臭氧氧化处理含氯代硝基苯类废水机理及其强化生物降解性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代硝基苯(ClNBs)是一大类含氯含硝基芳香烃化合物,广泛用作医药、染料、农药生产的中间体,同时也是美国EPA、欧共体及中国优先控制的持久性有毒难降解有机污染物。由于ClNBs长期的大规模生产和应用,致使我国许多河流、湖泊、农田甚至地下水均受到不同程度的污染,对人体健康和水环境安全构成了严重威胁,为此开发高效经济的废水处理和污染修复创新工艺十分迫切。本论文以臭氧化和催化臭氧化技术为手段,以ClNBs及其生产废水为研究对象,开展了臭氧化、催化臭氧化降解ClNBs,催化臭氧化一生物降解耦合工艺处理高浓度ClNBs生产废水等相关研究,取得了如下研究结果:
     1、以邻、间、对氯硝基苯(o-ClNB、m-ClNB和p-ClNB)为目标污染物,通过研究pH和气体流速对臭氧质量传递系数的影响确立ClNBs稳态臭氧化条件,进而开展污染物初始浓度、自由基猝灭剂(TBA)等关键因子对臭氧化系统ClNBs去除效率的影响研究,以期揭示臭氧化体系去除水中ClNBs类难降解有机物的稳态动力学及机理。实验结果表明,ClNBs的降解遵循准一级反应动力学,其速率常数随pH的升高而增加,随初始污染物和自由基猝灭剂浓度的增加而下降;ClNBs的去除速率速率依次为:o-ClNB<m-ClNB<p-ClNB,并与臭氧反应的剂量比均为1:1。动力学分析发现,o-ClNB、m-ClNB和p-ClNB与O_3直接反应速率常数(k_D)分别为6.342×10~(-3)、3.890×10~(-2)、6.442×10~(-2)L·mol~(-1)·s~(-1),与羟基自由基反应的间接速率常数(K_(OH))分别为2.037×10~9、2.398×10~9、3.869×10~9L·mol~(-1)·s~(-1);pH≥7时,ClNBs臭氧化95%以上为·OH贡献。
     利用GC-MS、LC-MS对三种ClNBs的臭氧化中间产物分析发现,产物主要分为酚类物质和开环的脂肪族化合物,推测ClNBs臭氧化降解途径可能为:·OH通过亲电反应取代苯环上的氯基、硝基或氢原子,形成芳环自由基进而氧化为酚类物质,进一步脱氯、脱硝基或氢被夺去生成多羟基的取代酚后再开环(或直接发生苯环开环),最终转化为小分子的醛、酮和羧酸等化合物。由于氯和硝基取代位置的不同,导致苯环上碳原子的电子云密度具有一定的差异,研究发现p-ClNB在臭氧化过程中氯基和硝基可以被·OH取代生成硝基酚和氯酚,而在o、m-ClNB的氧化产物中未检出硝基酚和氯酚,三种ClNBs苯环上的氢均可被·OH取代,生成硝基氯酚,·OH与苯环上H发生取代反应的几率与相应碳原子的电子云密度具有一定的相关性。
     2、比较了七种金属离子及其组合均相催化臭氧化降解ClNBs的效能,通过研究pH值、金属离子投量和羟基自由基猝灭剂对ClNBs臭氧化去除性能、有效臭氧消耗量的影响,优选高效强化臭氧化效率的金属离子并推测可能的催化机理。实验结果表明,金属离子的投加均可强化臭氧化系统ClNBs的去除速率及矿化程度。单一离子系统中增加金属的投量可以提高ClNBs的去除速率,然而金属离子浓度超过一定范围污染物去除速率不再增加;在单一金属离子投量为0.4mM、pH 2.0时,强化因子顺序为:Co~(2+)≥V~(4+)>Fe~(2+)≥Fe~(3+)≥Zn~(2+)≥Ni~(2+)>Mn~(2+),反应介质pH的改变对金属离子强化臭氧化系统性能的影响较大;在组合离子臭氧化系统中,Mn~(2+)、V~(4+)离子共存对ClNBs臭氧化去除存在抑制作用;通过比较污染物降解过程臭氧消耗情况发现,O_3/Mn~~(2+)-C~(2+)双金属催化臭氧化系统具有较好的ClNBs去除特性。同时,TBA明显抑制ClNBs的去除,表明均相催化臭氧化系统中ClNBs的去除机制以自由基反应为主。
     3、以硅藻土为载体制备锰氧化物(MnO_x)和钴氧化物(CoO_x)复合金属催化剂,研究了其对硝基苯(NB)和p-ClNB臭氧化的催化特性,应用SEM、XRD、FTIR和XPS等技术对催化剂进行了表征。结果表明,活性组分摩尔比、焙烧温度和焙烧时间对催化剂的催化性能影响显著;FTIR分析显示催化剂富含表面羟基,且负载金属以多种价态存在于催化剂表面;XRD和XPS结果进一步揭示负载金属以二价、三价和四价的氧化物形式分布于催化剂表面。与单独臭氧化体系相比,pH 3.0和pH 7.0时投加1g/LMn/Co负载硅藻土催化剂后污染物矿化率分别增加46~57%和35~40%;催化臭氧化显著提高了主要羟基芳香族中间产物、Cl~-和NO_3~-的形成以及小分子羧酸LMWCA(乙酸、草酸)的氧化速率,同时反应体系中还检测到低浓度H_2O_2;加入TBA后明显抑制了催化臭氧化反应的进行,EPR捕获实验检测出·OH捕获剂5,5-二甲基1-吡咯啉N-氧化物(DMPO)和·OH加合物的1:2:2:1特征信号,说明催化反应体系存在·OH,且产生的·OH浓度比单独臭氧化体系高,为此我们提出了催化臭氧化强化目标污染物去除的协同作用机理。
     4、以多孔硅藻土基陶瓷填料为载体制备了一体化Mn/Co非均相催化剂,比较了单独臭氧氧化、多孔填料/臭氧及改性多孔填料/臭氧三种工艺处理氯代硝基苯生产废水的性能。实验结果表明,加入多孔填料和Mn/Co改性的多孔填料提高了臭氧氧化生产废水TOC和COD去除速率,前者TOC、COD去除分别增加2~11%和2.5~24%,而后者对生产废水TOC、COD去除的促进作用最为明显,分别增加35%和38%。通过填料改性能够提高填料本身的催化活性,进而强化臭氧氧化生产废水的处理效能。废水经过120min的催化臭氧化处理,色度得到基本脱除,可生化性明显改善(BOD_5/COD从0.02增至0.5左右),发光细菌急性毒性降低约25倍。从这个角度而言,催化臭氧化与生物处理工艺耦合处理此类废水是可行的。
     5、比较研究了单一生物和催化臭氧化(COP)/生物耦合工艺处理氯代硝基芳烃(CNACs)生产废水的性能。实验结果表明,单一生物处理可以去除生产废水中的主要污染物,但由于其色度、氨氮、TOC和COD去除效果差,处理出水难以达标;Mn/Co改性陶瓷催化剂催化臭氧氧化生产废水的试验发现,废水色度有效降低,可生化性明显提高,且催化剂经过70次的重复使用后仍保持较高活性,显示其良好的长效性和稳定性。设计了催化臭氧化-生物耦合工艺,进水COD 2840-3120mg/L、催化臭氧化停留时间1h、SBR停留时间10h条件下稳定运行一个月,出水平均氨氮、COD、BOD_5、TOC浓度和色度去除率分别为80%、95.8%、93.8%、97.6%和99.3%,出水氨氮、COD、BOD_5和色度分别为10mg/L、128mg/L、27.5mg/L和20倍。结果揭示构建的耦合系统是一种有应用前景、适于处理含难降解CNACs生产废水的经济、高效工艺。
Chloronitrobenzenes(ClNBs),as a large class of aromatic compounds that contain chloro- and nitro- groups,are widely used as intermediates for the chemical synthesis of medicines,dyes and pesticides,and are also declared to be the priority persistent toxic and difficult degraded organic pollutants by the EPA of USA,EEC and China.Due to their mass production and uses for a long time,many rivers,lakes,farmlands and even groundwater in China have been polluted at different levels,which becomes a serious threaten to human health and water environment.Therefore,it is of impendence to develop highly-efficient and cost-effective innovative processes for wastewaer treatment and pollution remediation.Ozonation,catalytic ozonation of ClNBs and catalytic ozonation-biological coupling for the treatment of high concentrations of ClNBs-producing wastewater were investigated in this thesis,and the main results are as follows:
     1.Selecting ortho-,recta- and para-chloronitrobenzene(respectively denoted o-ClNB, m-ClNB and p-ClNB) as the model pollutants,the steady-state kinetics and mechanism of the degrdation of the pollutants in aqueous solution by ozone alone were investigated. Through studying the effect of pH and gas flowrate on mass transfer coefficient of ozone, steady-state conditions of ClNBs ozonation were determined.Afterwards,the effect of initial pollutant concentration,pH and radical scavenger(tertiary butyl alcohol,TBA) on ClNBs removal were investigated.Results demonstrated that the decomposition of ClNBs was a pseudo-first-order reaction with respect to the pollutant concentration and overall rate constant increased with an increase in the pH,however declined with an increase in the pollutant and radical scavenger concentration.Removal rate of ClNBs followed the order of o-ClNB<m-ClNB<p-ClNB,stoichiometric ratios of ozone and ClNBs were 1.0, reaction constants of o-ClNB,m-ClNB and p-ClNB reacting directly with ozone were 6.342×10~(-3),3.890×10~(-2) and 6.442×10~(-2) L·mol~(-1)·s~(-1),respectively.The reaction rate constants of o-ClNB,m-ClNB and p-ClNB with·OH,measured by means of a competition kinetics,were 2.037×10~9,2.398×10~9 and 3.869×10~9 L·mol~(-1)·s~(-1),respectively. More than 95%of ClNBs removal in ozonation system was due to hydroxyl radical oxidation at pH≥7.
