林地生产力演变遥感监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
林地生产力是营林的重要基础,实现林地生产力及其演变基础数据的获取,对于指导森林资源经营管理、促进适地适树、挖掘林地资源潜力、提升林地生产力,促进林业可持续发展具有重要意义。本文于2008年8月14日至8月29日在永安市布设118个样地点,采集土壤样本,实验测定各样点土壤有机质、土壤含水量等理化性质,结合国家自然科学基金《林地立地质量遥感反演技术研究》(40971043)项目和福建省科技计划重点项目《基于3S技术工业原料林林地优化经营技术应用研究》(2008N0003)成果提供的1999年和2008年永安市的林地土壤有机质专题图和土壤侵蚀图,实现林地生产力的遥感估测和林地脆弱性的测定,采用熵突变理论分析不同时期林地生产力演变与林地脆弱性的关系,构建基于单期遥感数据的林地生产力演变遥感监测模型,实现1999年、2008年永安市林地生产力演变的时空效应分析,基于永安市林地生产力的演变、脆弱性的影响等因素,综合开展永安市林地资源开发利用的适宜性测定研究,为林地资源的优化经营、林业可持续发展提供辅助依据。主要研究结果如下:
     (1)利用1999年和2008年的遥感数据,采用面向对象的专题信息提取方法,实现1999年、2008年研究区马尾松林、竹林、阔叶林、桉树林、经济林、杉木林、灌木林、疏林地、其他林地共9种森林类型专题信息的提取,1999年的分类精度为90.63%,Kappa系数为0.8934;2008年为86.54%,Kappa系数为0.8419。
     (2)选择林地生产力的估测影响因子,以传统林地立地质量等级为参照,通过数量化理论I方法,构建了永安市林地生产力遥感估测模型,估测精度为81.15%:
     林地生产力=3.432370.14864×坡度1+0.63546×坡度2+0.13683×坡度3+0.50472×坡向1+0.81227×坡向2+0.2211×坡向30.20431×海拔1-0.63461×海拔2+1.32375×土层厚度1+0.31163×土层厚度20.40069×侵蚀10.54288×侵蚀20.6219×侵蚀3+0.00087×有机质0.00028×NPP0.09522×腐殖质
     (3)选定降雨侵蚀R因子、坡度、地形起伏度、土壤侵蚀K和人为干扰指数5个因子作为林地脆弱性评定指标因子,通过咨询相关专家和模糊层次分析法确定林地脆弱性各指标权重,采用综合指标数法实现林地脆弱性的测定。
     (4)将信息熵理论引入林地利用结构演变分析,永安市1999年和2008年林地利用结构信息熵分别为0.7404、0.7858;1999年、2008年林地生产力等级结构“熵”为0.5468、0.5624。通过林地脆弱性与采用2008年和1999年的林地生产力比值构建的林地质量Site08/99指数相关性分析,结果表明,10a来永安市林业经营过程中注重脆弱性高区域林地资源的保护,脆弱性高的地方林地生产力向提升方向发展。
     (5)构建了1999年和2008年的林地生产力“熵”,以林地脆弱性等级为步长,构建林地生产力熵的尖点突变模型,首次引入了熵突变理论分析永安市不同时期林地生产力演变与脆弱性的关系。结果表明,1999年时永安市林地生产力未发生突变,而2008年永安市林地生产力在不同脆弱性空间上发生了突变。2008年林地生产力熵均值为0.7755整体比1999年林地生产力熵显下降趋势,随着脆弱性的提升而下降。
     (6)首次选定林地土壤有机质(yjz)、植被净第一性生产力(NPP)和土壤侵蚀量(qs)3个因子构建了基于单期遥感数据林地生产力的遥感监测模型,模型估测结果与构建的林地质量Site08/99指数相关性达到了0.9,二者在表达林地生产力演变表现出一致的规律性。
     (7)依据生产力水平是否高于平均水平,将林地生产力划分为林地生产力为“一般”区和“良好”区。分析林地生产力演变遥感监测模型估测的林地生产力演变指数值与干扰指数、利用1996年、2006年永安市的二类调查固定样地资料和理查德方程构建的杉木、马尾松和二者综合的地位指数比值之间的关系,综合确定林地生产力演变遥感监测模型估测的林地生产力演变值0.9323,作为林地生产力“一般”区和“良好”区的阈值条件。并利用1996年、2008年永安市林业小班数据库中的林木生长量是否高于林木平均生长量作为林地生产力“一般”和“良好”区的判定依据,检验林地生产力演变遥感监测模型识别林地生产力“一般”和“良好”区的有效精度,精度为81.95%。
     (8)叠加、确定1999年-2008年永安市林地生产力“一般未变”、“良好未变”、“一般转良好”和“良好转一般”4个演变区。结合脆弱性、立地质量等级、生态公益林和商品林区、坡度条件以及林地利用方式等因素,分析1999年-2008年永安市林地生产力演变的时空效应。结果表明,桉树、经济林的林地生产力下降程度较大,而杉木下降程度也相对较大,马尾松和竹林则相对较好,生态敏感性较强区域的林地生产力得到提升。
     (9)利用野外获取、测定的水分、土壤密度和总孔隙度样本数据,采用反距离加权的空间确定性插值法插值得到永安市2008年林地水分、土壤密度和总孔隙度空间分布专题图,插值估测精度达95%以上。
     (10)选择林地生产力演变指数、林地现况生产力、林地脆弱性、林地土壤侵蚀、坡度、坡向、海拔、水分、土壤密度和总孔隙度共10个因子,结合层次分析法构建永安市林地资源开发利用适宜性评价指标体系,采用0-10等级赋分法和综合指数法实现林地适宜性的综合测定。通过模糊聚类分析和加权处理,将永安市林地资源按适宜性得分值的“7.78以上、7.78-6.02、6.02以下”3个区间划分为适宜性好、适宜性一般和适宜性差三个等级。结果表明:永安市林地资源中适宜性好、适宜性一般面积合计达到了212693.76hm2,比重为85.25%。商品林中有87.43%的面积为适宜开发利用的林地资源,10a来永安市的林地生产力发生了一定的变化,林地适宜性开发的面积较大,整体上体现了永安市林业发展水平较高,林地资源利用的集约化技术水平整体较为理想。
     (11)结合林地现况生产力等级、坡度等级、脆弱性等级和1999年至2008年林地生产力的演变情况等要素,分析各要素相应等级上适宜性林地资源的分布情况。结果表明,林地适宜性在坡度上的变化与生产力等级存在着显著的关系,商品林中生产力好的区域,林地适宜性开发利用的程度较高,随着脆弱性和坡度等级的提高、林地生产力水平的下降或生产力低于平均水平时,林地资源的开发利用适宜性均显降低趋势,不适宜开发利用面积显增大趋势,商品林地资源中适宜性差的林地面积主体分布在坡度3、4等级和生产力水平下降区,综合表明了本文划分的林地适宜性等级具有良好的合理性与适用性。
The forestland productivity is the important foundation of the planting forest, acquisitionthe evolution basic data of the forestland productivity is of great significance for guiding forestresource management, promoting the matching tree species with site, mining the potential offorest resources, lifting the forestland productivity and promoting the forest sustainabledevelopment. The soil physical and chemical properties such as soil organic matter and soilmoisture were measured with118sampling points in Yong’an city were layouted on August14,2008to September29,2008.The forestland productivity and the forestland fragile were estimatedby using the remote sensing data on1999and2008,combining forestland soil organic matterthematic map and soil erosion map in Yong’an city on1999and2008which provided byNational Natural Science Foundation《On the Inversion Technique of the Forestland Site QualityBased on Remote Sensing》(40971043)and the key project of Fujian province science andtechnology program—《On the Industrial Raw