi K. Partial replacement of fish meal with corn gluten meal in diets for Japanese flounder Paralichthys olivaceus [J]. Journal of the World Aquaculture Society, 1999, 30 (3): 357-363.
    [191] Regost C, Arzel J, Kaushik S. Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima) [J]. Aquaculture, 1999, 180 (1-2): 99-117.
    [192] Masumoto T, Ruchimat T, Ito Y, et al. Amino acid availability values for several protein sources for yellowtail (Seriola quinqueradiata) [J]. Aquaculture, 1996, 146 (1-2): 109-119.
    [193]潘鲁青,王克行.中国对虾幼体消化酶活力的实验研究[J].水产学报, 1997, 21 (1): 26-31.
    [194] Gamboa-delgado J, Molina-poveda C, Cahu C. Digestive enzyme activity and food ingesta in juvenile shrimp Litopenaeus vannamei (Boone, 1931) as a function of body weight [J]. Aquaculture Research, 2003, 34 (15): 1403-1411.
    [195] Moss S, Divakaran S, Kim B. Stimulating effects of pond water on digestive enzyme activity in the Pacific white shrimp, Litopenaeus vannamei (Boone) [J]. Aquaculture Research, 2001, 32 (2): 125-131.
    [196] Lovett D L, Felder D L. Ontogenetic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae) [J]. The Biological Bulletin, 1990, 178 (2): 144-159.
    [197]杨风.动物营养学[M].北京:中国农业出版社, 2001.
    [198]张满龙.氨基酸在鱼类养殖中的作用[J].水利渔业, 2002, 22 (6): 25-26.
    [199]刘超,闵育娜,雷海宁,等.饲料中可利用氨基酸研究进展[J].甘肃农业大学学报, 2002, 37 (4): 401-409.
    [200] Farrell D, Mannion P, Perez-Maldonado R. A comparison of total and digestible amino acids in diets for broilers and layers [J]. Animal feed science and technology, 1999, 82 (1-2): 131-142.
    [201] Ravindran V, Hew L, Ravindran G, et al. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens [J]. Animal Science, 2005, 81 (1): 85-97.
    [202] Parsons C M. Digestible amino acids for poultry and swine [J]. Animal feed science and technology, 1996, 59 (1-3): 147-153.
    [203] Dalibard P, Paillard E. Use of the digestible amino acid concept in formulating diets for poultry [J]. Animal feed science and technology, 1995, 53 (2): 189-204.
    [204]中山大学生物系生化微生物教研室.生化技术导论[M]. 1979.
    [205]陈苏维,吉红,朱文东,等.温度对泥鳅消化酶活性影响的研究[J].水产科学, 2009, 28 (9): 528-530.
    [206]颜立成,刘明宝.对虾饵料中氨基酸的含量与比例对中国对虾生长的影响[J].饲料工业, 1996, 17 (11): 11-13.
    [207]季文娟.黑鲷幼鱼饲料蛋白源氨基酸平衡的研究[J].中国水产科学, 2000, 7 (3): 37-40.
    [208]李瑾,何瑞国,张世萍,等.黄鳝幼鱼饲料蛋白源氨基酸平衡的研究[J].饲料广角, 2001, (22): 18-20.
    [209]刘长忠,周克勇.添加合成氨基酸降低蛋白质水平对鲫鱼生产性能的影响[J].饲料工业, 2001, 22 (6): 9-11.
    [210]叶元土,林仕梅,罗莉,等.饲料必需氨基酸平衡效果对草鱼生长的影响[J].饲料工业, 1999, 20 (3): 39-41.
    [211]罗莉,叶元土,林仕梅,等.日粮必需氨基酸模式对草鱼生长及蛋白质周转的影响[J].水生生物学报, 2003, 27 (3): 278-282.
    [212]王爱民,邵荣,刘汉文,等.氨基酸平衡对异育银鲫鱼生长及表观消化率的影响[J].安徽农业科学, 2006, 34 (16): 4005-4007.
    [213] Langar H, Guillaume J, Metailler R, et al. Augmentation of protein synthesis and degradation by poor dietary amino acid balance in European sea bass (Dicentrarchus labrax) [J]. The Journal of nutrition, 1993, 123 (10): 1754-1761.
    [214] Williams P E V. Digestible amino acids for non-ruminant animals: theory and recent challenges [J].Animal feed science and technology, 1995, 53 (2): 173-187.
    [215]蔡春芳,吴康,潘新法,等.蛋白质营养对异育银鲫生长和免疫力的影响[J].水生生物学报, 2001, 25 (6): 590-596.
    [216] Ojewola G, Annah S. Nutritive and economic value of Danish fish meal, crayfish dust meal and shrimp waste meal inclusion in broiler diets [J]. International Journal of Poultry Science, 2006, 5 (4): 390-394.
    [217] Schoemaker R, Richards-Rajadurai N. Shrimp waste utilisation [M]. Infofih, 1991.