     Results of GC-MS,LC or LC-MS show that main intermediate products of ClNBs were aromatic phenolic substances and nonaromatic acyclic substances.In the ozonation process of p-ClNB,-Cl and -NO_2 could be replaced by·OH,chlorophenol and nitrophenol were formed meanwhile.But in the ozonation process of o-ClNB and m-ClNB,neither nitrophenol nor chlorophenol was detected.The hydrogen on the phenyl of all these three ClNBs could be replaced by·OH,thus nitrochlorophenol was produced. The difference of the substitutional place of-Cl or -NO_2 on the phenyl could lead to the difference of the electron cloud density of carbon,the probability of the reaction between·OH and the hydrogen on the phenyl has some relationship with electron cloud density of carbon.The reaction between·OH and ClNBs is probably similar to the electrophilic substitution reactions of aryl.
     2.Efficiency and possible mechanism of homogeneous catalytic ozonation of ClNBs in aqueous solution by seven kinds of metallic ions and their combinations were compared, it was focus on the effects of pH,catalyst dosage and radical scavenger in above-mentioned system.Ozone consumption in terms of pollutant degradation and TOC elimination was also compared under the same operating conditions.Experimental results indicated that these single metallic ion and metal combinations can accelerate the rates of ClNBs removal and TOC elimination.In single metallic ion systems,increasing the catalyst concentration increased the removal rate of ClNBs;However,further increasing the catalyst concentration caused no further significant increase.When 0.4 mM catalyst was added,the effective factors at pH 2.0 followed the order Co~(2+)>V~(4+)>Fe~(2+)>Fe~(3+)>Zn~(2+)>Ni~(2+)>Mn~(2+) and those at pH 5.0 followed the order Co~(2+)>Ni~(2+)>Zn~(2+)>V~(4+)>Mn~(2+)>Fe~(3+)>Fe~(2+),suggesting that catalytic ozonation was strongly influenced by reaction media pH.In metal combination systems,the coexistence of Mn~(2+) and V~(4+) reduced the removal of CINBs.Considering ozone consumption during ozonation,O_3/Mn~(2+)-Co~(2+) system showed the highest removal efficiency.The negative effect of the radical scavenger on the catalytic ozonation processes suggests that the degradation reaction in catalytic ozonation systems proceeds by mainly radical-type mechanisms.
     3.Diatomite supported MnO_x-CoO_x catalysts were prepared by the incipient impregnation method,its activity was investigated through catalytic degradation of nitrobenzene(NB) and p-ClNB by simultaneous use of it and ozone.The catalyst was characterized by SEM,XRD,FTIR and XPS.Results demonstrated that the effects of molar ratio of active components,roast temperature and time are significant;At the same time,FTIR analysis indicated that the supported metals mainly existed as multivalence mixtures and the abundant surface hydroxyl led to high dispersion of MnO_x-CoO_x; Combination of XRD and XPS analyses indicated that the supported metals were present on catalyst surface as forms of well dispersed divalent,trivalent and tetravalent oxides; The study of performance and mechanism of catalytic ozonation of NB and p-ClNB by diatomite supported bimetallic catalysts showed that addition of 1 g/L catalyst accelerated pollutants removal,especially TOC removal,enhanced TOC increments in case of pH 3.0 and pH 7.0 were 46-57%and 35-40%,respectively.Further study observed that catalytic ozonation accelerated formation of intermediate phenolic aromatics,Cl~-,NO_3~- and oxidation of acetic acid and oxalic acid,low concentrations of H_2O_2 was generated in reaction system meantime;TBA addition distinctly inhibited the proceeding of oxidation reaction,EPR experiments also showed that the existence of·OH in catalytic ozonation process,and the concentration of·OH is much higer than that in ozone alone,which is possible reason why there was enhanced pollutants removal and mineralization in catalytic system.Based on experimental results,a synergistic menchanism of catalytic ozonation was presented.
     4.Integrative Mn-Co modified porous diatomaceous ceramic filling catalysts were prepared,the degradation performance of production wastewater in three different processes(ozonation + unmodified porous filling,ozonation alone and catalytic ozonation) was compared.The results showed that the COD and TOC removal rates in the production wastewater through ozonation were improved by employing porous filling and Mn/Co modified porous filling,the increments in TOC and COD removal were respective 2-11%and 2.5-24%for the former while the ones for the latter were 35%and 38%, respectively.The highest increase in TOC and COD removal efficiency was achieved in the presence of ozonation/Mn-Co modified porous filling and the modification process can improve the catalytic activity of porous filling for ozonation of the production wastewater.Afetr 2 h catalytic ozonation treatment,the color of the wastewater was almost removed,the biodegradability was significantly enhanced(BOD_5/COD increased from 0.02 to 0.5 or so) and the acute toxicity inhibition on photobacteria decreased by about 25 times.From this point of view,the coupling of catalytic ozonation with sequential biological treatment processes proved quite promising.
     5.Single biological and a combined catalytic ozonation process(COP) / biological treatment were evaluated for the treatment of production wastewater containing toxic and refractory chlorinated nitroaromatic compounds(CNACs).The results demonstrated that single biological treatment could remove main pollutants present in production wastewater,however,due to its poor performance in color,ammonia,TOC and COD removal,the treated effluent still did not satisfy the soecific discharge standard.COP with Mn/Co modified ceramic catalysts can be successfully used as a pre-treatment process to biocompatibilize the wastewater.With prolonged reaction time,the wastewater became decolorized and more biodegradable,as well as reaching a higher oxidation state. Moreover,the catalyst preserved its catalytic properties after 70 times of reuse,displaying good durability and stability.An integrated treatment system consisting of 1 h catalytic ozonation and subsequent 10 h biological treatment was investigated and the performance of the system was measured for 30 days.The results showed that under conditons of influent COD concentrations of 2840-3120 mg/L,average effluent concentrations of NH_3-N,COD,BOD_5,TOC and color were 10 mg/L,128 mg/L,27.5 mg/L,25.0 mg/L and 20-multiple,respectively,with corresponding average removal efficiencies are about 80%, 95.8%,93.8%,97.6%and 99.3%,respectively.It is thus concluded that the integrated catalytic ozonation/biological process is a promising and economically viable technology for the treatment of production wastewater containing recalcitrant CNACs.
引文
[1] Adewuyi Y G. Sonochernistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water[J]. Environ Sci Technol, 2005, 39: 8557-8570.
    [2] Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal[J].Environ Sci Technol, 1996, 30: 153-160.
    
    [3] Agustina T E, Ang H M, Vareek V K. A review of synergistic effect of phototocatalysis and ozonation on wastewater treatment[J]. J Photochem Photobiol C-Photochem Rev, 2005, 6:264-273.
    [4] Al M F, Mo'ayyad S, Ahmad S, et al. Mohammad. Impact of Fenton and ozone on oxidation of wastewater containing nitroaromatic compounds[J]. J Environ Sci, 2008, 20: 675-682.
    [5] Al-Degs Y, Khraisheh M A M, Tutunji M F. Sorption of lead ions on diatomite and Manganese oxides modified diatomite[J]. Water Res, 2001,35: 3724-3728.
    [6] Al-Hayek N, Legube B, Dor(?) M. Fe(HI)/Al_2O_3-catalysed ozonation of phenol and its ozonation by-products[J]. Environ Technol Lett, 1989, 10: 415-426.
