白腐真菌培养废弃物吸附阳离子染料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用白腐真菌Pleurotus ostreatus的培养基废弃物(Spent cottonseed hull substrate, SCHS)作为生物吸附剂吸附水溶液中的阳离子染料。本文进行了可行性研究和论证,并深入研究了吸附等温线、吸附动力学。吸附热力学以及动态吸附模型等机理。
     实验选取染料中具有代表性的吩嗪类、吩噻嗪类、三苯甲烷类、偶氮类中的中性红、亚甲基蓝、孔雀石绿、刚果红4种常用染料作为污染物,深入研究了SCHS对中性红、亚甲基蓝、孔雀石绿等3种阳离子染料的静态、动态吸附行为,借助微量热仪C80研究了SCHS对3种染料的吸附热力学。
     在研究SCHS对刚果红不同pH值条件下的吸附试验中,对一部分研究工作者在使用单一波长λmax测量刚果红浓度时未考虑pH值变化对λmax的影响,进行了纠正。实验证明不同pH值测量的刚果红最大吸收波长变化很大,这与SCI期刊中已经报道的文献不一致。实验证明,刚果红的最大吸收波长λmax在不同pH值溶液条件下会发生改变。因此,要准确测量不同pH条件下染料的浓度,必须考虑其最大吸收波长λmax的变化及相应吸光值的变化。
     通过现代分析测试技术付里叶变换红外光谱和热重分析表明,SCHS中含有胺基、羟基、羰基、羧酸基、磷酸基等活性吸附官能团位点,这些官能团能够与染料离子结合产生吸附作用。通过化学滴定测定了SCHS的零电点(pHPZC),进一步验证了在SCHS吸附剂上存在羰基、羧酸基、磷酸基等活性吸附官能团位点。
     在静态的系列吸附实验中,通过考察染料溶液pH值、吸附时间、吸附剂用量、吸附剂粒径、温度、离子强度、染料浓度等实验参数对染料吸附的影响,确定了最佳的吸附条件。应用Langmuir, Freundlich, Redlich-Peterson和Sips4种吸附等温线模型对SCHS在不同温度条件下吸附染料的数据进行了拟合分析。用准一级吸附动力学、准二级吸附动力学和粒子扩散模型对不同时间条件下SCHS的动态吸附行为进行了拟合分析。为验证各个模型的线性和非线性拟合的参数可靠性,本论文还比较了各个拟合结果的误差数据。通过对等温吸附模型、吸附动力学的线性回归和曲线回归比较分析,证明线性回归的数据误差明显偏大,非线性回归数据的可靠性要高于线性回归。
     吸附热力学的研究表明,SCHS吸附3种染料的Gibbs自由能变化AG°均小于0,且温度越高-△G。越小。这证明吸附过程引起Gibbs自由能降低,因此SCHS去除3种染料的吸附反应是自发进行的。焓变表明SCHS吸附3种染料的过程是吸热反应,SCHS对3种染料的吸附除了物理吸附外,化学吸附占有主导作用。溶液环境温度的升高,不仅有利于活化SCHS吸附位点,更重要的是在一定程度上增加了吸附位点的数量。
     通过用C80微量热仪对SCHS吸附染料的固相-液相体系热量变化的测量,证明SCHS与染料溶液反应过程中的热量变化不仅有吸热过程的吸附热还有放热过程的润湿热。由于吸附热较润湿热的值相差较大且整个体系润湿热起主导作用,因此整个体系放热起主导作用。
     最后,在动态吸附柱的实验中,通过改变吸附柱的柱高、染料溶液流入速度、初始浓度等单因素条件,研究了各种因素对动态吸附的影响。动态吸附柱的机理研究表明,可以用Thomas模型和BDST模型来描述SCHS生物吸附剂在动态吸附柱中吸附3种染料的行为。动态吸附实验表明, SCHS动态吸附柱可以有效去除溶液中的染料。
     本论文的主要创新点是:
     一、对一部分研究工作者在使用单一波长λmax测量刚果红浓度时未考虑pH值变化对λmax的影响,进行了纠正。实验证明有些染料在不同pH值溶液环境条件下,其发色基团的结构会发生改变,因此其最大吸收波长(λmax)及其吸光值也会随着pH值的变化而变化,此研究纠正了一些国内外学者在先前研究中存在的误区。
     二、通过对等温吸附模型、吸附动力学模型的线性回归和曲线回归比较分析,证明线性回归的数据误差明显偏大,非线性回归数据的可靠性要高于线性回归。
     三、运用C80微量热仪对吸附染料的固相-液相体系热量变化的测量,证明SCHS与3种阳离子染料溶液反应过程中的热量变化不仅有吸附热,还有放热过程的润湿热,吸附热较润湿热的值相差较大,因此,整个体系润湿热起主导作用。这是目前文献中没有报道的。
This study focused on the possible use of the spent cottonseed hull substrate (SCHS), an agricultural waste was used after the cultivation of white rot fungus Pleurotus ostreatus (P. ostreatus), to adsorb three kinds of cationic dyes, Neutral Red (NR), Methylene Blue (MB) and Malachite Green(MG) from aqueous solutions. Meanwhile, the reliable maximum absorption wavelength (λmax) value for Congo Red (CR) dye at different pH values was researched in the paper.
     It was found that the λmax of CR is576nm at pH2.18-3.16,567nm at pH3.86, and496nm at pH>4.71, for the different structure of CR molecules at different pH. CR is very sensitive to the pH of solution and would change from red to blue, due to π-π transition in azo group shifts to higher wavelength because of protonation. This experiment revealed that at lower pH it becomes cationic and shows two tautomeric forms of protonated CR, i.e. ammonium rich variety and azonium variety. So the test proved that relevant papers about research of λmax of Congo Red published in some Journals are incorrect.
     Fourier transforms infrared (FTIR) spectroscopy and thermo-gravimeter analyses (TG-DTG) were used for the characterization of the biosorbents. For the pure SHCS adsorbents, the functional groups on the SCHS surface, such as-NH, OH, C=O, COO-and-P=O, have been considered to be potential adsorption sites for entrapment of dyes molecules. The pH at point of zero charge (pHPZC) of the adsorbent was determined by the titration method. The efficient adsorption process is ascribed to the massive functional groups on the biosorbent surface such as hydroxyl and carboxyl. The TG-DTG of the biomass proved that SCHS is mainly composed of hemicelluloses, cellulose and lignin, etc.
     A batch adsorption study was carried out with variable solution pH, adsorbent amount, adsorption time, temperature and initial concentration. It was found that dyes uptake was favorable at pH>pHzpc. Langmuir, Freundlich, Redlich-Peterson and Sips isotherm models were applied to the analysis of experimental equilibrium data of SCHS adsorption dyes. The effect of contact time at different temperatures was fitted to pseudo-first-order and pseudo-second-order kinetic models. Linear regressive method and nonlinear regressive method were used to obtain the relative parameters. The nonlinear method may be better with the absolute error as limited condition. The adsorption process was spontaneous and endothermic.
     Thermodynamic parameters of free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°), obtained from biosorption of dyes ranging from different temperature, showed that the adsorption was a spontaneous and endothermic process. The negative value of ΔG°indicates the spontaneity and feasibility of the biosorption process. The decrease in ΔG°value with rising temperature reveals that adsorption of dyes onto SCHS becomes more favorable at higher temperature. By using micro-calorimetry C80to measure the heat change of dyes onto SCHS in the experiment, it is proved that the wetting heat plays a leading role in solid-liquid adsorption system and the wetting is exothermic process during action.