    [218] Ju Z, Forster I, Conquest L, et al. Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet [J]. Aquaculture Nutrition, 2008, 14 (6): 533-543.
    [219] Nargis A, Ahmed K, Ahmed G, et al. Nutritional Value and Use of Shrimp Head Waste as Fish Meal [J]. Bangladesh Journal of Scientific and Industrial Research, 2007, 41 (1): 63-66.
    [220]姜光丽,周小秋.大豆分离蛋白对幼建鲤肝胰脏发育及消化道蛋白酶活力的影响[J].大连水产学院学报, 2005, 20 (3): 198-202.
    [221]周顺伍.动物生物化学[M].北京:中国农业出版社, 2008.
    [222]胨鹏飞,杨德强,邹红,等.两种中草药组方对鲫鱼肝脏转氨酶的影响[J].饲料工业, 2005, 26 (6): 28-31.
    [223] Torrallardona D, Conde R, Esteve-Garcia E, et al. Use of spray dried animal plasma as an alternative to antimicrobial medication in weanling pigs [J]. Animal feed science and technology, 2002, 99 (1-4): 119-129.
    [224] Coma J, Carrion D, Zimmerman D. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs [J]. Journal of animal science, 1995, 73 (2): 472-481.
    [225] Coma J, Zimmerman D, Carrion D. Lysine requirement of the lactating sow determined by using plasma urea nitrogen as a rapid response criterion [J]. Journal of animal science, 1996, 74 (5): 1056-1062.
    [226]雷晓军,王娜.中草药饲料添加剂对肉仔鸡血液指标的影响[J].畜牧与饲料科学, 2010, 31 (3): 40-42.
    [227]刘树青,江晓路.免疫多糖对中国对虾血清溶菌酶,磷酸酶和过氧化物酶的作用[J].海洋与湖沼, 1999, 30 (3): 278-283.
    [228]张吉民.我国花生产业现状与入世后发展对策[J].山东农业科学, 2002, (5): 53-54.
    [229] Bórquez A, Cerqueira V R. Feeding behavior in juvenile snook, Centropomus undecimalis : I. Individual effect of some chemical substances [J]. Aquaculture, 1998, 169 (1-2): 25-35.
    [230] Berge G E, Bakke-McKellep A M, Lied E. In vitro uptake and interaction between arginine and lysine in the intestine of Atlantic salmon (Salmo salar) [J]. Aquaculture, 1999, 179 (1-4): 181-193.
    [231] Kim K I, Kayes T B, Amundson C H. Requirements for lysine and arginine by rainbow trout (Oncorhynchus mykiss) [J]. Aquaculture, 1992, 106 (3-4): 333-344.
    [232] Fournier V, Gouillou-Coustans M, Métailler R, et al. Excess dietary arginine affects urea excretion but does not improve N utilisation in rainbow trout Oncorhynchus mykiss and turbot Psetta maxima [J]. Aquaculture, 2003, 217 (1-4): 559-576.
    [233] Tibaldi E, Hakim Y, Uni Z, et al. Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax) [J]. Aquaculture, 2006, 261 (1): 182-193.
    [234] Burrells C, Williams P, Southgate P, et al. Immunological, physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins [J]. Veterinary Immunology and Immunopathology, 1999, 72 (3-4): 277-288.
    [235] Lygren B, Hemre G I. Influence of dietary carbohydrate on antioxidant enzyme activities in liver of Atlantic salmon (Salmo salar L.) [J]. Aquaculture International, 2002, 9 (5): 421-427.
    [236]徐奇友,李婵,杨萍,等.用大豆分离蛋白和肉骨粉代替鱼粉对虹鳟生产性能和非特异性免疫指标的影响[J].大连水产学院学报, 2008, 23 (1): 8-12.
    [237] Boonyaratpalin M, Supamattaya K, Verakunpiriya V, et al. Effects of aflatoxin B1 on growth performance, blood components, immune function and histopathological changes in black tiger shrimp (Penaeus monodon Fabricius) [J]. Aquaculture Research, 2001, 32 (S1): 388-398.
    [238] Ostrowski-Meissner H, LeaMaster B, Duerr E, et al. Sensitivity of the Pacific white shrimp, Penaeus vannamei, to aflatoxin B1 [J]. Aquaculture, 1995, 131 (3-4): 155-164.
    [239] Gopinath R, Paul Raj R. Histological alterations in the hepatopancreas of Penaeus monodon Fabricius (1798) given aflatoxin B1-incorporated diets [J]. Aquaculture Research, 2009, 40 (11): 1235-1242.
    [240] Deng S X, Tian L X, Liu F J, et al. Toxic effects and residue of aflatoxin B1 in tilapia (Oreochromis niloticus×O. aureus) during long-term dietary exposure [J]. Aquaculture, 2010, 307 (3-4): 233-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700