Material Forestland Optimization ManagementTechnology Based on Geomatics Technology》(2008N0003). By using entropy catastrophetheory to analysis the development relation between the forestland productivity and theforestland fragility on different periods. The forestland productivity evolution remote sensingmonitoring model based on single-period remote sensing data was constructed and was used toanalysis on the time-space effect of the forestland productivity evolution in Yong’an city on1999and2008. The forestland suitability were determinated on the basis of the effect factors such asthe evolution and fragility of forestland productivity in Yong’an city by developing in the study,which would provide aided basis for the optimal management of forestland resource and forestrysustainable development in Yong’an city. The main results are the following:
     (1) The9forest types thematic information which include masson pine, bamboo forest,broadleaf forest, eucalyptus, economic forest, Chinese Fir, shrub, open forestland and otherwoodland were extracted by using object-oriented methods and the remote sensing on1999and2008, the classification accuracy is90.63%in1999and86.54%in2008,the Kappa coefficient is0.8934in1999and0.8419in2008.
     (2) The forestland productivity remote sensing estimation model in Yong’an city wasconstructed on the basis of the forestland productivity estimation influencing factors and theQuantification Theory I method, according the traditional grade of forestland site quality and the estimation accuracy is81.15%:
     forestlandproductivity=3.432370.14864×slope1+0.63546×slope2+0.13683×slope3+0.50472×aspect1+0.81227×aspect2+0.2211×aspect30.20431×altitude1-0.63461×altitude2+1.32375×soilthickness1+0.31163×soilthickness20.40069×erosion10.54288×erosion20.6219×erosion3+0.00087×organicmatter0.00028×NPP0.09522×humus
     (3) By selecting rainfall R factor, slope, amplitude of landforms, soil erosion K and humandisturbance index as the factors of forestland fragility evaluation indices, the forestland fragilitywas determinated with the factors weight which were work by the Fuzzy Analytic Hierarchy andthe advices from the relevant experts.
     (4) By analysing the forest using structure information with the help of the entropy theory,the forest using structure comentropy is0.7404in1999and0.7858in2008, the forestlandproductivity hierarchical comentropy is0.5468in1999and0.5624in2008in Yong’an city. Byanaslysing the correlation between the forestland fragility and the forestland qulity site08/09structured by the forestland productivity ratio between2008and1999, the results showed thatthe protection which had promoted the development of the highest Fragilityforestlandproductivity were put on the high Fragilityof regional in Yong’an city in the last10years.
     (5) The forestland productivity entropy tine catastrophe model were structured with the theforestland productivity “entropy” in1999and2008structured in the paper and the Fragilitygradefor step length, the entropy catastrophe theory was firest used on the analysis of correlationbetween the forestland productivity evolution in different periods and Fragilityin yong’an city.The results showed that the forestland productivity catastrophe according to the vulnerabilitiesdid not occur in1999, but occurred in2008.The mean value of the forestland productivityentropy is0.7755in2008which show down trend than the forestland productivity entropy in1999and decline with the Fragility of ascension.
     (6) By selecting soil organic matter, Net Primary Productivity and soil erosion3factors, theforestland productivity remote sensing monitoring model based on single-period remote sensingdata was structured, the correlation is0.9between the estimated result by the model and theforestland quality site08/99developed in the paper, which showed a consistent regular on theexpression of the forestland productivity evolution.