    
    [7] Alvarez P M, Garcia-Araya J F, Beltran F J, et al. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach[J]. Carbon, 2006,44: 3102-3112.
    
    [8] Alvarez P M, Beltran F J, Pocostales J P, et al. Preparation and structural characterization of CO/Al_2O_3 catalysts for the ozonation of pyruvic acid[J]. Appl Catal B-Environ, 2007, 72:322-330.
    
    [9] Amat A M, Arques A, Galindo F, et al. Acridine yellow as solar photocatalyst for enhancing biodegradability and eliminating ferulic acid as model pollutant[J]. Appl Catal B-Environ, 2007,73: 220-226.
    
    [10] American Public Health Association. (1998) Standard Methods for the Examination of Water and Wastewater[M], ed. Clesceri L S, Greenboug L S and Eaton A D. Washington, DC: American Public Health Association / American Water Works Association / Water Environment Federation.
    [11] Andreozzi R, Insola A, Caprio V, et al. The kinetics of Mn(II) - catalysed ozonation of oxalic acid in aqueous solution[J]. Water Res, 1992, 26: 917-922.
    [12] Andreozzi R, Caprio V, Insola A, et al. The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese[J]. Water Res, 1998,32: 1492-1496.
    [13] Andreozzi R, Marotta R, Sanchirico R. Manganese-catalysed ozonation of glyoxalic acid in aqueous solutions[J]. J Chem Technol Biotechnol, 2000, 75: 59-65.
    [14] Anotai J, Wuttipong R, Visvanathan C. Oxidation and detoxification of pentachlorophenol in aqueous phase by ozonation[J]. J Hazard Mater, 2007, 85: 345-349.
    [15] Bablon G, Bellamy W D, Bourbigot M M, et al (Eds.), In Ozone in Water Treatment: Application and Engineering[M], Lewis Publishers, Chelsea, Michigan, USA, 1991, pp. 11-132.
    [16] Bader H, Hoign(?) J. Determination of ozone in water by the indigo method[J]. Water Res, 1981,15:449-456.
    [17] Bahramian B, Ardejani F D, MirkhaniV, Badii K. Diatomite-supported manganese Schiff base: an efficient catalyst for oxidation of hydrocarbons[J]. Appl Catal A-Gen, 2008, 345: 97-103.
    [18] Ballesteros Martin M M, Sanchez Perez J A, Casas Lopez J L, et al. Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation[J]. Water Res, 2009,43:653-660.
    [19] Beltran F J, Encinar J M, Alonso M A. Nitroaromatic hydrocarbon ozonation in water. 1. single ozonation[J]. Ind Eng Chem Res, 1998, 37: 25-31.
    [20] Beltran F J, Rivas F J, Montero-de-Espinosa R. Catalytic ozonation of oxalic acid in an aqueous TiO_2 slurry reactor[J]. Appl Catal B-Environ, 2002, 39: 221 -231.
    
    [21] Beltran F J, Rivas F J, Montero-De-Espinosa R. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts 2. Heterogeneous catalytic ozonation[J]. Ind Eng Chem Res, 2003, 42:3218-3224.
    [22] Beltran F J, Garcia-Araya J F, Giraldez I. Gallic acid water ozonation using activated carbon[J].Appl Catal B-Environ, 2006, 63: 249-259.
    [23] Bhattacharyya D, Dierdonck T F V, West S D, et al. Two-phase ozonation of chlorinated organics[J]. J Hazard Mater, 1995,41(1):73-93.
    
    [24] Boon N, Goris J, Vos P D, et al. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp[J]. Appl Environ Microbiol,2000, 66: 2906-2913.
    [25] Broseus R, Vincent S, Aboulfadl K, et al. Ozone oxidation of pharmaceuticals, endocrine disrupters and pesticides during drinking water treatement[J]. Water Res, 2009, 43: 4707-4717.
    [26] Bulanin K M, Lavalley J C, Tsyganenko A A. 1R spectra of adsorbent ozone[J]. Colloids Surf A,1995, 101: 153-158.
    
    [27] Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution[J]. J Phys Chem RefData, 1988, 17:513-886.
    [28] Carbajo M, Rivas F J, Beltran F J, et al. Effects of different catalysts on the ozonation of pyruvic acid in water[J]. Ozone-Sci Eng, 2006a, 28: 229-235.
    [29] Carbajo M, Beltran F J, Medina F, et al. Catalytic ozonation of phenolic compounds: The case of gallic acid[J]. Appl Catal B-Environ, 2006b, 67: 177-186.
    [30] Chang C Y, Chen J N. Application of a fluorinated solvent to the conventional ozonation process for the destruction of 2,4-dichlorophenol[J]. Environ Sci Technol, 1995, 21: 305-313.
    [31] Chen W R, Wu C L, Elovitz M S, et al. Reactions of thiocarbamate, triazine and urea herbicides,RDX and benzenes on EPA contaminant candidate list with ozone and with hydroxyl radicals[J].Water Res, 2008,42: 137-144.
    [32] Chen Y H, Shang N C, Hsieh D C. Decomposition of dimethyl phthalate in an aqueous solution by ozonation with high silica zeolites and UV radiation[J]. J Hazard Mater, 2008, 157: 260-268.
    [33] Christensen A, Gurol M D, Garoma T. Treatment of persistent organic compounds by integrated advanced oxidation processes and sequential batch reactor[J]. Water Res, 2009, 43: 3910-3921.
    [34] Comninellis C, Kapalka A, Malato S, et al. Advanced oxidation processes for water treatment:advances and trends for R&D[J]. J Chem Technol Biotechnol, 2008, 83: 769-776.
    [35] Conceicao M, Mateus D A. Kinetics of photodegradation of the fungicide fenarimol in natural waters and in various salt solutions: salinity effects and mechanistic considerations[J]. Water Res,2003,37:1443-1467.
    [36] Contreras S, Rodriguez M, Momani F, et al. Contribution of the ozonation pre-treatment to the biodegradation of aqueous solutions of 2,4-dichlorophenol[J]. Water Res, 2003, 37: 3164-3171.
    [37] Cortes S, Sarasa J, Ormad P, et al. Comparative efficiency of the systems O_3/high pH and O_3/catalyst for the oxidation of chlorobenzenes in water [J]. Ozone-Sci Eng, 2000, 22: 415-426.
    [38] Dantas R F, Canterino M, Marotta R, et al. Bezafibrate removal by means of ozonation: Primary intermediates, kinetics, and toxicity assessment[J]. Water Res, 2007,41: 2525-2532.
    [39] Deborde M, Rabouan S, Duguet J-P, et al. Kinetics of aqueous ozone-induced oxidation of some endocrine disruptors[J].Environ Sci Technol,2005,39:6086-6092.
    [40]Delano(e|¨)~ F,Acedo B,Karpel Vel Leitner N.Relationship between the structure of Ru/CeO_2catalysts and their activity in the catalytic ozonation of succinic acid aqueous solutions[J].Appl Catal B-Eniron,2001,29:315-325.
    [41]Devlin J F,Klausen J,Schwarzenbach R P.Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments[J].Environ Sci Technol,1998,32:1941-1947.
    [42]Dhandapani B,Oyama S T.Gas phase ozone decomposition catalysts[J].Appl Catal B-Environ,1997,11:129-166.
    [43]Dong Y,Yang H,He K,et al.β-MnO_2 nanowires:A novel ozonation catalyst for water treatment[J].Appl Catal B-Environ,2009,85:155-161.
    [44]Duguet J P,Anselme C,Mazounie P,et al.(1988).Application of the ozone-hydrogen peroxide combination for the removal of toxic compounds from a groundwater.In:Angeletti[M],G.&Bjφrseth,A.,eds,Organic Micropollutants in the Aquatic Environment,Proceedings of the Fifth European Symposium,Rome,October 20-22,1987,Dordrecht,Kluwer Academic publishers,pp.299-309.
    [45]Dwivedi A H,Pande U.Spectrophotometric study of photosensitized echlorination of isomeric mono-and dichloronitrobenzenes[J].J Photochem Photobiol A-Chem,2003,154:303-309.
    [46]Einaga H,Futamura S.Oxidation behavior of cyclohexane on alumina-supported manganese oxides with ozone[J].Appl Catal B-Environ,2005,60:49-55.
    [47]Elovitz M,Gunten V U.Hydroxyl radical/ozone ratios during the ozonation processes.I.The R_(ct)concept.[J].Ozone-Sci Eng,1999,21:239-260.
    [48]El-Raady A A A,Nakajima T.Composition of carboxylic acids in water by O_3,O_3/H_2O_2,and O_3/catalyst[J].Ozone-Sci Eng,2005a,27:11-18.