     At last, the adsorption potential of SCHS to remove dyes from aqueous solution was investigated using fixed-bed adsorption column. The adsorption data were fitted by two fixed-bed adsorption models namely, Thomas and BDST models. The results fitted well to the models at different conditions. The SCHS was shown to be suitable adsorbent for adsorption of dyes using fixed-bed adsorption column.
     The major innovative points of this paper were summarized as follows.
     First of all, the experiments proved that the chromophore structure of some dyes will change at different pH and λmax and its value would change with the changes of pHs value. So the tests proved that relevant papers about research of λmax of Congo Red published in some Journals are incorrect by some scholars in the previous study.
     Second, linear regressive method and nonlinear regressive method were used to obtain the relative parameters of the adsorption isotherm, kinetics model. The data reliability of non-linear regression is higher than the linear regression.The error analysis was conducted to prove that nonlinear method was better to predict the experimental results.
     Third, by using micro-calorimetry C80to measure the heat change of solid phase-liquid phase adsorption of dye in the experiments, it was proved that the heat change process is composed by the wetting heat of exothermic and the adsorption heat of endothermic. Above all, the wetting heat of the system plays a leading role and its value is much larger than the later. This is not reported in the previous literature.
引文
[1]CRINI G. Non-conventional low-cost adsorbents for dye removal:a review [J]. Bioresource Technology,2006,97(9):1061-1085.
    [2]KUSHWAHA J P, SRIVASTAVA V C, MALL I D. Treatment of dairy wastewater by commercial activated carbon and bagasse fly ash:Parametric, kinetic and equilibrium modelling, disposal studies [J]. Bioresource Technology,2010,101(10):3474-3483.
    [3]JUANG R S W F C, TSENG R L. Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2002,201):191-199.
    [4]AMIN N K. Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith [J]. Desalination,2008,223(1-3):152-161.
    [5]GUPTA V K, SUHAS. Application of low-cost adsorbents for dye removal--a review [J]. Journal of Environmental Management,2009,90(8):2313-2342.
    [6]EL-HALWANY M M, Study of adsorption isotherms and kinetic models for Methylene Blue adsorption on activated carbon developed from Egyptian rice hull (Part Ⅱ) [J]. Desalination, 250(1):208-213.
    [7]DENG H, YANG L, TAO G H, et al. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-Application in methylene blue adsorption from aqueous solution [J]. Journal of Hazardous Materials,2009,166(2-3): 1514-1521.
    [8]GIMBA C E, OCHOLI O, EGWAIKHIDE P A, et al. New raw material for activated carbon.I. Methylene blue adsorption on activated carbon prepared from Khaya senegalensis fruits [J]. Ciencia E Investigation Agraria,2009,36(1):107-113.
    [9]PELEKANI C, SNOEYINK V L. Competitive adsorption between atrazine and methylene blue on activated carbon:the importance of pore size distribution [J]. Carbon,2000,38(10): 1423-1436.
    [10]LIN J, WANG L. Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon [J]. Frontiers of Environmental Science & Engineering in China,2009,3(3): 320-324.
    [11]BELLO O S, ADEOGUN I A, AJAELU J C, et al. Adsorption of methylene blue onto activated carbon derived from periwinkle shells:kinetics and equilibrium studies [J]. Chemistry and Ecology,2008,24(4):285-295.
    [12]HAMEED B H, AHMAD A L. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust [J]. Dyes and Pigments,2007,75(1):143-149.
    [13]RAFATULLAH M, SULAIMAN O, HASHIM R, et al. Adsorption of methylene blue on low-cost adsorbents:a review [J]. Journal of Hazardous Materials,2010,177(1-3):70-80.
    [14]HARITASH A K, KAUSHIK C P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs):A review [J]. Journal of Hazardous Materials,2009,169(1-3):1-15.
    [15]SRINIVASAN A, VIRARAGHAVAN T. Decolorization of dye wastewaters by biosorbents: A reviewe[J]. Journal of Environmental Management,2010,91(10):1915-1929.
    [16]RONG X, HUANG Q, JIANG D, et al. Isothermal Microcalorimetry:A Review of Applications in Soil and Environmental Sciencesl [J]. Pedosphere,2007,17(2):137-145.
    [17]CRINI G. Non-conventional low-cost adsorbents for dye removal:a review [J]. Bioresource Technology,2006,97(9):1061-1085.
    [18]ZHANG X L A J Z, ZHANG Q. Adsorption of dyes and phenol from water on resin adsorbents:effect of adsorbate size and pore size distribution[J].Journal of Hazardous Materials,2006,137:1115-1122.
    [19]ZHANG W, ZOU L D, WANG L Z. Visible-light assisted methylene blue (MB) removal by novel TiO2/adsorbent nanocomposites [J]. Water Science and Technology,2010,61(11): 2863-2871.
    [20]ZHANG J, SHI Q, ZHANG C. et al. Adsorption of Neutral Red onto Mn-impregnated activated carbons prepared from Typha orientalis [J]. Bioresource Technology,2008,99(18): 8974-8980.
    [21]ZCAN A, ZCAN A. Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite [J]. Journal of Colloid and Interface Science,2004.276(1):39-46.
    [22]WU F C, LIU B L, WU K T, et al. A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes [J]. Chemical Engineering Journal,2010,162:21-27.
    [23]SCHWARZENBACH R, ESCHER B, FENNER K, et al. The challenge of micropollutants in aquatic systems [J]. Science,2006,313(5790):1072-1080
    [24]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理,2006,26(6):6-10.
    [25]G K O, OZCAN A S, OZCAN A. Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite [J]. Applied Surface Science,2010,256(17): 5439-5443.
    [26]BENGUELLA B, YACOUTA-NOUR A. Adsorption of Bezanyl Red and Nylomine Green from aqueous solutions by natural and acid-activated bentonite [J]. Desalination,2009, 235(1-3):276-292.
    [27]BULUT E, OZACAR M. SENGIL I A. Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design [J]. Microporous and Mesoporous Materials,2008,115(3):234-246.
    [28]HONG S, WEN C, HE J, et al. Adsorption thermodynamics of Methylene Blue onto bentonite [J]. Journal of Hazardous Materials,2009,167(1-3):630-633.
    [29]DEMIRBAS A, SARI A, ISILDAK O. Adsorption thermodynamics of stearic acid onto bentonite [J]. Journal of Hazardous Materials,2006,135(1-3):226-231.
    [30]LI Q, YUE Q Y. A comparative study on the properties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationic-polymer/bentonite [J]. Journal of Environmental Management,2010,91(7):1601-1611.
    [31]KARAOGLU M H, DOGAN M, ALKAN M. Kinetic analysis of reactive blue 221 adsorption on kaolinite [J]. Desalination,2010,256(1-3):154-165.
    [32]Lee, J.W., S.P. Choi, R. Thiruvenkatachari, et al. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes[J]. Dyes and Pigments, 2006,69(3):196-203.
    [33]GHOSH D, BHATTACHARYYA K G. Adsorption of methylene blue on kaolinite [J]. Applied Clay Science,2002,20(6):295-300.
    [34]THOMAS J K, GUNDA K, REHBEIN P, et al. Flow calorimetry and adsorption study of dibenzothiophene, quinoline and naphthalene over modified Y zeolites [J]. Applied Catalysis B:Environmental,2010,94(3-4):225-233.
    [35]SZE F F. Enhanced abatement of aqueous organic compounds using stratified activated carbon adsorption columns [D]. Hong Kong:Hong Kong University of Science and Technology,2009.