     (7) The forestland productivity is divided into "General" and "Good" according to whetherthe productivity level is higher than average. By analysing the correlation among the humandisturbance index, the forestland productivity evolution index estimated by the forestlandproductivity evolution remote sensing monitoring model, the ratio of the forestland site qualityindex which were came from the Chinese Fir, masson pine forestry resource survey samples on1996and2006in Yong’an city,0.9323was determined as the forestland productivity evalution value for different the "General" and "Good" forestland productivity estimated by the forestlandproductivity evolution remote sensing model. The forestland productivity was classified as"General" and "Good" according to the value that the volume of forest tree from forestryinformation database growth is higher than the volume mean value of forest tree growth or not totesting the effective accuracy that estimated by the forestland productivity evolution remotesensing model, the result showed the accuracy is81.95%.
     (8) The time-space effect of the forestland productivity evolution were analysed by theevolution of the forestland productivity in Yong’an city from1999to2008which were classifiedas4level such as “general keeping”,“good keeping”,“general to good” and “good to general”and combining with the factors such as fragility,the grade of forest site quality, ecological publicwelfare forest and commodity forest, slope and the useful forestland. The result shows that theworst decline in the forestland productivity are eucalyptus and economical forest, the worsedecline in the forestland productivity is Chinese Fir forest, the forestland productivity of massonpine and bamboo forest are better, the forestland productivity has been promoted in the seriousFragilityregional.
     (9) By utilizing samples data of water, soil density and soil total porosity which obtainedand measured from soil plots set in the paper, the thematic information map of forestlandwater,soil density and total porosity were extracted with the help of the inverse distanceweighted interpolation method based on GIS, the interpolation estimating precision of more than95%.
     (10) The forestland suitability were evaluated by the forestland suitability evaluation indexsystem which were structured by the10factors such as the forestland productivity evolutionindex, the forestland productivity, the forestland fragility, the forestland soil erosion, slope,aspect, altitude, water, soil density and soil total porosity and the AHP(analytic hierarchyprocess) method, the0-10class assignment method, the Comprehensive index. The suitability offorestland were classified into three grade with “better suitability”,“general suitability” and “badsuitability” according to the score of forestland suitability measured in the paper which has3intervals:more than7.78,6.02to7.78, under6.02, measured based on the Fuzzy ClusterAnalysis and weighted processing. The accumulative area of the “better suitability”,“generalsuitability” forestland is212693.76hm2, accounting for85.25%,87.43%of commercialforestland is suitable for exploitation and utilization. There are some favorable changes in theforestland of Yong’an city in the last10years, the area of forestland suitable for development islager, all which show that the forestland management is more Advanced in Yong’an city
     (11) Combining with the grade of forestland productivity, the grade of slope, the grade offragility and the forestland productivity evolution from1999to2008, the area and thedistribution of the suitable forestland were analysed and measured. The results show that there are significant relationship between the slopes and the level of forestland productivity in thechanges of forestland suitability, the more forestland area for development the more high level inthe commercial forestland productivity, the forestland area for development is decline and thearea of the “bad suitability” forestland is rising along with the ascending of the fragility andslope, the forestland productivity is decline or the forestland productivity level is low than theaverage productivity. The main area of the bad suitability forestland in the commodityforestland are on the slope in grade3,4and the declining productivity forestland, all whichdemonstrated the forestland suitability in the paper are more reasonal and applicability.
引文
[1] A B McBratney, M L Mendona Santos, B Minasny. On digital soil mapping. Geoderma,2003,117:3-52.
    [2] A D McGuire, J M Melilio, L A Joyce,et al.Inreractions between carbon and nitrogen dynamics inestimating net primary[J]. Global Biogeochemistry,1992,(6):101-124.
    [3] L Kochunov.脆弱生态的概念及分类[J].地理译报,1993.13(1):36-43.
    [4] Bannari, A PacheCo, K Staenz,et al.Estimating and mapping crop residues cover on agricultural landsusing hyperspectral and IKONOS data[J]. Remote Sensing of Environment,2006,104(4):447-459.
    [5] C J Palmer, W D Smith, B L Conkling. Development of a Protocol for Monitoring Statusand TrendsinForest Soil Carbon at a National Level[J]. Environmental Pollution,2002,116:209-219.
    [6] C S Potter, J Randerson, C B Field,et al.Terrestrial ecosystem production: a process model based on globalsatellite and surface data[J]. Global Biogeochemistry,1993,(7):811-841.
    [7] D M Livernan, M E Hanson, B J Bromn.Global Sustainability:Yoward measurement[J].EnvironnmentManagement,1988,12(2):133-143.
    [8] D P Turner, W D Ritts, W B Cohen,et al. Site-level Evaluation of Satellite-based Global Terrestrial GrossPrimary Production and Net Primary Production Monitoring[J].Global Change Biology,2005,11:666-684.
    [9] D Scluiiter, C Polsky, A G Patt. Assessing vulnerabilities to the effects of global change:An eight stepapproach[J].Mitigation and Adaptation Strategies for Global Change,2005,10(4):573-595.
    [10] E A Davidson, I A Janssens,Y Luo. On the variability of respiration in terrestrial ecosystems: movingbeyond Q10[J].Glob Change Biol,2006,12:154-164.
    [11] F Chen, D E Kissel, L T West,et al.Feature selection and similarity analysis of crop fields for mappingorganic carbon concentration in soil[J].Computers and Electronicsin Agriculture,2006,54:8-21.