    [49]El-Raady A A A,Nakajima T,Kimchhayarasy P.Catalytic ozonation of citric acid by metallic ions in aqueous solution[J].Ozone-Sci Eng,2005b,27:495-498.
    [50]Enric B,Juan C C,Pere-Lluis C.Degradation of the Herbicide 2,4-dichlorophenoxyacetic acid by ozonation catalyzed with Fe~(2+) and UVA light[J].Appl Catal B-Environ,2003,46:381-391.
    [51]Ernst M,Lurot F,Schrotter J C.Catalytic ozonation of refractory organic model compounds in aquatic solution by pure γ-alumina[J].Appl Catal B-Environ,2004,47:15-25.
    [52]Faria P C C,Orfao J J M,Pereira M F R.A novel ceria-activated carbon composite for the catalytic ozonation of carboxylic acids[J].Catal Commun,2008a,9:2121-2126.
    [53]Faria P C C,Orfao J J M,Pereira M F R.Activated carbon catalytic ozonation of oxamic and oxalic acids[J].Appl Catal B-Environ,2008b,79,237-243.
    [54]Faria P C C,Monteiro D C M,Orfao J J M,et al.Cerium,manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds[J].Chemosphere,2009,74:818-824.
    [55]Farre M J,Domenech X,Peral J.Assessment of photo-Fenton and biological treatment coupling for diuron and linuron removal from water[J].Water Res,2006,40:2533-2540.
    [56]Farre M,Franch M,Ayllon J,et al.Biodegradability of treated aqueous solutions of biorecalcitrant pesticides by means of photocatalytic ozonation[J].Desalination,2007,211:22-33.
    [57]Feltes J,Levsen K,Volmer D,et al.Gas chromatographic and mass spectrometric determination of nitroaromatics in water[J].J Chromatogr,1990,518:21-40.
    [58]Fontanier V,Farines V,Albet J,et al.Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents[J].Water Res,2006,40:303-310.
    [59]Gala'n E,Gonza'lez I,Mayoral E,et al.Properties and applications of diatomitic materials from SW Spain[J].Appl Clay Sci,1993,8:1-18.
    [60]Garcia-Montano J,Torrades F,Garcia-Hortal J,et al.Combining photo-Fenton process with aerobic sequencing batch reactor for commercial hetero-bireactive dye removal[J].Appl Catal B-Environ,2006,67:86-92.
    [61]Gavaskar A,Tatar L,Condit W.Nanoscale Zero-Valent Iron Technologies for.Source Remediation,Cost and Performance Report:Naval Facilities Engineering Service Center:Port Hueneme,CA,2005.
    [62]Getoff N,Schwoerer F,Marcovic V M,et al.Pulse Radiolysis of oxalic acid and oxalates[J].J Phys Chem,1971,75:749-755.
    [63]Goi A,Trapido M,Tuhkanen T.A study of toxicity,biodegradability,and some by-products of ozonised nitrophenols[J].Adv Environ Res,2004,8:303-311.
    [64]Gracia R,Aragues J L,Ovelleiro J L.Mn(Ⅱ)-catalysed ozonation of raw Ebro river water and its ozonation by-products[J].Water Res,1998,32:57-62.
    [65]Gromadzka K,Swietlik J.Organic micropollutants degradation in ozone-loaded system with perfluorinated solvent[J].Water Res,2007,41:2572-2580.
    [66]Gruttadauria M,Liotta L F,Di Carlo G,et al.Oxidative degradation properties of Co-based catalysts in the presence of ozone[J].Appl Catal B-Environ,2007,75:281-289.
    [67]Guo Z B,Zheng S R,Zheng Z.Selective adsorption of p-chloronitrobenzene from aqueous mixture of p-chloronitrobenzene and o-chloronitrobenzene using HZSM-5 zeolite[J].Water Res,2005,39:1174-1182.
    [68]Haag W R,Hoigne J,Bader H.Improved ammonia oxidation by ozone in the presence of bromide ion during water treatment[J].Water Res,1984,18:1125-1128.
    [69]Haag W R,Yao C C D."Ozonation of U.S.drinking water sources:HO.concentration and oxidation-competition values" in Ozone in water and wastewater treatment,Proc.Eleventh Ozone World Congress,Vol.2,Aug.29-Sept.3 1993.(San Francisco,CA,USA),pp.S-17-119-126.
    [70]Hanna S Y,Shandala M Y,Khalil S M.Solvent effects on OH stretching frequencies for l-arylallyl alcohols[J].Spectroc Acta Pt A-Molec Biomolec Spectr,2002,58:1437-1442.
    [71]Hisahiro E,Shigeru F.Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides[J].J Catal,2004,227:304-310.
    [72]Hoigne J,Bader H.Ozonation of water:kinetics of oxidation of ammonia by ozone and hydroxyl radicals[J].Environ Sci Technol,1978,12:79-84.
    [73]Hoigne J,Bader H.Rate constants of reaction of ozone with organic and inorganic compounds in water Ⅰ:dissociating organic compounds[J].Water Res,1983a,17:173-183.
    [74]Hoigne J,Bader H.Rate constants of reaction of ozone with organic and inorganic compounds in water Ⅱ:dissociating organic compounds[J].Water Res,1983b,17:185-194.
    [75]Hoigne J,Bader H,Haag W R,et al.Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅲ[J].Water Res,1985,19:993-1004.
    [76]Hoigne J.Inter-calibration of OH radical sources and water quality parameters[J].Wat Sci Tech,1997,35:1-8.
    [77]Hou Y J,Ma J,Sun Z,et al.Degradation of benzophenone in aqueous solution by Mn-Fe-K modified ceramic honeycomb-catalyzed ozonation[J].J Environ Sci,2005,17:1065-1072.
    [78]Howard P H,Santodonato J,Saxena J,et al.(1976).Investigation of selected environmental contaminants:nitroaromtics(US EPA Report No.EPA-560-76-010;US NTIS PB-275078),Washington DC,United States Environmental Protection Agency,Office of Toxic Substances.
    [79]Howard P H,1989.Handbook of environmental fate and exposure data for organic chemicals[M],Vol.1,Chelsea,MI,Lewis Publishers,pp.146-160.
    [80]Hu C,Xing S,Qu J,et al.Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia[J]. J Phys Chem C, 2008, 112: 5978-5983.
    [81] Huang W-J, Fang G-C, Wang C-C, 2005. A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water[J]. Colloid Surf A-Physicochem Eng Asp, 2005, 260: 45-51.
    [82] Imamura S, Kenichiro I, Setsuo F, et al. Decomposition of dichlorodifluoromethane on boron phosphate (BPO_4) catalyst[J]. Ind Eng Chem Res, 1991, 30: 2355-2358.
    [83] Jensen H, Daasbjerg K. Solvent effects on the reduction mechanism of 9-chloroanthracene,3-nitrobenzyl chloride and 3-chloroacetophenone[J]. Acta Chem Scand, 1998, 52: 1151-1164.
    [84] Ji L, Lin J, Zeng H C. Metal-supported interactions in Co/Al_2O_3 catalysts: A comparative study on reactivity of support[J]. J Phys Chem B, 2000, 104: 1783-1790.
    [85] Jones C R, Liu Y Y, Sepai O, et al. Internal exposure, health effects, and cancer risk of humans exposured to chloronitrobenzene[J]. Environ Sci Technol, 2006,40: 387-394.
    [86] Jung H, Park H, Kim J, et al. Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation[J]. Environ Sci Technol,2007,41:4741-4747.
    [87] Jung H, Kim J-W, Choi H, et al. Synthesis of nanosized biogenic magnetite and comparison of its catalytic activity in ozonation[J]. Appl Catal B-Environ, 2008, 83: 208-213.
    [88] Kang J W, Hung H-M, Lin A, et al. Sonolytic destruction of methyl tert-butyl Ether by ultrasonic irradiation: the role of O_3, H_2O_2, frequency, and power density[J]. Environ Sci Technol, 1999, 33:3199-3205.
    [89] Karrer N J, Ryhiner G, Heinzle E. Applicability test for combined biological-chemical treatment of wastewaters containing biorefractory compounds[J]. Water Res, 1997, 31: 1013-1020.
    [90] Kasprzyk-Hordern B, Zioiek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treamtment[J]. Appl Catal B-Environ, 2003,46: 639-669.
    [91] Kasprzyk-Horden B, Raczyk-Stanislawiak U, Swietlik J, et al. Catalytic ozonation of natural organic matter on alumina[J]. Appl Catal B-Environ, 2006, 62: 345-358.