    [36]XING Y, LIU D, ZHANG L P. Enhanced adsorption of Methylene Blue by EDTAD-modified sugarcane bagasse and photocatalytic regeneration of the adsorbent [J]. Desalination, 259(1-3):187-191.
    [37]XING Y, LIU D, ZHANG L P. Enhanced adsorption of Methylene Blue by EDTAD-modified sugarcane bagasse and photocatalytic regeneration of the adsorbent [J]. Desalination,2010, 259(1-3):187-191.
    [38]MALL I D, SRIVASTAVA V C, AGARWAL N K, et al. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,264(1-3):17-28.
    [39]ZHOU Q, GONG W, LI Y, et al. Biosorption of Methylene Blue onto spent corncob substrate: kinetics, equilibrium and thermodynamic studies [J]. Water Science & Technology,2011, 63(12):2775-2780.
    [40]SHEN J, DUVNJAK Z. Adsorption kinetics of cupric and cadmium ions on corncob particles [J]. Process Biochemistry,2005,40(11):3446-3454.
    [41]CAO Q, XIE K C, LV Y K, et al. Process effects on activated carbon with large specific surface area from corn cob [J]. Bioresource Technology,2006,97(1):110-115.
    [42]KUMAR K V, SIVANESAN S. Pseudo second order kinetic models for safranin onto rice husk:Comparison of linear and non-linear regression analysis [J]. Process Biochemistry, 2006,41(5):1198-1202.
    [43]PONNUSAMI V, KRITHIKA V, MADHURAM R, et al. Biosorption of reactive dye using acid-treated rice husk:Factorial design analysis [J]. Journal of Hazardous Materials,2007, 142(1-2):397-403.
    [44]HAN R, WANG Y, YU W, et al. Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column [J]. Journal of Hazardous Materials,2007,141(3):713-718.
    [45]VADIVELAN V, KUMAR K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk [J]. Journal of Colloid and Interface Science, 2005,286(1):90-100.
    [46]HAN R, LI Y, ZHANG J, et al. Langmuir isotherm and pseudo second order kinetic model for the biosorption of methylene blue onto rice husk, Shanghai, China, F,2008 [C]. Inst. of Elec. and Elec. Eng. Computer Society.
    [47]HAMEED B H, MAHMOUD D K, AHMAD A L. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent:Coconut (Cocos nucifera) bunch waste [J]. Journal of Hazardous Materials,2008,158(1):65-72.
    [48]TAN I A, AHMAD A L, HAMEED B H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk:equilibrium, kinetic and thermodynamic studies [J]. Journal of Hazardous Materials,2008,154(1-3):337-346.
    [49]KARA S, AYDINER C, DEMIRBAS E, et al. Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash [J]. Desalination,2007, 212(1-3):282-293.
    [50]DEMIRBAS E, NAS M Z. Batch kinetic and equilibrium studies of adsorption of Reactive Blue 21 by fly ash and sepiolite [J]. Desalination,2009,243(1-3):8-21.
    [51]KOOPAL L K, LEE E M, B HMER M R. Adsorption of cationic and anionic surfactants on charged metal oxide surfaces [J]. Journal of Colloid and Interface Science,1995,170(1): 85-97.
    [52]CHEUNG W H, SZETO Y S, MCKAY G. Intraparticle diffusion processes during acid dye adsorption onto chitosan [J]. Bioresource Technology,2007,98(15):2897-2904.
    [53]CHATTERJEE S, CHATTERJEE T, LIM S R, et al. Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core-shell beads on adsorption of Congo red from aqueous solution [J]. Bioresource Technology,2011,102(6):4402-4409.
    [54]HO Y, MCKAY G. Sorption of dye from aqueous solution by peat [J]. Chemical Engineering Journal,1998,70(2):115-124.
    [55]IQBAL M, SAEED A. Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium [J]. Process Biochemistry,2007,42(7):1160-1164.
    [56]YU J X, LI B H, SUN X M, et al. Polymer modified biomass of baker's yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta [J]. Journal of Hazardous Materials.2009,168(2-3):1147-1154.
    [57]FARAH J Y, EL-GENDY N S, FARAHAT L A. Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker's yeast [J]. Journal of Hazardous
    Materials,2007,148(1-2):402-408.
    [58]ARICA M Y, BAYRAMOGLU G. Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju [J]. Journal of Hazardous Materials,2007,149(2):499-507.
    [59]TSAI W T, CHEN H R. Removal of malachite green from aqueous solution using low-cost chlorella-based biomass [J]. Journal of Hazardous Materials,2010,175(1-3):844-849.
    [60]AKAR T, ANILAN B, GORGULU A, et al. Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass:Pyracantha coccinea berries [J]. Journal of Hazardous Materials,2009,168(2-3):1302-1309.
    [61]O'MAHONY T, GUIBAL E, TOBIN J M. Reactive dye biosorption by Rhizopus arrhizus biomass [J]. Enzyme and Microbial Technology,2002,31(4):456-463.
    [62]GONG R, SUN J, ZHANG D, et al. Kinetics and thermodynamics of basic dye sorption on phosphoric acid esterifying soybean hull with solid phase preparation technique [J]. Bioresour Technol,2008,99(10):4510-4514.
    [63]COLAK F. ATAR N, OLGUN A. Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans:Kinetic, thermodynamic and equilibrium studies [J]. Chemical Engineering Journal,2009,150(1):122-130.
    [64]OZER A, AKKAYA G, TURABIK M. The biosorption of Acid Red 337 and Acid Blue 324 on Enteromorpha prolifera:The application of nonlinear regression analysis to dye biosorption [J]. Chemical Engineering Journal,2005,112(1-3):181-190.
    [65]龚仁敏.天然植物材料作为吸附剂去除水溶液中离子型染料及吸附机理的研究[D],南京:南京大学,2004.
    [66]马江雁.锰氧化物改性沸石(MOCZ)对罗丹明B和4-氯苯酚的吸附研究[D].郑州:郑州大学,2010.
    [67]王元凤.谷壳和梧桐树叶对水体中亚甲基蓝和刚果红的吸附研究[D],郑州:郑州大学,2007.
    [68]TSAI W T, CHEN H R. Removal of malachite green from aqueous solution using low-cost chlorella-based biomass [J]. Journal of Hazardous Materials,2010,175:844-849.
    [69]MENDEZ A F F, GASCO G. Removal of malachite green using carbon-based adsorbents[J]. Desalination,2007,206:147-153.
    [70]HAMEED B H, EL-KHAIARY M I. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre:Equilibrium isotherms and kinetic studies [J]. Journal of hazardous materials,2008,154:237-244.
    [71]BAEK M H, IJAGBEMI C O, O S J, et al. Removal of Malachite Green from aqueous solution using degreased coffee bean [J]. Journal of Hazardous Materials,2010,176(1-3): 820-828.
    [72]AHMAD A A, HAMEED B H. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste [J]. Journal of Hazardous Materials,2010,175(1-3): 298-303.
    [73]WERBOWESKY R, CHOW A. Extraction of azo dyes by polyurethane foam [J]. Talanta, 1996,43(2):263-274.
    [74]ARMAGAN B, TURAN M, CELIK M S. Equilibrium studies on the adsorption of reactive azo dyes into zeolite [J]. Desalination,2004,170(1):33-39.
    [75]JANUS M, KUSIAK E, CHOINA J, et al. Enhanced adsorption of two azo dyes produced by carbon modification of TiO2 [J]. Desalination,2009,249(1):359-363.