    [12] F I Woodward, I M Smith, W R Emanuel. A global land primary productivity and phytogeographymodel[J]. Global Biogeochemical Cycles,1995,9:471-490.
    [13] Farifteh, F V Meer, C Atzberger, et al. Quantitative analysis of salt-affected soil reflectance spectra: Acomparison of two adaptive methods (PLSR and ANN)[J]. Remote Sensing of Environment,2007,110(1):59-78.
    [14] G Montserrat, E Mart,J Sierra,et al. Discriminating in-hibitory from enhancing effects in respirometryassays from, metal polluted-sewage sludge amended soils[J]. Applied Soil Ecology,2006,34(1):5261.
    [15] G Sullivan, J N Shaw, D Rickman, et al.Using remote sensing data to evaluate surface soil properties inAlabama ultisols[J]. Soil Science,2005,170(12):954-968.
    [16] G Zurlini, K Riitters, N Zaccarelli,et al. Disturbance patterns in a socioecological system at multiplescales.Ecological Complexity,2006a,3:119-128.
    [17] H Lieth, R H Whittaker.Primary Productivity of the Biosphere[J]. Ecological Studies,New York:Springer,1975,14:352.
    [18] H Lieth.Modeling the primry productivity of the world[J]. Nature and Resources,1972,8(2):5-10.
    [19] H Tiessen, J W B Stewart. Light and electron microscopy of stained microaggregates:the role of organicmatter and microbes in soil aggregation[J].Biochemistry,1988,(5):312-322.
    [20] Haxeltine,I C Prentice.BIOME3:An equilibrium terrestrial biosphere model based on ecophysiologicalconstraints[J]. Global Biogeochemical Cycles,1995,10:693-709.
    [21] J F Glenn, M L Scott, M B Edward, et al.Directed sampling using remote sensing with a response surfacesampling design for site-specific agriculture[J]. Computers and Electronics in Agriculture,2006,53(2):98-112.
    [22] J Grandell, J Pulliainern, M Hallikainern. Subpixe Land Use Classification and Retrievel of Forest StemVolume in the Boreal Forest Zone by Employing SMM/I Data, Remote Sensing Environment,1998,63.
    [23] J L Monteith. Solar radiation and productivity in tropical ecosystems[J]. Journal Applied Ecology,1972,9:747-766.
    [24] J M Schoorl, A Veldkamp, J Bouma.The evaluation on suitability of land resource[J].Soil ScienceSociety of America Journal,2002,66(5):1610-1620.
    [25] J Raic, E B Rastetter, J M Melillo, et al. Potertial net primary productivity in South America: applicationof a global model[J]. Ecological Applicarion.2001,1:399-429.
    [26] J Reeves III, G McCarty, T Mimmo. The potential of diffuse reflectance spectroscopy for the determina-tion of carbon inventories in soils[J]. Environmental Pollution,2002,116(3):277-284.
    [27] K Klinka. An Ecosystematic apporoach to forest planning[J]. For Chron,1980,56:103.
    [28] K Lars, N Anetve,H Martin,et a1. Preliminary estimates of contemporary organic carbon stocks inDenmark using multiple dat. Setsand four scaling-up methods[J],Agriculture Ecosystemsand Environment,2003,96:19-28.
    [29] K N Johnson, J Agee, R Beschta. The evaluation on land suitability. Journal of Forestry. Bethesda.1999,97(5):6-7.
    [30] K Sorensen, S Dalsgaard. Determination of clay and other soil properties by near infrared spectroscopy[J].Soil Science Society of America Journal,2005,69(1):159-167.
    [31] L Granados, M J Exposito, J M Pena-Barragan, et al.Using geostatistical and remote sensing approachesfor mapping soil properties[J]. European Journal of Agronomy,2005,23(3):279-289.
    [32] M Heimann, C D keeling. A three-dimensional model of atmospheric CO2transport based on observedwinds:2Model description and simulated tracer experiments[J]. In: D.H.Peterson(ed).Climate variability in thePacific and the Western Americans. American Geophysical Union,1989:237-275.
    [33] M Mouazen, M R Maleki, J D Baerdemaeker, et al. On-line measurement of some selected soil propertiesusing a VIS-NIR sensor[J]. Soil and Tillage Research,2007,93(1):13-27.
    [34] M Reichstein, A Rey, A Freibauer,et al. Modeling Temporal and Large-scale Spatial Variability of SoilRespiration from Soil Water Availability,Temperature and Vegetation Productivity Indices[J].Global Biogeo-chemical Cycles,2003,17(4):1104,doi:10.1029/2003GB002035.
    [35] N J Lee, K Nakane. Forest vegetation classification and biomass estimation based on landsat TM data in amountainous region of west Japan[A].In Gholz,H. L, K Nakanwe, an H. himoda eds:The useof remote.Sensing in the modeling of forest productivity. Kluwer Academic Puhlishers,Netherlands,1997:159-171.
    [36] N Robin,T Brian,K Slater. Soil-landscape resource assessment for plantations-aconceptual frameworktowards an explicit multi-scale approach forest soils and ecosystem sustainability[J].Soil Science Society ofAmerica Journal,2001,23(4):123-138.
    [37] P Hongberg, A Nordgren, N Buchmann,et al.Large-scale Forest Girdling Shows That CurrentPhotosynthesis Drives Soil Respiration[J].Nature,2001,411:789-792.
    [38] Pirie, B Singh,K Islam. Ultra-violet, visible, near-infrared, and mid-infrared diffuse reflectance spectro-scopic techniques to predict several soil properties[J]. Australian Journal of Soil Research,2005,43(6):713-721.