    [92] Katsivela E, Wray V, Pieper D H, et al. Initial reactions in the biodegradation of 1-chloro-4-nitrobenzene by a newly isolated bacterium, strain LW1[J]. Appl Environ Microbiol,1999,65: 1405-1412.
    [93] Khan M H, Jung J Y. Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase[J]. Chemosphere, 2008, 72: 690-696.
    [94] Kim Y H, Elizabeth R C. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons[J]. Environ Sci Technol, 2000, 34: 2014-2017.
    [95] Kornmuller A, Wiesmann U. Ozonation of polycyclic aromatic hydrocarbons in oil/water-emulsions: mass transfer and reaction kinetics[J]. Water Res, 2003,37: 1023-1032.
    [96] Ksenofontova M M, Mitrofanova A N, Mamleeva N A, et al. Ligninsulfonate ozonation in the presence of transition metal ions[J]. Ozone-Sci Eng, 2004, 25: 505-512.
    [97] Kwong CW, Chao C Y H, Hui K S, et al. Catalytic ozonation of toluene using zeolite and MCM-42 materials[J]. Environ Sci Technol, 2008,42: 8504-8509.
    [98] Ledakowicz S, Maciejewska J, Perkowski J. Ozonation of reactive blue 81 in the bubble column[J]. Wat Sci Technol, 2001,47: 47-52.
    [99] Lee J E, Jin B S, Cho S H, et al. Catalytic ozonation of humic acids with Fe/MgO[J]. React Kinet Catal Lett, 2005, 85:65-71.
    [100]Legube B, Karpel N V L. Catalytic ozonation: a promising advanced oxidation technology for water treatment[J]. Catal Today, 1999, 53: 61-72.
    [101]Lei L, Gu L, Zhang X et al. Catalytic oxidation of highly concentrated real industrial wastewater by integrated ozone and activated carbon[J]. Appl Catal A-Gen, 2007, 327: 287-294.
    [102]Leitaer N K V, Delano(?) F, AcedoB, et al. Reactivity of various Ru/CeO2 catalysts during ozonation of succinic acid aqueous solutions[J]. New J Chem, 2000,24: 229-233.
    [103]Li B Z, Xu X, Zhu L. Ozonation of chloronitrobenzenes in aqueous solution: kinetics and mechanism[J]. J Chem Technol Biotechnol, 2009, 84: 167-175.
    [104]Li H Y, Qu J H, Zhao X, et al. Removal of alachlor from water by catalyzed ozonation in the presence of Fe~(2+), Mn~(2+), and humic substances[J]. J Environ Sci Health Part B-Pestic Contam Agric Wastes, 2004, 39: 791-803.
    [105]Li L, Ye W, Zhang Q, et al. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon[J]. J Hazard Mater, 2009, 170: 411-416.
    [106]Li Q, Minami M, Inagaki H. Acute and subchronic immunotoxicity of p-chloronitrobenzene in mice. I. Effect of natural killer, cytotoxic T-lymphocyte activities and mitogen-stimulated lymphocyte proliferation[J]. Toxicology, 1998, 127: 223-232.
    [107]Li Q, Minami M, Hanaoka T, et al. Acute immunotoxicity of p-chloronitrobenzene in mice: II. Effect of p-chloronitrobenzene on the immunophenotype of murine splenocytes determined by flow cytometry[J]. Toxicology, 1999, 137: 35-45.
    [108]Li X, Chen J, Du L. Analysis of chloro- and nitrobenzenes in water by a simple polyaniline-based solid-phase microextraction coupled with gas chromatography[J]. J Chromatogr A, 2007, 1140:21-28.
    [109]Li X, Elliott DW, Zhang W. Zero-valent iron nanoparicles for abatement of environmental pollutants: materials and engineering aspects[J]. Crit Rev Solid State Mat Sci, 2006, 31: 111-122.
    [110]Li X, Yao J, Qi J. Degradation of organic pollutants in water by catalytic ozonation[J]. Chem Res Chinese U,2007,23: 273-275.
    [111]Li Y, Hu C, Nie Y, et al. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide[J]. Environ Sci Technol, 2009, 43: 2525-2529.
    [112]Lin J, Nakajima T, Jomoto T, et al. Effective catalysts for wet oxidation of formic acid by oxygen and ozone[J]. Ozone-Sci Eng, 2000, 22: 241-247.
    [113]Liu H, Wang S J, Zhou N Y. A new isolate of Pseudomonas stutzerithat degrades 2-chloronitrobenzene [J]. Biotechnol Lett, 2005, 27(4): 275-278.
    [114]Liu Y. Aqueous p-chloronitrobenzene decomposition induced by contact glow discharge electrolysis[J]. J Hazard Mater, 2009, 166: 1495-1499.
    [115]Liu Z, Ma J, Cui Y. Carbon nanotube supported platinum catalysts for the ozonation of oxalic acid in aqueous solutions[J]. Carbon, 2008,46: 890-897.
    [116]Logemann F P, Annee J H J. Water treatment with a fixed bed catalytic ozonation process[J]. Wat Sci Tech, 1997,35:353-360.
    [117]Lucas S V (1984). GC/MS analysis of organics in drinking water concentrates and advanced waste treatment concentrates. 2: Computer-printed tabulations of compound identification results from large volume concentrates (US EPA Report No. EPA-600/l-84-020b; US NTIS PB85-128239), Research Triangle Park, NC, United States Environmental Protection Agency.
    [118]Ma J, Graham N J D. Degradation of atrazine by manganese catalyzed ozonation-influence of humic substances[J]. Water Res, 1999, 33: 785-793.
    [119]Ma J, Graham N J D. Degradation of atrazine by manganese-catalysed ozonation - influence of radical scavengers[J]. Water Res, 2000, 34: 3822-3828.
    [120]Ma Y, Wu J, Wang S, et al. Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation[J].Appl Environ Microbiol, 2007, 73: 4477-4483.
    [121]Maldonado M I, Malato S, Perez-Estrada L A, et al. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor[J]. J Hazard Mater, 2006, 13:363-369.
    [122]Martinez N S S, Fernandez J F, Segura X F, et al Pre-oxidation of an extremely polluted industrial wastewater by the Fenton's regent[J]. J Hazard Mater, 2003, 101: 315-322.
    [123]Martins R C, Quinta-Ferreira R M. Catalytic ozonation of phenolic acids over a Mn-Ce-O catalyst[J]. Appl Catal B-Environ, 2009, 90: 268-277.
    [124]Matheswaran M, Balaji S, Chung S J, et al. Studies on cerium oxidation in catalytic ozonaiton process: A novel approach for organic mineralization[J]. Catal Commun, 2007, 8: 1497-1501.
    [125]Matsumoto M, Umeda Y, Senoh H, et al. Two-year feed study of carcinogenicity and chronic toxicity of ortho-chloronitrobenzene in rats and mice[J]. J Toxicol Sci, 2006, 31: 247-264.
    [126]Melero J A, Martinez F, Botas J A, et al. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater[J]. Water Res, 2009, 43: 4010-4018.
    [127]Minero C, Pelizzetti E, Piccinini P, et al. Photocatalyzed transformation of nitrobenzene on TiO_2 and ZnO[J]. Chemosphere, 1994,28: 1229-1244.
    [128]Mvula E, von Sonntag C. Ozonolysis of phenols in aqueous solution[J]. Org Biomol Chem, 2003,1: 1749-1756.
    [129]Nair R S, Johannsen F R, Levinskas G J, et al. Subchronic inhalation toxicity of p-nitroaniline and p-nitrochlorobenzene inrats[J]. Fund Appl Toxicol, 1986a, 6: 618-627.
    [130]Nair R S, Johannsen F R, Levinskas G J, et al. Assessment of toxicity of o-nitrochlorobenzene in rats following a 4-week inhalation exposure[J]. Fund Appl Toxicol, 1986b, 7: 609-614.
    [131]Nakano Y, Okawa K, Nishijima W, et al. Ozone decomposition of hazardous chemical substance in organic solvents [J]. Water Res, 2003, 37: 2595-2598.
    [132]Nakano Y, Okawa K, Nishijima W, et al. Regeneration of granular activated carbon using acetic acid solution as desorbing solvent for adsorbed trichloroethylene[J]. J Jpn Soc Water Environ,2002,25:619-612.
    [133]Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solutions[J]. J Phys Chem Ref Data, 1988, 17: 1027-1284.
    [134]Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. J Hazard Mater B, 2003, 98: 33-50.
    [135]Ni C H, Chen J N. Heterogeneous catalytic ozonation of 2-chlorophenol aqueous solution with alumina as a catalyst[J]. Water Sci Technol, 2001,41: 213-220.