    [76]郑少杰.天然高分子材料的改性及其对染料的吸附研究[D].广州:暨南大学,2010.
    [77]POKHREL D, VIRARAGHAVAN T. Diarrhoeal diseases in Nepal vis-a-vis water supply and sanitation status [J]. Journal of Water and Health,2004,2(2):71-81.
    [78]POKHREL D, VIRARAGHAVAN T. Treatment of pulp and paper mill wastewater--a review [J]. Science of the Total Environment,2004,333(1-3):37-58.
    [79]明银安,陆晓华.印染废水处理技术进展[J].工业安全与环保,2003,29(008):16-19.
    [80]徐成勇,郭波,周莲,等.白腐菌对染料脱色和降解作用的研究进展[J].生物工程进展,2002,01:57-60.
    [81]昝逢宇.生物吸附剂及其吸附性能研究进展[J].青海环境,2004,14(1):15-18.
    [82]余D,郑平,金仁村,等.印染废水生物处理技术进展[J].化工进展,2008,27(11):1724-1736.
    [83]傅春堂,张甲耀,郑金秀,等.高效染料降解真菌的分离及其在印染废水生物处理中的强化作用[J].应用与环境生物学报,2006,12(005):693-696.
    [84]汤岳琴.生物吸附研究进展[J].四川环境,2001,20(2):36-42
    [85]张丽芳.真菌生物吸附剂对染料吸附脱色的研究[J].东北大学学报(自然科学版),2007,28(10):83-87
    [86]NAKAGAWA K, NAMBA A, MUKAI S R, et al. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes [J]. Water Research, 2004,38(7):1791-1798.
    [87]DABROWSKI A, PODKOSCIELNY P, HUBICKI Z, et al. Adsorption of phenolic compounds by activated carbon--a critical review [J]. Chemosphere,2005,58(8):1049-1070.
    [88]DABROWSKI A. Adsorption--from theory to practice [J]. Advances in Colloid and Interface Science, 2001, 93(1-3): 135-224.
    [89]IBRAHIM M, Copper(II) Biosorption on Soda Lignin From Oil Palm Empty Fruit Bunches (EFB). Clean-Soil Air Water 2009, 37 (1), 80-85.
    [90]王宇.利用农业秸秆制备阴离子吸附剂及其性能的研究[D].济南:山东大学,2007.
    [91]林俊雄.硅藻土基吸附剂的制备,表征及其染料吸附特性研究[D].杭州:浙江大学,2007.
    [92]AL-QODAH Z, LAFI W K, AL-ANBER Z, et al. Adsorption of methylene blue by acid and heat treated diatomaceous silica [J]. Desalination. 2007, 217(1-3): 212-224.
    [93]AKAR S T, OZCAN A S, AKAR T, et al. Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste [J]. Desalination, 2009, 249(2): 757-761.
    [94]KHAMBHATY Y, MODY K, BASHA S, et al. Pseudo-second-order kinetic models for the sorption of Hg(II) onto dead biomass of marine Aspergillus niger: Comparison of linear and non-linear methods [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 328(1-3): 40-43.
    [95]ZHOU Q, GONG W, YANG D, et al. Assessment of the biosorption characteristics of a spent cottonseed husk substrate for the decolorization of Methylene Blue [J]. CLEAN - Soil, Air, Water, 2011, 39(12):1087-1094
    [96]CHOWDHURY S, SAHA P. Adsorption Kinetic Modeling of Safranin onto Rice Husk Biomatrix Using Pseudo-first- and Pseudo-second-order Kinetic Models: Comparison of Linear and Non-linear Methods [J]. Clean - Soil, Air, Water, 2011, 39(3): 274-282.
    [97]NIESZPOREK K. DRACH M, PODKOSCIELNY P. Theoretical studies of hydrocarbon homologous series adsorption on activated carbons: Adsorption equilibria and calorimetry [J]. Separation and Purification Technology, 2009, 69(2): 174-184.
    [98]NEVSKAIA D M, SEPULVEDA-ESCRIBANO A, GUERRERO-RUIZ A. Surface properties of activated carbons in relation to their ability to adsorb nonylphenol aqueous contaminant [J]. Physical Chemistry Chemical Physics, 2001, 3(3): 463-468.
    [99]WANG S B, ZHU Z H, COOMES A, et al. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater [J]. Journal of Colloid and Interface Science, 2005, 284(2): 440-446.
    [100]AKMIL-BASAR C, ONAL Y, KILICER T, et al. Adsorptions of high concentration malachite green by two activated carbons having different porous structures [J]. Journal of Hazardous Materials, 2005, 127(1-3): 73-80.
    [101]TSENG R L, WU K T, WU F C, et al. Kinetic studies on the adsorption of phenol, 4-chlorophenol. and 2.4-dichlorophenol from water using activated carbons [J]. Journal of Environmental Management, 2010, 91(11): 2208-2214.
    [102]WANG S, ZHU Z H, COOMES A, et al. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater [J]. Journal of Colloid and Interface Science,2005,284(2):440-446.
    [103]BOUCHEMAL N, ADDOUN F. Adsorption of dyes from aqueous solution onto activated carbons prepared from date pits:The effect of adsorbents pore size distribution [J]. Desalination and Water Treatment,2009,7(1-3):242-250
    [104]BELHACHEMI M, BELALA Z, LAHCENE D, et al. Adsorption of phenol and dye from aqueous solution using chemically modified date pits activated carbons [J]. Desalination and Water Treatment,2009,7(1-3):182-190.
    [105]ABDELWAHAB O. Evaluation of the use of loofa activated carbons as potential adsorbents for aqueous solutions containing dye [J]. Desalination,2008,222(1-3):357-367.
    [106]NEVSKAIA D M, SANTIANES A, MU OZ V, et al. Interaction of aqueous solutions of phenol with commercial activated carbons:an adsorption and kinetic study [J]. Carbon, 1999,37(7):1065-1074.
    [107]BUCZEK B, SWI, GOWOREK J. Adsorption from binary liquid mixtures on commercial activated carbons [J]. Carbon,1995,33(2):129-134.
    [108]CAQUERET V, BOSTYN S, CAGNON B, et al. Purification of sugar beet vinasse Adsorption of polyphenolic and dark colored compounds on different commercial activated carbons [J]. Bioresource Technology,2008,99(13):5814-5821.
    [109]NAMASIVAYAM C, KADIRVELU K. Uptake of mercury (Ⅱ) from wastewater by activated carbon from an unwanted agricultural solid by-product:coirpith [J]. Carbon,1999, 37(1):79-84.
    [110]DIAS J M, ALVIM-FERRAZ M C M, ALMEIDA M F, et al. Waste materials for activated carbon preparation and its use in aqueous-phase treatment:A review [J]. Journal of Environmental Management,2007,85(4):833-846.
    [111]HAMEED B H, MAHMOUD D K, AHMAD A L. Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste [J]. Journal of Hazardous Materials,2008,158(2-3):499-506.
    [112]KHATTRI S D, SINGH M K. Removal of malachite green from dye wastewater using neem sawdust by adsorption [J]. Journal of Hazardous Materials,2009,167(1-3):1089-1094.
    [113]M NDEZ A, BARRIGA S, SAA A, et al. Removal of malachite green by adsorbents from paper industry waste materials [J]. Journal of Thermal Analysis and Calorimetry,2010,99(3): 993-998.
    [114]CAO Q, XIE K C, BAO W R, et al. Pyrolytic behavior of waste corn cob [J]. Bioresource Technology,2004,94(1):83-89.