    [39] Prakash.Land-use mapping and change detection in a coal mining area-a case study in the Jharia coalfield[J]. Remote Sensing,1998,(19):3.
    [40] R F Daubenmire.Theuseofvegetationinassessingtheproductivityofforestland[J].BotRev,1976,42(2):115-143.
    [41] R P Neilson, D Marks.A global perspective of regional vegetation and hydrologic sensitivities fromclimatic change[J]. Vegetation Science,1994,5:715-730.
    [42] R P Shrestha. Relating soil electrical conductivity to remote sensing and other soil properties for assessingsoil salinity in northeast Thailand[J]. Land Degradation&Development,2006,17(6):677-689.
    [43] Ruimy, B Saugier. Methodology for the estimation of terrestrial net primary production from remotelysensed data[J]. Journal of Geophysical Research,1994,99(3):5263-5283.
    [44] S G Bajwa, L F Tian. Soil fertility characterization inagricultural fields using hyperspectral remotesensing[J]. Transactions of the Asae,2005,48(6):2399-2406.
    [45] S Q Wang, H Q Tian, J Y Uu, et al. Pattern and Change of Soil Organic Carbon Storage in China:1960s-1980s[J].Tellus,2003,55B:416-427.
    [46] S Running, J C Coughlan.A general model of forest ecosystem processes for regional applications:Hydrologic balance, canopy gas exchange and primary production processes[J]. Ecology Modeling,1988,42:125-154.
    [47] S T A Pickett, P S White. The ecology of natural disturbance and patch dynamics[M]. USA:AcademicPress,1985.
    [48] S T Daughtry, P. C. Doraiswamy, E. R. Hunt etc.. Remote sensing of crop residue cover and soil tillageintensity[J]. Soil&Tillage Research,2006,91(1-2):101-108.
    [49] T Ishida, S Itagaki, Y Sasaki. The utilization and exploitation of unused mountain resources in RobsnCounty[J]. Soil Science Society of America Journal,2003,67(1):190-198.
    [50] T Selige, J Bohner,U Schmidhalter. High resolution topsoil mapping using hyperspectral image and fielddata in multivariate regression modeling procedures[J]. Geoderma,2006,136(1-2):235-244.
    [51] T zeng, K S Chen. A Dynamic learing Neural Network for Remote sensing Application[J]. Geosi RemoteSensing,1994,32(5):11994096-1102.
    [52] W Chang, D A Laird,G R Hurburgh. Influence of soil moisture on near-infrared reflectance spectro-scopicmeasurement of soil properties[J]. Soil Science,2005,170(4):244-255.
    [53] W H Carmen.ForestsitequalityevaluationintheUnitedStates[J].Adv Agron,1975,27:207-269.
    [54] W J Parton, D S Schimel, C V Cole, et al.Analysis of factors controlling soil organic matter levels inGreat Planins grasslands[J]. Soil Science Society of America Journal,1987,51:173-1179.
    [55] W Killiam.Site classification system used in forestry[J]. Processing of the Word shopon Land Evaluationfororestry,1981:134-151.
    [56] W N Adger.Vulnerability[J].GlobalEnvironmentalChange,2006,16:268-281.
    [57] Y Ge, J A Thomasson. Wavelet incorporated spectral analysis for soil property determination[J].Transactions of the Asabe,2006,49(4):1193-1201.
    [58] Z Huang,B J Turner, J Stephen,et al.Eastimating foliage nitrogen concentration from HYMAP datausingcontinuum removal analysis[J].Remote Sensing of Environment,2004,93:l8-29.
    [59] Z Uchijima, H Seino. Agroclimatic evaluation of net primary productivity of nature vegetation.(1)Chikugo model for evaluating net primary productivity[J]. Journal of Agriculture Meteorlogy,1985,40:343-352.
    [60]白淑英,张树文,宝音等.遥感和GIS在土地适宜性评价研究中的应用——以呼和浩特武川县为例[J].水土保持学报,2003,17(6):18-22.
    [61]蔡海生,陈美球,赵小敏.脆弱生态环境脆弱度评价研究进展[J].江西农业大学学报.2003,25(2):270-275.
    [62]曹榕彬.基于GIS技术的福建省林地适宜性评价[D].福建农林大学硕士学位论文,2005.
    [63]曾春阳,唐代生,唐嘉锴.森林立地指数的地统计学空间分析[J].生态学报,2010,30(13):3465-3471.
    [64]曾秋麟.用气候主导因子宏观控制杉木立地质量[J].中南林学院学报,1990,10(1):59-64.
    [65]常晓林,张美丽,杨海云,等.基于联系熵的围岩稳定性评价研究[J].岩土力学,2010,31(1):99-101.
    [66]陈昌雄.天然常绿阔叶林生长潜力及择伐经营研究[D].南京林业大学博士学位论文,2005.
    [67]陈楚莹,张家武.改善杉木人工林林地质量和提高生产力的研究[J].应用生态学报,1990,1(2):97-106.
    [68]陈芳,魏怀东,丁峰,等.基于NDVI的黄土丘陵沟壑区退耕还林还草监测及效果评价——以定西市安定区为例[J].西北林学院学报,2008,23(1):50-53.
    [69]陈国荣.沿海防护林建设防护效益的遥感监测研究[D].福建农林大学博士学位论文,2010.
    [70]陈龙池,汪思龙,陈楚莹.杉木人工林衰退机理探讨[J].应用生态学报,2004,15(10):1953-1957.