    [136]Ni C H, Chen J N, Yang P Y. Catalytic ozonation of 2-dichlorophenol by metallic ions[J]. Water Sci Technol, 2002,47: 77-82.
    [137]Okawa K, Sasaki M, Nakano Y, et al. Absorption of chlorophenols from aqueous solution using different absorbents and their degradation after organic solvent extraction using ozonation process[J]. J Jpn Soc Water Environ, 2003, 126: 855-859.
    [138]Okawa K, Nakano Y, Nishijima W, et al. Effects of humic substances on the decomposition of 2,4-dichlorophenol by ozone after extraction from water into acetic acid through activated carbon[J]. Chemosphere, 2004, 57: 1231-1235.
    [139]Okawa K, Tsai T Y, Nakano Y, et al. Effect of metal ions on decomposition of chlorinated organic substances by ozonation in acetic acid[J]. Chemosphere, 2005, 58: 523-527.
    [140]Paillard H, Dore M, Bourbigot M M. "Prospects Concerning Applications of Catalytic Ozonation in Drinking Water Treatment[C]," The International Ozone Association. 10th Ozone World Congress, Monaco, 1991, 313-329.
    [141]Parfitt R L, Russel J D. Adsorption of hydrous oxide IV. Mechanisms of adsorption of various ions on geomite[J]. J Soil Sci, 1977, 28: 297-305.
    [142]Park H S,Lim S J,Chang Y K et al.Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp[J].Appl Environ Microbiol,1999,65:1083-1091
    [143]Park J S,Choi H,Cho J.Kinetic decomposition of ozone and para-chlorobenzoic acid(pCBA)during catalytic ozonation[J].Water Res,2004,38:2285-2292.
    [144]Pera-Titus M,Garcia-Molina V,Banos M A,et al.Degradation of chlorophenols by means of advanced oxidation process:a general review[J].Appl Catal B-Environ,2004,47:219-256.
    [145]Piet G J,Morra C F.(1983).Artificial groundwater recharge(Water Resources Eng.Sefies)[M],Pitman Publ.,pp.31-42.
    [146]Pines D S,Reckhow D A.Effects of dissolved cobalt(Ⅱ) on the ozonation of oxalic acid[J].Environ Sci Technol,2002,36:4046-4051.
    [147]Pines D S,Reckhow D A.Solid phase catalytic ozonation process for destruction of a model pollutant[J].Ozone-Sci Eng,2003,25:25-39.
    [148]Pitter P.Determination of biological degradability of organic substances[J].Water Res,1976,10:231-235.
    [149]Pfiya M H,Madras G.Photocatalytic degradation of nitrobenzenes with combustion synthesized nano-TiO_2[J].J Photochem Photobiol A-Chem,2006,178:1-7.
    [150]Qi F,Chen Z,Xu B,et al.Influence of surface texture and acid-base properties on ozone decomposition catalyzed by aluminum(hydroxyl) oxides[J].Appl Catal B-Environ,2008,84:984-690.
    [151]Radhakrishnan R,Oyama S T,Ohminami Y,et al.Structure of MnO_x/Al_2O_3 catalyst:A study using EXAFS,in situ laser Raman spectroscopy and ab initio calculations[J].J Phys Chem B,2001,105:9067-9070.
    [152]Rakitskaya T L,Ennan A A,Granatyuk I V,et al.Kinetics and mechanism of low-temperature ozone decomposition by Co-ions adsorbed on silica[J].Catal Today,1999,53:715-723.
    [153]Reed C,Lee Y-K,Oyama S T.Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone[J].J Phys Chem B,2006,110:4207-4216.
    [154]Rivas F J,Carbajo M,Beltran F J,et al.Perovkite catalytic ozonation of pyruvic acid in water operating conditions influence and kinetics[J].Appl Catal B-Environ,2006,62:93-103.
    [155]Rosal R,Gonzalo M S,Rodriguez A,et al.Ozonation of clofibric acid catalyzed by titanium dioxide[J].J Hazard Mater,2009,169:411-418.
    [156]Rosal R,Rodriguez A,Gonzalo M S,et al.Catalytic ozonation of naproxen and carbamazepine on tianium dioxide[J].Appl Catal B-Environ,2008,84:48-57.
    [157]Sakthivel S,Neppolian B,Palanichamy M,et al.Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO_2[J].Water Sci Technol,2001,44:211-218.
    [158]Sarasa J,Cortes S,Ormad P,et al.Study of the aromatic by-products formed from ozonation of anilines in aqueous solution[J].Water Res,2002,36:3035-3044.
    [159]Sanchez-Polo M S,Rivera-Utrilla J.Ozonation of 1,3,6-naphthalenetrisulfonic acid in presence of heavy metals[J].J Chem Technol Biotechnol,2004,79:902-909.
    [160]Sanchez-Polo M,Rivera-Utrilla J,Gunten U.Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions[J].Water Res,2006,40:3375-3384.
    [161]Sarria V,Parra S,Adler N,et al.Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds[J].Catal Today,2002,76:301-315.
    [162]Scheck C K,Frimmel F F.Degradation of phenol and salicylic acid by ultraviolet radiation hydrogen peroxide oxygen[J]. Water Res, 1995, 29: 2346-2352.
    [163]Screethawong T, Chavadej S. Color removal of distillery wastewater by ozonation in the absence and presence of immobilized iron oxide catalyst[J]. J Hazard Mater, 2008, 155: 486-493.
    [164]Sehested K, Corfitzen H, Holcman J, et al. On the mechanism, of the decomposition of acidic O_3 solutions, thermally or H_2O_2-initiated[J]. J Phys Chem A, 1998, 102: 2667-2672.
    [165]Shang N C, Yu Y H, Ma H W, et al. Toxicity measurements in aqueous solution during ozonation of mono-chlorophenols[J]. J Environ Manage, 2006, 78: 216-222.
    [166]Shiraga M, Kawabata T, Li D, et al. Memory effect-enhanced catalytic ozonation of aqueous phenol and oxalic acid over supported Cu catalysts derived from hydrotalcite[J]. Appl Clay Sci,2006, 33: 247-259.
    [167]Siuda J F, DeBernardis J F. Naturally occurring halogenated organic compounds[J]. Lloydia,1973, 36: 107-243.
    [168]Sotelo J L, Beltiin F J, Benitez F J, et al. Ozone decomposition in water: kinetic study[J]. Ind Eng Chem Res, 1987,26: 39-43.
    [169]Staehelin J, Buhler R E, Hoigne J. Ozone decomposition in water studied by pulse radiolysis[J]. J Phys Chem, 1984, 88: 5999-6004.
    [170]Staehelin J, Hoigne J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reaction[J]. Environ Sci Technol, 1985, 19:1206-1213.
    [171]Stich A F, Bhattacharyya D. Ozonolysis of organic compounds in a two-phase fluorocarbon-water system[J]. Environ Prog, 1987, 6: 224-229.
    [172]Stockinger H, Heinzle E, Kut O M. Removal of chloro and nitro aromatic wastewater pollutants by ozonation and biotreatment[J]. Environ Sci Technol, 1995, 29: 2016-2022.
    [173]Stover E L, Kincannon, D F. Biological treatability of specific organic compounds found in chemical industry wastewater[J]. J WPCF, 1983, 55: 97-100.
    [174]Sunada F, Heller A. Effects of water, salt and silicone over coating of the TiO_2 photocatalysts on the rates and products of photocatalytic oxidation of liquid 3-octanol and 3-octanone[J]. Environ Sci Technol, 1998, 32: 282-286.
    [175]Susarla S, Masunaga S, Yonezawa Y. Transformations of chloronitrobenzenes in anaerobic sediment[J]. Chemosphere, 1996, 32: 967-977.
    [176]Tanaka K, Luesaiwong W, Hisanaga T. Photocatalytic degradation of mono-, di-, and trimtrophenol in aqueous TiO_2 suspension[J]. J Mol Catal A-Chem, 1997, 122: 67-74.
    [177]Tang W Z, Huang P C. The effect of chlorine position of chlorinated phenols on their dechlorination kinetics by Fenton's reagent[J]. Waste Manag, 1995, 15: 612-622.
    [178]Tepu(?) B, Simoni(?) M. The effect of platinum catalyst on decomposition of ozone and atrazine removal[J]. J Adv Oxid Technol, 2007, 10: 202-208.
    [179]Tomei M C, Annesini M C, Bussoletti S. 4-nitrophenol biodegradation in a sequencing batch reactor: kinetic study and effect of filling time[J].Water Res, 2004, 38: 375-384.
    [180]Tong S, Liu W, Leng W, et al. Characteristics of MnO_2 catalytic ozonation of sulfosalicylic acid and propionic acid in water[J]. Chemosphere, 2003, 50: 1359-1364.