    [115]MITTAL A, GUPTA V K, MALVIYA A, et al. Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya) [J]. Journal of Hazardous Materials, 2008,151(2-3):821-832.
    [116]PAVAN F A, LIMA E C, DIAS S L P. et al. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste [J]. Journal of Hazardous Materials,2008,150(3): 703-712.
    [117]GUPTA N, TRIPATHI S, BALOMAJUMDER C. Characterization of pressmud:A sugar industry waste [J]. Fuel,2011,90(1):389-394.
    [118]NAMASIVAYAM C R R, SUBA S. Uptake of dyes by a promising locally available agricultural solid waste:coir pith[J]. Waste Manage,2001,21:381-387.
    [119]NAMASIVAYAM C. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste [J]. Dyes and Pigments,2002, 54:47-58.
    [120]KAVITHA D, NAMASIVAYAM C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon [J]. Bioresource Technology,2007,98:14-21.
    [121]BANAT F A-A S, AL-MAKHADMEH L. Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters[J]. Process Biochem,2003,39: 193-202.
    [122]CHA W-S, PARK S-S, KIM S-J, et al. Biochemical and enzymatic properties of a fibrinolytic enzyme from Pleurotus eryngii cultivated under solid-state conditions using corn cob. [J]. Bioresource Technology,2010,101:6475-6481.
    [123]CAO Q. Process effects on activated carbon with large specific surface area from corn cob [J]. Bioresource Technology,2006,97:110-115.
    [124]ROBINSON T, CHANDRAN B, NIGAM P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw [J]. Water Research,2002,36(11): 2824-2830.
    [125]MAITI S, PURAKAYASTHA S, GHOSH B. Thermal characterization of mustard straw and stalk in nitrogen at different heating rates [J]. Fuel,2007,86(10-11):1513-1518.
    [126]HAN R, ZHANG L, SONG C, et al. Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode [J]. Carbohydrate Polymers,2010,79(4):1140-1149.
    [127]GONGA R M, ZHONG K D, HU Y, et al. Thermochemical esterifying citric acid onto lignocellulose for enhancing methylene blue sorption capacity of rice straw [J]. Journal of Environmental Management,2008,88(4):875-880.
    [128]GONG R, JIN Y, CHEN F, et al. Enhanced malachite green removal from aqueous solution by citric acid modified rice straw [J]. Journal of Hazardous Materials,2006,137:865-870.
    [129]BRUNETTI G, SOLER-ROVIRA P, MATARRESE F, et al. Composition and Structural Characteristics of Humified Fractions during the Co-composting Process of Spent Mushroom Substrate and Wheat Straw [J]. Journal of Agricultural and Food Chemistry, 2009,57(22):10859-10865.
    [130]BATZIAS F, SIDIRAS D, SCHROEDER E, et al. Simulation of dye adsorption on hydrolyzed wheat straw in batch and fixed-bed systemse[J]. Chemical Engineering Journal, 2009,148:459-472.
    [131]FIALA S., Prevention of adaptive formation of tryptophan peroxidase by a carcinogenic azo dye. Nature 1959,183 (4674),1532-1533.
    [132]KUMAR K, SIVANESAN S. Pseudo second order kinetic models for safranin onto rice husk:Comparison of linear and non-linear regression analysis [J]. Process Biochemistry, 2006,41(1):198-202.
    [133]VADIVELAN V, KUMAR K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk [J]. Journal of Colloid and Interface Science, 2005,286:90-100.
    [134]VASANTHKUMAR K, SIVANESAN S. Sorption isotherm for safranin onto rice husk: Comparison of linear and non-linear methods [J]. Dyes and Pigments,2007,72:130-133.
    [135]ZOU W H, HAN P, LIA Y L, et al. Equilibrium, kinetic and mechanism study for the adsorption of neutral red onto rice husk [J]. Desalination and Water Treatment,2009, 12(1-3):210-218.
    [136]CHOWDHURY S, MISHRA R, SAHA P, et al. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk [J]. Desalination,2011,265:159-168.
    [137]CHOWDHURY S, SAHA P. Adsorption Kinetic Modeling of Safranin onto Rice Husk Biomatrix Using Pseudo-first- and Pseudo-second-order Kinetic Models:Comparison of Linear and Non-linear Methods [J]. CLEAN-Soil, Air, Water,2011,39:274-282.
    [138]HAN R, DING D, XU Y, et al. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. [J]. Bioresource Technology,2008,99:2938-2946.
    [139]TSENG R-L, WU F-C, JUANG R-S. L iquid-phase adsorption of dyes and phenols using pinewood-based activated carbons [J]. Chemical Engineering,2003,41:487-495.
    [140]KADIRVELU K, KAVIPRIYA M, KARTHIKA C, et al. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions [J]. Bioresource Technology,2003,87(1):129-132.
    [141]HAMEED B H, DIN A T M, AHMAD A L. Adsorption of methylene blue onto bamboo-based activated carbon:Kinetics and equilibrium studies [J]. Journal of Hazardous Materials,2007,141:819-825.
    [142]HAMEED B H, DIN A T M, AHMAD A L. Adsorption of methylene blue onto bamboo-based activated carbon:Kinetics and equilibrium studies [J]. Journal of Hazardous Materials,2007,141(3):819-25.
    [143]CHAN L, CHEUNG W, MCKAY G. Adsorption of acid dyes by bamboo derived activated carbon [J]. Desalination,2008,218(1-3):304-312.
    [144]AHMAD A A, HAMEED B H. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater [J]. Journal of Hazardous Materials,2010. 173(1-3):487-493.
    [145]CARPIO E, ZUNIGA P, PONCE S, et al. Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon [J]. Journal of Molecular Catalysis A:Chemical. 2005,228(1-2):293-298.
    [146]ARIYADEJWANICH P, TANTHAPANICHAKOON W. Preparation and characterization of mesoporous activated carbon from waste tires [J]. Carbon,2003,41(1):157-164.
    [147]ROZADA F, CALVO L, GARCiA A, et al. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems [J]. Bioresource Technology,2003,87(3): 221-230.
    [148]OKADA K, YAMAMOTO N, KAMESHIMA Y, et al. Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation [J]. Journal of colloid and interface science,2003,262(1):179-193.
    [149]MOHAN D, PITTMAN JR C U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water [J]. Journal of hazardous materials,2006, 137(2):762-811.
    [150]DIMITROVA S. Metal sorption on blast-furnace slag [J]. Water Research,1996,30(1): 228-232.
    [151]SHUKLA A Z Y H D P M J L, SHUKLA S S. The role of sawdust in the removal of unwanted materials from water[J]. Journal of hazardous materials,.2002,95:137-152.
    [152]HO Y S, MCKAY G. Kinetic models for the sorption of dye from aqueous solution by wood[J]. Process Saf. Environ. Prot,1998,76:183-191.
    [153]FENG N, GUO X, LIANG S. Adsorption study of copper (Ⅱ) by chemically modified orange peel [J]. Journal of Hazardous Materials,2009,164:1286-1292.
    [154]OH M, TSHABALALA M A. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water [J]. BioResources,2007,2(1):66-81.
    [155]BAILEY S E O T J B R M, ADRIAN D D. A review of potentially low-cost sorbents for heavy metals [J]. Water Research,1999,33:2469-2479.
    [156]MORAIS L, FREITAS O, GONCALVES E, et al. Reactive dyes removal from wastewaters by adsorption on eucalyptus bark:variables that define the process [J]. Water Research. 1999,33(4):979-988.