    [71]陈谋询.我国21世纪森林经理发展趋势分析[J].华东森林经理,2001,15(2):1-5.
    [72]陈荣淋,曾志兴.地下工程围岩稳定性评价的熵权系数法[J].华侨大学学报(自然科学版),2008,29(3):443-446.
    [73]陈松林.基于GIS的荒地资源适宜性评价[J].福建地理,2001,16(1):24-32.
    [74]程东幸,刘大安.基于安全熵的边坡稳定性分析[J].工程地质学报,2010,18(6):851-856.
    [75]储燕宁,孙权,纪立东.农牧交错带退化土壤的质量指标[J].宁夏农学报,2003,24(4):3-7.
    [76]戴全厚,刘明义,王跃邦,等.东北低山丘陵区土地适宜性评价与潜力分析[J].水土保持通报,2003,23(1):27-31.
    [77]但新球.论林地持续经营[J].中南林业调查规划,1996,15(2):43-46.
    [78]党安荣,王晓栋,陈晓蜂,等.ERDAS IMAGE遥感图像处理方法[M].北京:清华大学出版社,2003.
    [79]第宝锋,杨忠,艾南山,等.基于RS与GIS的金沙江干热河谷区退化生态系统评价—以云南省元谋县为例[J].地理科学,2005.25(4):484-490.
    [80]丁国盛,李涛.SPSS统计教程——从研究设计到数据分析[M].北京:机械工业出版社,2009.
    [81]樊志全.看国外地籍如何管理[J].中国国土资源报,2001,(9):9-12.
    [82]范少辉,马祥庆,陈绍栓,等.多代杉木人工林生长发育效应的研究[J].林业科学,2000,36(4):9-15.
    [83]范少辉,沈国舫,俞新妥,等.人工林的地力维持与营养管理[J].林业科学研究,1996,9(专刊):50-55.
    [84]范少辉,盛炜彤,俞新妥,等.人工林培育与地力衰退[J].林业科学研究,1996,9(专刊):18-25.
    [85]范小洪,徐东.森林立地分类及立地质量评价[J].四川林业科技,1995,16(2):61-64.
    [86]方奇.杉木连栽对土壤肥力及其林木生长的影响[J].林业科学,1987,23(4):389-397.
    [87]冯剑峰,刘高焕,陈述彭,等.陆地生态系统第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369-378.
    [88]付成华,陈胜宏.基于突变理论的地下工程洞室围岩失稳判据研究[J].岩土力学,2008,29(1):167-172.
    [89]高洪亮,贾炜玮.落叶松人工林地位指数级导向曲线模型的研究[J].林业科技情报,2009,41(1):20-22.
    [90]高科,半干旱丘陵沟壑区宜林地资源适宜性评价研究——以凉城县为例[J],内蒙古农业大学学报(自然科学版),2005,26(2):1-4.
    [91]郭凤鸣.层次分析法计算表的设计与应用[J].系统工程,1999,17(5):77-80.
    [92]郭立新.土地利用/覆盖变化及其对土壤侵蚀过程的影响[J].地理科学进展,2003,6(2):31-32.
    [93]郭旭东,邱扬,连纲,等.基于“压力一状态一响应”框架的县级土地质量评价指标研究[J].地理科学,2005,25(5):579-584.
    [94]郭志华,彭少麟,王伯荪.基于GIS和RS的广东陆地植被生产力及其时空格局[J].生态学报,2001,21(9):1444-1450.
    [95]国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理,2010,(1):1-8.
    [96]郝占庆,于德永,熊在平,等.长白山典型林区森林资源利用适宜性分析[J].应用生态学报,2004,15(10):1755-1759.
    [97]何挺,王静,林宗坚.土壤有机质光谱特征研究[J].武汉大学学报(信息科学版),2006,31(11):975-979
    [98]洪伟,吴承祯,彭赛芬.福建省森林植被潜在生产力的估算及其分析[J].农业系统科学与综合研究,1999,15(1):48-53.
    [99]侯文广,江聪世,熊庆文,等.基于GIS的土壤质量评价研究[J].武汉大学学报,2003,28(1):60-64.
    [100]胡宝清.土地资源适宜性评价方法与应用[J].广西师院学报,1999,16(1):24-32.
    [101]黄家荣.森林经理学科与现代林业建设[J].中国林业教育,2010,28(1):17-20.
    [102]黄木顺,邓康伟.香港、新加坡地籍制度及其特点[J].中外房地产导报,2003,(22):45-46.
    [103]黄淑芳.福建省脆弱生态环境评价[D].福建师范大学硕士学位论文,2003.
    [104]黄维友.基于GIS技术的闽江流域生态脆弱性分析研究[D].福建农林大学专业硕士学位论文,2006.
    [105]蒋有绪.海南岛热带土地的退化问题.见:盛炜彤主编.人工林地力衰退研究[M].北京:中国科学出版社,1992:11-14.
    [106]蒋有绪.森林可持续经营与林业的可持续发展[J].世界林业研究,2001,14(2):1-8.
    [107]解宏图,付时丰,张旭,等.东土壤有机质稳定性特征与影响因子研究综述[J].土壤通报,2003,34(5):459-462.
    [108]解运杰,刘凤飞,白建宏.基于GIS技术的黑龙江省典型土壤有效土层厚度调查研究[J].水土保持研究,2005,12(6):251-253.
    [109]赖日文,刘健,余坤勇,等.基于遥感和GIS的森林生产力空间格局与分异[J].福建林学院学报,2007,27(4):360-364.