    [181]Trapido M, Veressinina Y, Munter R, et al. Catalytic ozonation of w-dinitrobenzene[J].Ozone-Sci Eng, 2005, 27: 359-363.
    [182]Travlos G S, Mahler J, Ragan H A, et al. Thirteen-week inhalation toxicity of 2- and 4-chloronitrobenzene in F344/N rats and B6C3F1 mice[J]. Fund Appl Toxicol, 1996, 30: 75-92.
    [183]Trova C, Cossa G, Gandolfo G. Behavior and fate of chloronitrobenzenes in a fluvial environment[J]. Bull Environ Contam Toxicol, 1991,47: 580-585.
    [184]Tsai T Y, Okawa K, Nakano Y, et al. Decomposition of trichloroethylene and 2,4-dichlorophenol by ozonation in several organic solvents[J]. Chemosphere, 2004, 57: 1151-1155.
    [185]Utsumi H, Hakoda M, Shimbara S, et al. Active oxygen species generated during chlorination and ozonation[J]. Water Sci Technol, 1994, 30: 91-99.
    [186]van Zoest R, van Eck G T M. Occurence and behaviour of several groups of organic micropollutants in the Scheldt estuary[J]. Sci Total Environ, 1991,103: 57-71.
    [187]Vasconcelos P V, Labrincha J A, Ferreira J M F. Porosity development of diatomite layers[J]. JEur Ceram Soc, 2000, 20: 201-207.
    [188]Volskay V T, Grady Jr C P L. Respiration inhibition kinetic analysis[J]. Water Res, 1990, 24:863-874.
    [189]von Gunten U, Oliveras Y. Advanced oxidation of bromide-containing waters: bromate formation mechanisms[J]. Environ Sci Technol, 1998, 32: 63-70.
    [190]von Gunten U. Ozonation of drinking water: part I. oxidation kinetics and product formation [J].Water Res, 2003, 37: 1443-1467.
    [191]Ward D B, Tizaoui C. Slater M J. Ozone-loaded solvents for use in water treatment[J]. Ozone-Sci Eng, 2003,25: 485-495.
    [192]Ward D B, Tizaoui C, Slater M J. Extraction and destruction of organics in wastewater using ozone-loaded solvent[J]. Ozone-Sci Eng, 2004, 26: 475-486.
    [193]Ward D B, Tizaoui C, Slater M J. Continuous extraction and destruction of chloro-organics in wastewater using ozone-loaded Volasil~(?)245 solvent[J]. J Hazard Mater B, 2005, 125: 65-79.
    [194]Ward D B, Tizaoui C, Slater M J. Wastewater dye destruction using ozone-loaded Volasil~(?)245 in a continuous flow liquid-liquid/ozone system[J]. Chem Eng Process, 2006,45: 124-139.
    [195]Winarno E K, Getoff N. Comparative studies on the degradation of aqueous 2-chloroaninline by O_3 as well as by UV-light and y-rays in the.presence of ozone[J]. Radiat Phys Chem, 2002, 65:387-395.
    [196]Wu C H, Kuo C Y, Chang C L. Decolorization of azo dyes using catalytic ozonation[J]. React Kinet Catal Lett, 2007, 91:161-168.
    [197]Wu C H, Kuo C Y, Chang C L. Homogeneous catalytic ozonation of C. 1. Reactive Red 2 by metallic ions in a bubble column reactor[J]. J Hazard Mater, 2008, 154: 748-755.
    [198]Wu H Z, Wei C, Wang Y, et al. Degradation of o-chloronitrobenzene as the sole carbon and nitrogen source by Pseudomonas putida OCNB-1[J]. J Environ Sci, 2009,21: 89-95.
    [199]Wu J F, Sun C W, Jiang C Y. A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of 4-chloronitrobenzene by Comamonas strain CNB-1: purification, properties, genetic cloning and expression in Escherichia coli[J]. Arch Microbiol, 2005, 183: 1-8.
    [200]Wu J F, Jiang C Y, Wang B, et al. Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1[J]. Appl Environ Microbiol, 2006, 72:1759-1765.
    [201]Wu J J, Chen S H, Muruganandham M. Catalytic ozonation of oxalic acid using carbon-free rice husk ash catalysts[J]. Ind Eng Chem Res, 2008,47: 2919-2925.
    [202]Xiao H, Liu R, Zhao X, et al. Effect of manganese ion on the mineralization of 2,4-dichlorophenol by ozone[J]. Chemosphere, 2008, 72: 1006-1012.
    [203]Xiao Y, Wu J, Liu H, et al. Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73[J]. Appl Microbiol Biotechnol,2006,73: 166-171.
    [204]Xing S, Hu C, Qu J, et al. Characterization and reactivity of MnO_x supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone[J].Environ Sci Technol,2008,42:3363-3368.
    [205]Xu X,Wo J,Zhang J,et al.Catalytic dechlorinationo ofp-NCB in water by nanoparticle Ni/Fe[J].Desalination,2009,242:346-354.
    [206]Xu X,Zhou H,Zhou M.Catalytic amination and dechlorination of para-nitrochlorobenzene (4-NCB) in water over palladium-iron bimetallic catalyst[J].Chemosphere,2006,62:847-852.
    [207]Xu Z,Chen Z,Joll C,et al.Catalytic ozonation efficiency and stability of cobalt hydroxide for decomposition of ozone and p-chloronitrobenzene in water[J].Catal Commun,2009,in press.
    [208]Ye M,Chen Z,Liu X,et al.Ozone enhanced activity of aqueous titanium dioxide suspensions for photodegradation of 4-chloronitrobenzene[J].J Hazard Mater,2009,in press.
    [209]Yoshida T,Tabuchi T,Andoh K.Pharmacokinetic study of p-chloronitrobenzene in humans suffering from acute poisoning[J].Drug Metab Dispos,1993,21:1142-1146.
    [210]Zeng Y F,Liu Z L,Qin Z Z.Decolorization of molasses fermentation wastewater by SnO_2-catalyzed ozonation[J].J Hazard Mater,2009,162:682-687.
    [211]Zhang T,Ma J.Catalytic ozonation of trace nitrobenzene in water with synthetic goethite[J].J Mol Catal A-Chem,2008a,279:82-89.
    [212]Zhang T,Li C J,Ma J,et al.Surface hydroxyl groups of synthetic α-FeOOH in promoting.OH generation from aqueous ozone:property and activity relationship[J].Appl Catal B-Environ,2008b,82:131-137.
    [213]Zhang W.Nanoscale iron particles for environmental remediation:An overview[J].J Nanopart Res,2003,5:323-332.
    [214]Zhao L,Ma J,Sun Z Z,et al.Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese[J].Appl Catal B-Environ,2008a,83:256-264.
    [215]Zhao L,Ma J,Sun Z Z.Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution[J].Appl Catal B-Environ,2008b,79:244-253.
    [216]Zhao L,Ma J,Sun Z Z,et al.Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation[J].Environ.Sci.Technol.,2008c,42:4002-4007.
    [217]Zhao L,Sun Z,Ma J,et al.Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J].Environ Sci Technol,2009a,43:2047-2053.
    [218]Zhao L,Sun Z Z,Ma J.Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution[J].Environ Sci Technol,2009b,43:4157-4163.
    [219]班福忱,李亚峰,胡俊生,等.电-Fenton法处理五氯硝基苯废水[J].沈阳建筑大学学报(自然科学版),2005,21:723-725.
    [220]贲岳,陈忠林,徐贞贞,等.P-CNB对好氧污泥活性和污染物降解动力学的影响[J].中国给水排水,2008,24:102-105.
    [221]陈芳艳,唐玉斌,钟宇,等.微波诱导Fenton试剂氧化降解水中对硝基氯苯[J].环境科学与技术,2008,31:46-49.
    [222]陈一良,蒋珍茂,陈金龙.铁屑微电解法预处理硝基氯苯生产废水的研究[J].重庆环境科学,2003,25:38-40.
    [223]陈忠林,徐贞贞,贲岳,等.ZnOOH/O_3催化臭氧化体系去除水中痕量对氯硝基苯[J].环境 科学,2007,28:2550-2556.
    [224]冯继勤,徐向阳,蒋旻昀,等.ZVI固定床-SABR偶合系统对氯代硝基苯降解作用的研究[J].科技通报,2008,24:417-423.
    [225]顾玉林,徐贤伦,刘淑文.用于臭氧分解的负载型双金属催化剂[J].环境污染与防治,2003,25:131-133.
    [226]洪学艳,甄芳芳,任洪强,等.两种硝基氯苯对鲤鱼的急性毒性[J].环境科学与技术,2007,30:10-12.