    [157]ZHOU Q, GONG W Q, LI Y B, et al. Biosorption of Methylene Blue onto spent corncob substrate:kinetics, equilibrium and thermodynamic studies [J]. Water Science & Technology,2011,63:2775-2780.
    [158]ROBINSON T, CHANDRAN B, NIGAM P. Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk [J]. Environment International,2002,28:29-33.
    [159]LEYVARAMOS R, BERNALJACOME L, ACOSTARODRIGUEZ I. Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob [J]. Separation and Purification Technology,2005,45(1):41-49.
    [160]GONG R, ZHU S, ZHANG D, et al. Adsorption behavior of cationic dyes on citric acid esterifying wheat straw:kinetic and thermodynamic profile [J]. Desalination,2008, 230:220-228.
    [161]NEMR A E A O E-S A, KHALED A. Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel[J]. Journal of Hazardous Materials,2009, 161(1):102-110
    [162]NAMASIVAYAM C M N G K R M, RANGANATHAN K. Removal of dyes from aqueous solutions by cellulosic waste orange peel[J]. Bioresource Technology.1996,57:37-43.
    [163]FENG N, GUO X, LIANG S. Adsorption study of copper (Ⅱ) by chemically modified orange peel [J]. Journal of Hazardous Materials,2009,164:1286-92.
    [164]NETPRADIT S T P, TOWPRAYOON S. Adsorption of three azo reactive dyes by metal hydroxide sludge:effect of temperature, pH. and electrolytes [J]. Journal of Colloid and Interface Science,2004,270:255-261.
    [165]NETPRADIT S T P, TOWPRAYOON S. Application of 'waste' metal hydroxide sludge for adsorption of azo reactive dyes[J]. Water Research,2003.37:763-772.
    [166]NETPRADIT S, THIRAVETYAN P, TOWPRAYOON S. Evaluation of metal hydroxide sludge for reactive dye adsorption in a fixed-bed column system.[J]. Water research,2004, 38:71-78.
    [167]MALL I D, SRIVASTAVA V C, AGARWAL N K, et al. Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses [J]. Colloids and Surfaces,2005,264:17-28.
    [168]LIN J X, ZHAN S L, FANG M H, et al. Adsorption of basic dye from aqueous solution onto fly ash.[J]. Journal of Environmental Management,2008,87:193-200.
    [169]KUMAR K V, RAMAMURTHI V, SIVANESAN S. Modeling the mechanism involved during the sorption of methylene blue onto fly ash [J]. Journal of Colloid and Interface Science,2005,284(1):14-21.
    [170]WANG L, WANG A. Adsorption behaviors of Congo red on the N,O-carboxymethyl chitosan montmorillonite nanocomposite [J]. Chemical Engineering Journal,2008, 143:43-50.
    [171]WANG L, WANG A. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite [J]. Journal of hazardous materials,2008. 160:173-180
    [172]ALMEIDA C A, DEBACHER N A. DOWNS A J, et al. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay [J]. Journal of Colloid and Interface Science,2009,332(1):46-53.
    [173]HARRIS R G W J D, JOHNSON B B. Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,180:131-140.
    [174]BROOKS R R. Serpentine and its vegetation:a multidisciplinary approach [M]. Dioscorides Press,1987.
    [175]HU Y, WU X, NIE F. Study of Removal Rate of Ammonium by Vermiculite Adsorption [J]. Journal of Central South Forestry University,2004,1:48-56
    [176]SABAH E, CELIK M. Adsorption mechanism of quaternary amines by sepiolite [J]. Separation science and technology,2002,37(13):3081-3097.
    [177]BULUT E, OZACAR M, SENGIL I A. Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. [J]. Journal of hazardous materials,2008, 154:613-622.
    [178]LIN J X, WANG L. Adsorption of dyes using magnesium hydroxide-modified diatomite [J]. Desalination and Water Treatment,2009,8(1-3):263-271.
    [179]AL-GHOUTI M A, KHRAISHEH M A M, AHMAD M N, et al. Microcolumn studies of dye adsorption onto manganese oxides modified diatomite[J]. Journal of hazardous materials,2007,146:316-327.
    [180]MARSAL A, GARCIA-ESPANTALEON A, RIBOSA I, et al. Removal of vegetable extracts by the use of activated clays [J]. Journal of the Society of leather Technologists and Chemists,2003,87(6):219-222.
    [181]KURNIAWAN A, SUTIONO H, JU Y H, et al. Utilization of rarasaponin natural surfactant for organo-bentonite preparation:Application for methylene blue removal from aqueous effluent [J]. Microporous and Mesoporous Materials,2010,142(1):184-193
    [182]SHAWABKEH R A, TUTUNJI M F. Experimental study and modeling of basic dye sorption by diatomaceous clay [J]. Applied Clay Science,2003,24:111-120.
    [183]ARMAGAN B O O T M, CELIK M S. Adsorption of negatively charged azo dyes onto surfactant-modified sepiolite[J]. Journal of Environmental Engineering,2003,129: 709-715.
    [184]ARMAGAN B O O T M, CELIK M S. The removal of reactive azo dyes by natural and modified zeolites [J]. Journal of Chemical Technology and Biotechnology,2003.78: 725-732.
    [185]OZDEMIR O A B T M. CELIK M S. Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals[J]. Dyes and Pigments,2004,62:49-60.
    [186]ESPANTALEON A G N J A F M, MARSAL A. Use of activated clays in the removal of dyes and surfactants from tannery waste waters[J]. Applied Clay Science,2003,24:105-110.
    [187]APOSTOL L C, GAVRILESCU M. Application of natural materials as sorbents for persistent organic pollutants [J]. Environmental Engineering and Management Journal, 2009,8(2):243-252.
    [188]OKEL T A. Chemically treated fillers and polymeric compositions containing same [M]. Google Patents.2003.
    [189]JESIONOWSKI T, KRYSZTAFKIEWICZ A. Influence of silane coupling agents on surfaceproperties of precipitated silicas [J]. Applied Surface Science,2001,172(1-2): 18-32.
    [190]BULUT E, OZACAR M. Rapid, Facile Synthesis of Silver Nanostructure Using Hydrolyzable Tannin [J]. Industrial & Engineering Chemistry Research,2009,48(12): 5686-5690.
    [191]OZACAR M, SENGIL I A. Adsorption of metal complex dyes from aqueous solutions by pine sawdust [J]. Bioresource Technology,2005,96:791-795.
    [192]OZACAR M, SENGIL I A. Adsorption of acid dyes from aqueous solutions by calcined alunite and granular activated carbon[J]. Adsorption,2002,(8):301-308.
    [193]WEITKAMP J. Zeolites and catalysis [J]. Solid State Ionics.2000,131(1):175-188.
    [194]HAYASHI H, C T A P, FURUKAWA H, et al. Zeolite A imidazolate frameworks [J]. Nature materials,2007,6(7):501-506.
    [195]JUANG R, WU F, TSENG R. Use of chemically modified chitosan beads for sorption and enzyme immobilization [J]. Advances in Environmental Research,2002,6(2):171-177.
    [196]HU K-J, HU J-L, HO K-P, et al. Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials [J]. Carbohydrate Polymers,2004,58(1):45-52.
    [197]HU K J, HU J L, HO K P, et al. Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials [J]. Carbohydrate Polymers,2004,58(1):45-52.
    [198]SZYGULA A, GUIBAL E, ARINO PALACIN M, et al. Removal of an anionic dye (Acid Blue 92) by coagulation-flocculation using chitosan [J]. Journal of Environmental Management,2009,90(10):2979-2986.