    [110]赖日文,刘健,余坤勇.闽江流域森林生产力遥感空间分区[J].福建农林大学学报(自然科学版),2008,37(5):491-495.
    [111]赖日文.基于RS与GIS技术闽江流域森林生产力和森林资源利用评价研究[D].北京林业大学博士学位论文,2007.
    [112]赖挺.四川巨桉人工林立地分类研究[D].四川农业大学硕士学位论文,2005.
    [113]郎奎健,唐守正.IBMPC系列程序集——数理统计调查规划经营管理[M].北京:中国林业出版社,1987.
    [114]李百红,赵庚星,秦元伟,等.黄河三角洲滨海盐碱退化土地变化遥感监测研究[J].江西农业大学学报,2009,31(6):1166-1170.
    [115]李博文,张德全,李涛,等.生态系统生产力与其熵变线性关系的初步研究[J].防护林科技,2002,(3):17-19.
    [116]李辉霞,刘淑珍.基于NDVI的西藏自治区草地退化评价模型[J].山地学报,2003,sp(1):69-71.
    [117]李慧明.熵律、生态平衡与环境资源合理利用[J].南方经济研究,1999,(4):7-12.
    [118]李金兵.资源熵视角企业复杂系统可持续发展研究[D].南京理工大学博士学位论文,2009.
    [119]李静.俄罗斯联邦国家地籍管理体系的建立及借鉴意义[J].资源管理,2005,(9):7-15.
    [120]林大仪.土壤学实验指导[M].中国林业出版社,2004.
    [121]林协,洪利兴,杜国坚.杉木连载林地质量评价的初步研究.见:盛炜彤主编.人工林地力衰退研究[M].北京:中国科学出版社,1992:267-275.
    [122]林业部调查设计局.大兴安岭森林综合调查报告(数表、林型、土壤卷),1954.
    [123]林业部调查设计局.长白山森林调查报告(数表、林型、土壤卷),1955.
    [124]林业部调查设计局.长白山西南部次生林立地分类及经营技术调查报告,1963.
    [125]刘健.基于3S技术闽江流域生态公益林体系高效空间配置研究[D].北京林业大学博士学位论文,2006.
    [126]刘宁,李新举,赵庚星,等.黄河三角洲土地利用结构信息熵分异规律研究[J].国土资源科技管理,2006,(2):70-73.
    [127]刘伍,李满春,刘永学,等.基于矢栅混合数据模型的土地适宜性评价研究[J].长江流域资源与环境,2006,15(3):320-324.
    [128]刘占锋,傅伯杰,刘国华.土壤质量与土壤质量指标及其评价[J].生态学报,2006,26(3):901-1003.
    [129]刘长征,李津京.突变级数法仿真在煤矿瓦斯风险评价中的应用[J].计算机工程与应用,2011,47(6):231-234.
    [130]楼一平,盛炜彤.人工林长期立地生产力研究概述[J].世界林业研究,1998,11(5):18-25.
    [131]卢伟,高峰,周泽民.采伐方式对森林土壤理化性质的影响[J].森林工程,2001,17(3):17-18.
    [132]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:228-233.
    [133]骆期邦,吴志德,肖永林.立地质量的树种代换评价研究[J].林业科学,1989,25(5):410-419.
    [134]马祥庆,黄宝龙.人工林地力衰退研究综述[J].南京林业大学学报,1997,21(2):77-82.
    [135]马祥庆,叶世坚,陈绍栓.轮伐期对杉木人工林地力维护的影响[J].林业科学,2000,36(6):47-52.
    [136]马祥庆.杉木人工林连栽生产力下降研究进展[J].福建林学院学报,2011,21(4):380-384.
    [137]马有标,李杰,周来平.内蒙古大兴安岭林区地位级指数表的编制[J].内蒙古林业调查设计,2010,33(3):30-37.
    [138]毛培利,曹帮华,田文侠,等.人工林生产力年龄效应及衰退机理研究进展[J].生态学报,2003,23(11):3208-3214.
    [139]南方十四省(区)杉协组.杉木立地条件的系统研究及应用[J].林业科学,1983,19(3):46-254.
    [140]南方十四省(区)杉协组.杉木产区立地类型划分的研究[J].林业科学,1981,17(2):37-45.
    [141]潘湘海,李淑梅.塞罕坝机械林场立地类型划分的研究[J].河北林业科技,2000,(3):4-5.
    [142]乔治.东北林草交错区土地利用对生态脆弱性的影响评价[D].山东师范大学硕士学位论文,2008.
    [143]冉圣宏,金建君,薛纪渝.脆弱生态区评价的理论与方法[J].自然资源学报,2002,(1):117-122.
    [144]沈芳芳,袁颖红,樊后保,等.氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J].生态学报,2012,32(2):517-527.
    [145]沈珍瑶,杨志峰,曹瑜.环境脆弱性研究述评[J].地质科技情报,2003,22(3):91-94.
    [146]盛炜彤,范少辉,马祥庆,等.杉木人工林长期生产力保持机制研究[M].北京:科学出版社,2005.
    [147]盛炜彤,杨承栋,张家城,等.杉木人工林的土壤性质变化[J].林业科学研究,2003,16(4):377-385.
    [148]盛炜彤.人工林地力衰退研究[M].北京:中国科学出版社,1992.
    [149]石杰红,王金安.数值模拟与熵突变综合分析下地下工程围岩稳定性[J].金属矿山,2009,(3):14-18.