    [227]李鹏程,刘雷,胡九成.多相催化氧化法处理酚氰废水的研究[J].南昌大学学报,2002,4:80-86.
    [228]李伟,孙德智,刘长安,等.活性碳负载复合催化剂分解臭氧的研究[J].哈尔滨工业大学学报,2004,36:624-630.
    [229]梁诚.硝基氯苯生产现状与市场分析[J].石油化工技术经济,2007,23:23-26.
    [230]林海转,徐向阳,杨燕妮,等.ZVI固定床-SBR耦合工艺强化氯代硝基苯的降解[J].环境科学学报,2008,28:1777-1784.
    [231]刘永明,骨牌效应连带硝基氯苯行情回落,中国化工报,2009年5月22号.网址:http://www.ccin.com.cn/front/home/templet/default/ShowArticle.jsp?id=75662.
    [232]刘云,沈幸,鲜啟鸣,等.地表水中微量氯代芳烃和硝基取代芳烃化合物的分析方法[J].环境化学,2005,24:463-466.
    [233]刘正乾,马军,赵雷.载Pt石墨催化臭氧化降解水中草酸的研究[J].环境科学,2007a,28(6):1258-1263.
    [234]刘正乾,马军.Pt/CNTs催化剂的制备及其催化臭氧化活性研究[J].化学学报,2007b,65(24):2965-2970.
    [235]陆泉芳,俞洁,刘永军,等.接触辉光放电等离子体降解水体中的对氯硝基苯[J].西北师范大学学报(自然科学版),2003,39:49-53.
    [236]牛少凤,梁瑛,楼章华,等.纳米Ni/Fe双金属还原降解对氯硝基苯的影响因素[J].天津大学学报,2008,41:1362-1366.
    [237]钱慧静,牛少凤,吴燕君,等.纳米级镍铁同步处理Cr(Ⅵ)和p-NCB的研究[J],浙江大学学报(理学版),2008,35:562-566.
    [238]钱易,汤鸿霄,文湘华.水体颗粒物和难降解有机物的特性与控制技术原理(上)[M].中国环境科学出版社.2000:20-21.
    [239]沙耀武,赵文超.含硝基苯或硝基氯苯的废水处理研究[J].精细化工,1996,13:57-59.
    [240]沈吉敏,陈忠林,徐珍珍等.臭氧化去除水中对硝基氯苯动力学及机理[J].化工学报,2006,57:2439-2444.
    [241]沈吉敏,李学艳,陈忠林,等.臭氧化降解水中硝基氯苯Ⅰ.动力学和过程分析[J].哈尔滨工业大学学报,2008a,40:540-545.
    [242]沈吉敏,李学艳,陈忠林,等.臭氧化降解水中硝基氯苯Ⅱ.产物和机理分析[J].哈尔滨工业大学学报,2008b,40:895-900.
    [243]沈洛夫,姜建国,林庆生,等.硝基芳烃类物质对盐藻的毒性试验及比较[J].海洋科学,2006,30:15-17.
    [244]孙青萍,吴建平.金属氧化物催化剂消除臭氧的初步探索[J].环境污染与防治,2002,24:32-33.
    [245]田怀军,舒为群,张学奎,等.长江、嘉陵江(重庆段)源水有机污染物的研究[J].长江流域资 源与环境,2003,12:118-123.
    [246]童少平,刘维屏,杜桂荣,等.催化臭氧化降解磺基水杨酸的机理[J].中国环境科学,2003,23:255-258.
    [247]王玲玲,朱叙超,李明.河南境内黄河流域集中式城市饮用水源水有机污染特性研究[J].环境污染与防治,2004,26:104-106.
    [248]王若平.固相微萃取-毛细管气相色谱法快速同步分析水中硝基苯类及氯苯类化合物[J].中国环境监测,2005,21:15-19.
    [249]王世和,金杭,杨新萍,等.含氯苯和对邻硝基氯苯农药废水的混凝-氧化预处理[J].化工环保,2002,22:31-34.
    [250]魏复盛,水和废水监测分析方法(第四版)[M],中国环境科学出版社,2002年12月.
    [251]吴海珍,何勤聪,韦朝海,等.邻氯硝基苯降解茵OCNB-1的分离鉴定与降解质粒[J].华南理工大学学报(自然科学版),2008,36:83-88.
    [252]吴耀国,赵大为,焦剑等.臭氧化的负载型非均相催化剂制备及其作用机理[J].材料导报,2005.19:8-11.
    [253]项硕,叶敏,徐向阳.氯代硝基苯类生产废水厌氧-好氧序列生物处理研究Ⅰ.反应器启动过程的特性[J].浙江大学学报(农业与生命科学版),2003,29:195-200.
    [254]徐腾蛟,陈忠林,沈吉敏,等.臭氧氧化降解水中对硝基氯苯的效能与机制[J].水处理技术,2007,33:27-30.
    [255]徐应明,戴晓华,孙扬,等.硝基氯苯胁迫对小麦种子萌发和幼苗生长的影响[J].灌溉排水学报,2008,27:1-4.
    [256]许芝.金属催化臭氧化预处理含酚农药废水的研究[J].大连铁道学院学报,2002,23:94-96.
    [257]杨庆良,谢家理,许正等.高湿度条件下O_3在MBO_x/Al_2O_3催化剂上的分解[J].四川大学学报,2001,4:226-229.
    [258]杨旭,俞飞.树脂吸附法处理硝化废水[J].污染防治技术,2007,20:9-12.
    [259]叶苗苗,陈忠林,沈吉敏,等.TiO-2/UV/O_2和TiO_2/UV/N_2体系降解水中对氯硝基苯[J].感光科学与光化学,2007,25:296-305.
    [260]叶苗苗,陈忠林,沈吉敏,等.La_2O_3和CeO_2的制备及催化臭氧氧化对氯硝基苯[J].哈尔滨工业大学学报,2009,41:77-80.
    [261]叶敏,徐向阳,谢雨生.氯代硝基苯类生产废水厌氧-好氧序列生物处理研究Ⅱ铁碳还原-A/O组合工艺性能[J].浙江大学学报,2003,29:201-206.
    [262]袁星,孟庆俊,苏丽敏.硝基芳烃化合物对大型蚤的联合毒性[J].东北师大学报自然科学版,2003.35:106-109.
    [263]詹树林,林俊雄,方明晖等.硅藻土在工业污水处理中的应用研究进展[J].工业水处理,2006,26:10-13.
    [264]张彭义,祝万鹏.镍铜氧化物对吐氏酸废水臭氧氧化的催化作用[J].中国环境科学,1998,18:310-313.
    [265]张全兴,王勇,李秀娟,等.树脂吸附法处理硝基苯和硝基氯苯生产废水的研究[J].化工环保,1997,17:323-326.
    [266]张涛,陈忠林,马军,等.水合氧化铁催化臭氧氧化去除水中痕量硝基苯[J].环境科学,2004,25:43-47.
    [267]张秀芳,李明堂.2-氯硝基苯对鲫鱼体内抗氧化酶的影响[J].吉林农业大学学报,2009,31:69-72.
    [268]赵德明,史惠祥,汪大翬.Fe-C微电解法+H_2O_2组合工艺处理对氯硝基苯废水[J].城市环境与城市生态,2002,15:32-34.
    [269]赵雷,孙志忠,马军.金属催化臭氧化应用在水处理中的机理研究进展[J].现代化工,2007,27:78-82.
    [270]赵其仁,李林蓓.硅藻土开发应用及其进展[J].化工矿产地质,2005,27:96-102.
    [271]赵翔,曲久辉,李海燕,等.催化臭氧化饮用水中甲草胺的研究[J].中国环境科学,2004,24:332-335.
    [272]镇达,陈茂彬.假单胞菌ZWL73降解4-氯硝基苯的代谢途径研究[J].微生物学通报,2008,35:358-362.
    [273]郑昱,徐向阳,蔡文祥,等.ZVI还原转化硝基芳烃特性及QSAR的研究[J].浙江大学学报(农业与生命科学版),2006,32:31-35.
    [274]钟理,张浩,陈英等.臭氧在水中的自分解动力学及反应机理[J].华南理工大学学报自然科学版,2002,30:83-86.
    [275]周学明,杨嫣嫣.Fe/C微电解法处理对氯硝基苯废水的研究[J].安徽化工,2008,34:54-56.
    [276]周云瑞,祝万鹏.Al_2O_3催化臭氧化处理邻苯二甲酸二甲酯[J].环境科学,2006,27:889-893.
    [277]朱丽勤,何瑾馨,陈小立.染色废水臭氧氧化催化剂研制及其应用性能[J].东华大学学报,2005.31:72-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700