    [199]WONG Y C, SZETO Y S, CHEUNG W H. et al. Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan [J]. Journal of Applied Polymer Science. 2004, 92(3): 1633-1645.
    [200]ZHU H Y, JIANG R, XIAO L, et al. A novel magnetically separable gamma-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye [J]. Journal of Hazardous Materials, 179(1-3): 251-257.
    [201]WONG Y C, SZETO Y S, CHEUNG W H. et al. Equilibrium studies for acid dye adsorptiononto chitosan [J]. Langmuir, 2003, 19(19): 7888-7894.
    [202]DE ARAUJO J H B, UEMURA V O, DE MORAES F F. et al. A comparative study on fungal laccases immobilized on chitosan [J]. Brazilian Archives of Biology and Technology, 2005,48:1-6.
    [203]BARRON-ZAMBRANO J, SZYGULA A, RUIZ M, et al. Biosorption of Reactive Black 5 from aqueous solutions by chitosan: column studies [J]. Journal of Environmental Management, 2010, 91(12): 2669-2675.
    [204]ANNADURAI G, LING L Y, LEE J F. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis [J]. Journal of Hazardous Materials, 2008, 152(1): 337-346.
    [205]WANG L, LI Q, WANG A. Adsorption of cationic dye on N,0-carboxymethyl-chitosan from aqueous solutions: equilibrium, kinetics, and adsorption mechanism [J]. Polymer Bulletin, 2010, 65(9): 961-975.
    [206]NIRAMOL S A, THIRAVETYAN P, NAKBANPOTE W. Adsorption mechanism of synthetic reactive dye wastewater by chitosan [J]. Journal of Colloid and Interface Science, 2005, 286(1): 36-42.
    [207]WONG Y C, SZETO Y S, CHEUNG W H, et al. Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan [J]. Journal of Applied Polymer Science, 2004, 92:1633-1645.
    [208]WU F C T R L, JUANG R S. Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes[J]. Journal of hazardous materials, 2000,73:63-75.
    [209]CHIOU M S, LI H Y. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads[J]. Chemosphere, 2003, 50: 1095-1105.
    [210]CHIOU M S H P Y, LI H Y. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads[J]. Dyes and Pigments, 2004. 60: 69-84.
    [211]CHAO A C, SHYU S S, LIN Y C, et al. Enzymatic grafting of carboxyl groups on to chitosan—to confer on chitosan the property of a cationic dye adsorbent [J]. Bioresource Technology, 2004, 91(2):157-162.
    [212]LIM S H. HUDSON S M. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group [J]. Carbohydrate Research,2004,339(2):313-319.
    [213]POOTS V, MCKAY G, HEALY J. The removal of acid dye from effluent using natural adsorbents--I peat [J]. Water Research,1976,10(12):1061-1066.
    [214]ALLEN S J M G, PORTER J F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems[J]. Journal of Colloid and Interface Science, 2004,280:322-333.
    [215]LEE V, PORTER J, MCKAY G. Modified Design Model for the Adsorption of Dye onto Peat [J]. Food and Bioproducts Processing,2001,79:21-26.
    [216]OLSSON M. Wheat straw and peat for fuel pellets--organic compounds from combustion [J]. Biomass and Bioenergy,2006,30(6):555-564.
    [217]SUN Q, YANG L. The adsorption of basic dyes from aqueous solution on modified peat-resin particle. [J]. Water Research 2003,37:1535-1544.
    [218]FU Y, VIRARAGHAVAN T. Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. [J]. Advances in Environmental Research 2002,7:239-247.
    [219]FU Y Z, VIRARAGHAVAN T. Fungal decolorization of dye wastewaters:a review[J]. Bioresource Technology,2001,79:251-262.
    [220]FU Y Z, VIRARAGHAVAN T. Dye biosorption sites in Aspergillus niger [J]. Bioresource Technology,2002,82(2):139-145.
    [221]AKSU Z, TEZER S. Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system:effect of temperature[J]. Process Biochemistry, 2000, (36):431-439.
    [222]WARANUSANTIGUL P, POKETHITIYOOK P, KRUATRACHUE M, et al. Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza) [J]. Water Research,2003,125:385-392.
    [223]ZHAO P, JIANG J, ZHANG F, et al. Adsorption separation of Ni (Ⅱ) ions by dialdehyde o-phenylenediamine starch from aqueous solution [J]. Carbohydrate Polymers, 2010,81(4):751-757
    [224]SHIMEI X, JINGLI W, RONGLAN W, et al. Effect of degree of substitution on adsorption behavior of Basic Green 4 by highly crosslinked amphoteric starch with quaternary ammonium and carboxyl groups [J]. Carbohydrate Polymers,2006,66(1):55-59.
    [225]DELVAL F C G B S F C, TORRI G. Preparation, characterization and sorption properties of crosslinked starch-based exchangers [J]. Carbohydrate Polymers,2005,60:67-75.
    [226]ERTAS M, ACEMIOGLU B, ALMA M H, et al. Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust [J]. Journal of hazardous materials, 2010,183:421-427.
    [227]BOUZAIDA I, RAMMAH M B. Adsorption of acid dyes on treated cotton in a continuous system[J]. Materials Science and Engineering:C,2002,21:151-155.
    [228]MCKAY G, PORTER J, PRASAD G. The removal of dye colours from aqueous solutions by adsorption on low-cost materials [J]. Water, Air, & Soil Pollution,1999,114(3): 423-438.
    [229]李翠珍,文湘华.白腐真菌F2的生长及产木质素降解酶特性的研究[J].环境科学学报,2005,25(002):226-231.
    [230]RUB1LAR O, DIEZ M C, GIANFREDA L. Transformation of chlorinated phenolic compounds by white rot fungi [J]. Critical Reviews in Environmental Science and Technology,2008,38(4):227-268.
    [231]LEVIN L, PAPINUTTI L, FORCHIASSIN F. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes [J]. Bioresource Technology,2004,94:169-176.
    [232]TEKERE M, MSWAKA A Y, ZVAUYA R, et al. Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi [J]. Enzyme and Microbial Technology, 2001,28:420-426.
    [233]侯立娟.食用菌菌糠再利用研究概述[J].中国食用菌,2008,27(3):6-8
    [234]陈君琛,沈恒胜,汤葆莎,等.食用菌菌糠再利用技术研究[J].中国农学通报,2006,(11):410-412.
    [235]马寿福.军花,刁治民,等.食用菌菌糠营养价值及利用途径的研究[J].青海草业,2006,03:36-40.
    [236]曹光连.食用菌菌糠饲料喂养畜禽的试验研究[J].养殖与饲料,2008,2:51-53
    [237]SILINA Y E, KUCHMENKO T A, KORENMAN Y I, et al. Use of a complete factorial experiment for designing a gas sensor based on extracts of Pleurotus ostreatus mycelium mushroom [J]. Journal of Analytical Chemistry,2005,60(7):678-683.
    [238]KRINGS U, BERGER R G. In situ recovery of the aroma compound perillene from stirred-tank cultured Pleurotus ostreatus using gas stripping and adsorption on polystyrene [J]. Biotechnology Letters,2008,30(8):1347-1351.
    [239]KWEON M H, LIM W J. YANG H C, et al. Characterization of two glucans activating an alternative complement pathway from the fruiting bodies of mushroom Pleurotus ostreatus [J]. Journal of Microbiology and Biotechnology,2000,10(2):267-271.
    [240]PAN X L, WANG J L. ZHANG D Y. Biosorption of Co(II) by immobilised Pleurotus ostreatus [J]. International Journal of Environment and Pollution,2009,37(2-3):289-298.
    [241]RAMANAIAH S V, MOHAN S V, SARMA P N. Adsorptive removal of fluoride from aqueous phase using waste fungus (Pleurotus ostreatus 1804) biosorbent:Kinetics evaluation [J]. Ecological Engineering,2007,31(1):47-56.
    [242]ZHOU Q, GONG W, XIE C, et al. Removal of Neutral Red from aqueous solution by adsorption on spent cottonseed hull substrate [J]. Journal of Hazardous Materials,2011, 185(1):502-506.
    [243]ZHOU Q, GONG W, XIE C, et al. Biosorption of Methylene Blue from aqueous solution on spent cottonseed hull substrate for Pleurotus ostreatus cultivation [J]. Desalination and Water Treatment,2011,29:317-325
    [244]LAU K L, TSANG Y Y, CHIU S W. Use of spent mushroom compost to bioremediate PAH-contaminated samples [J]. Chemosphere,2003,52:1539-1546.
    [245]CHIU S-W, GAO T, CHAN C S-S, et al. Removal of spilled petroleum in industrial soils by spent compost of mushroom Pleurotus pulmonarius [J]. Chemosphere,2009,75:837-842.
    [246]AHMAD R, KUMAR R. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon [J]. Applied Surface Science,2010,257(5):1628-1633.
    [247]YANG Y, WANG G, WANG B, et al. Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01:kinetic study, equilibrium isotherm and artificial neural network modeling [J]. Bioresource Technology,2011,102(2):828-834.
    [248]XIA C, JING Y, JIA Y, et al. Adsorption properties of congo red from aqueous solution on modified hectorite:Kinetic and thermodynamic studies [J]. Desalination,2011,265:81-87.
    [249]AHMAD R, KUMAR R. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon [J]. Applied Surface Science,2010,257:1628-1633.
    [250]ZHOU Q, XIE C, GONG W, et al. Comments on the method of using maximum absorption wavelength to calculate Congo Red solution concentration published in J. Hazard. Mater. [J]. Journal of hazardous materials,2011,198(0):381-382.
    [251]胡永松,王忠彦,邓小晨,等.不同平菇菌株免疫效应的观察[J].四川大学学报(自然科学版),1987.01:45-65
    [252]HII S L, YONG S Y, WONG C L. Removal of rhodamine B from aqueous solution by sorption on Turbinaria conoides (Phaeophyta) [J]. Journal of Applied Phycology,2009, 21(5):625-631.
    [253]DOGAN M, ABAK H, ALKAN M. Biosorption of methylene blue from aqueous solutions by hazelnut shells:Equilibrium, parameters and isotherms [J]. Water Air and Soil Pollution, 2008,192(1-4):141-153.
    [254]HAN R, ZOU W, LI Y, et al. Equilibrium, kinetic and mechanism study for the adsorption of neural red onto rice husk [J]. Desalination and Water Treatment,2009,12:210-218.
    [255]HAN R P, ZOU W H, YU W H, et al. Biosorption of methylene blue from aqueous solution by fallen phoenix tree's leaves [J]. Journal of Hazardous Materials,2007,141(1):156-162.
    [256]UDDIN T, ISLAM A, MAHMUD S. Adsorptive removal of methylene blue by tea waste [J] Journal of Hazardous Materials,2009,164:53-60.
    [257]WENG C H, LIN Y T, TZENG T W. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder [J]. Journal of Hazardous Materials,2009,170(1): 417-424.
    [258]GONG R M, FENG M, ZHAO J J, et al. Functionalization of sawdust with monosodium glutamate for enhancing its malachite green removal capacity [J]. Bioresource Technology, 2009,100(2):975-978.
    [259]CHEN C X, GAO Y H. Electrochemical characteristics of polyaniline electrosynthesized in the presence of neutral red [J]. Materials Chemistry and Physics,2007,102(1):24-30.
    [260]陈若冰.高浓度孔雀石绿染料废水的微波处理研究[D].成都:四川师范大学,2007.
    [261]ZHOU Q, GONG W, YANG D, et al. Assessment of the Biosorption Characteristics of a Spent Cottonseed Husk Substrate for the Decolorization of Methylene Blue [J]. Clean-Soil, Air, Water,2011,39(12):1087-1094.
    [262]HAMEED B H, AHMAD A A, AZIZ N. Adsorption of reactive dye on palm-oil industry waste:Equilibrium, kinetic and thermodynamic studies [J]. Desalination,2009,247(1-3): 551-560.
    [263]HAMEED B H, EL-KHAIARY M I. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with co2 [J]-Journal of Hazardous Materials,2008,157:344-351.
    [264]HAN R, ZHANG J, HAN P, et al. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite [J]. Chemical Engineering Journal,2009,145:496-504.
    [265]陈云嫩.废麦糟生物吸附剂深度净化水体中砷,镉的研究[D];长沙:中南大学,2009.
    [266]冯宁川,郭学益,梁莎,等.橘子皮皂化改性及其对重金属离子的吸附[J].环境工程学报.2011,5(001):11-15.
    [267]冯宁川.橘子皮化学改性及其对重金属离子吸附行为的研究[D].长沙:中南大学,2009.
    [268]王立群.镉污染土壤原位修复剂及其机理研究[D].北京:首都师范大学,2009.
    [269]林春香,詹怀宇,刘明华,等.球形纤维素吸附剂对Cu2+的吸附动力学与热力学研究[J].离子交换与吸附,2010,26(003):226-238.
    [270]WANG L, ZHANG J, ZHAO R, et al. Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn:Equilibrium, kinetic and thermodynamic studies [J]. Desalination,2010,254:68-74.
    [271]刘转年.煤基超细复合吸附剂的制备及吸附特性研究[D].西安:西安建筑科技大学,2004.
    [272]李哲.鳞片石墨浮选特性及工艺研究[D].北京:中国矿业大学,2010.
    [273]何永祥.天然沸石对水体中甲基橙和亚甲基蓝的吸附研究[D].郑州:郑州大学,2007.
    [274]李继山,姚同玉,刘卫东.采油中的润湿热、粘附功和吸附焓变[J].石油大学学报(自然科学版),2005,05:71-75.
    [275]李继山,姚同玉,王秀平.液固表面的润湿热和吸附热[J].石油钻采工艺-2005.27(5):53-55
    [276]李继山,姚同玉,刘卫东.采油中的润湿热,粘附功和吸附焓变[J].石油大学学报:自然科学版,2005,29(5):71-75.
    [277]杨新亚.C80微量热仪在水泥水化研究中的应用[J].水泥,1997,12:9-11.
    [278]WANG Q, SUN J, YAO X, et al. C80 Calorimeter Studies of the Thermal Behavior of LiPF6 Solutions [J]. Journal of Solution Chemistry,2006,35(2):179-189.
    [279]HAN R, WANG Y, ZOU W, et al. Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. [J]. Journal of hazardous materials,2007,145:331-335.
    [280]UDDIN M T, RUKANUZZAMAN M, KHAN M M R, et al. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder:A fixed-bed column study. [J]. Journal of Environmental Management,2009,90:3443-3450.
    [281]AL-DEGS Y S, KHRAISHEH M A M, ALLEN S J, et al. Adsorption characteristics of reactive dyes in columns of activated carbon. [J]. Journal of hazardous materials,2009, 165:944-949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700