    [150]苏涛,王鹏新,刘翔舸.基于熵值组合预测和多时相遥感的春玉米估产[J].农业机械学报,2011,42(1):186-192.
    [151]苏祖荣.山地森林资源利用的适度研究[J].福建林业科技,2000,27(2):62-66.
    [152]孙武,李森.土地退化评价与监测技术路线的研究[J].地理科学,2000,20(1):92-96.
    [153]汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    [154]陶国祥.森林系统立地学的研究[M].昆明:云南科技出版社,2005.
    [155]汪善勤,舒宁.土壤定量遥感技术研究进展[J].遥感信息,2007,(6):89-93.
    [156]王静,何挺,李玉环.基于高光谱遥感技术的土地质量信息挖掘研究[J].遥感学报,2005,9(4):438-445.
    [157]王俊,孙晶,杨新军,等.基于NDVI的社会一生态系统多尺度干扰分析—以甘肃省榆中县为例[J].生态学报,2009,29(3):1622-1627.
    [158]王璐.SPSS统计分析基础、应用与实践[D].北京:化学工业出版社,2010.
    [159]王让会,宋郁东.新疆塔里木河流域生态脆弱带的环境质量综合评价[J].环境科学,2001,(3):7-11.
    [160]王瑞燕.县域尺度环境脆弱性演变及其土地利用覆盖效应[D].山东农业大学博士论文,2009.
    [161]王晓娇,陈英,齐鹏,等.基于信息熵的张掖市土地利用结构分析及其灰色预测[J].干旱区研究,2011,28(1):92-97.
    [162]王永安,王可安.关干中国森林立地分类与中国森林立地类型两项研究的特征及其意义[J].中南林业调查规划,1996,15(3):46-49.
    [163]王永昌,张金池.基于遥感技术的云台山立地分类及质量评价[J].南京林业大学学报(自然科学版),2007,31(1):85-89.
    [164]文正敏.广西巴马县土地适宜性评价模式探讨[J].桂林工学院学报,2001,21(4):377-381.
    [165]吴华.多源数据支持下的生态环境脆弱性定量遥感研究[D],福建师范大学硕士论文,2005.
    [166]吴蔚东,张桃林,高超,等.红壤地区杉木人工林土壤肥力质量性状的演变[J].土壤学报,2001,38(3):285-294.
    [167]吴文斌.基于遥感和GIS的土地适宜性评价研究[D].中国农业科学院硕士论文,2005.
    [168]吴咱昭,田庆久,季峻峰,等.土壤光学遥感的理论、方法及应用[J].遥感信息2003,(1):40-47.
    [169]伍世代.GIS支持的福清市多目标土地适宜性评价[J].福建师范大学学报,2000,16(3):92-96.
    [170]肖华英,许接眉,杨瑞仙,等.福建省永安市商品林林地生产力现状的调查研究[J].华东森林经理,2002,16(4):9-11.
    [171]刑世和.基于地理信息系统技术福建省林地资源评价研究[D].福建农林大学博士学位论文,2006:72-127.
    [172]邢世和,韦红.基于GIS技术的区域林地生产力估测与分区[J].山地学报,2006,24(4):473-479.
    [173]邢世和.土地资源与利用规划[M].厦门:厦门大学出版社,2000.
    [174]徐化成.关于人工林的地力衰退问题[J].世界林业研究,1992,5(1):66-71.
    [175]许宁,郭旭东,洪友堂,等.基于文献分析的土地退化评价指标研究[J].地理科学,2008,28(3):425-430.
    [176]许树柏.实用决策方法-层次分析法原理[M].天津:天津大学出版社,1986.6-22.
    [177]闫志平,李昕,张俊杰.郑州森林生态城林地适宜性评价[J].河南农业大学学报,2006,40(3):246-249.
    [178]杨承栋,张小泉,焦如珍,等.杉木连栽地土壤组成、结构、性质变化及其对杉木生长的影响[J].林业科学,1996,32(2):175-181.
    [179]杨丽霞,潘剑君,苑韶峰.森林土壤有机碳库组分定量化研究[J].土壤通报,2006,37(2):241-243.
    [180]杨双保,潘德乾.小陇山林区林地立地类型划分与林地质量评价的研究[J].甘肃林业科技,2000,25(4):20-26.
    [181]杨文姬,王秀茹.国内立地质量评价研究浅析[J].水土保持研究,2004,11(3):289-292.
    [182]杨玉盛,黄宝龙,何宗明,等.不同栽植代数29年生杉木生长规律的研究[J].林业科学,1999,35(1):32-36.
    [183]杨元梁,黄祖泰,丁艺,等.林地可持续经营模式评价的研究[J].林业科技情报,1997,(4):3-9.
    [184]叶充,胡庭兴,黄从德,等.我国人工林地力衰退与维护研究[J].四川林业科技,2005,26(4):50-55.
    [185]游先祥.遥感原理及在资源环境中的应用[M].北京,中国林业出版社,2003.
    [186]于德永,郝占庆,潘耀忠,等.长白山典型林区森林资源利用状况评价[J].生态学报,2004,24(12):2940-2945.
    [187]余坤勇,刘健,黄维友,等.基于GIS技术的闽江流域生态脆弱性分析[J].江西农业大学学报(自然科学版),2009,31(3):568-573.
    [188]余坤勇,刘健,赖玫妃,等.基于水土保持的富屯溪流域森林资源开发利用适宜性评价[J].西北林学院学报,2009,24(5):176-179.
    [189]余坤勇,刘健,施聪智,等.基于RS技术的沿海防护林防风固沙效益研究[J].南京林业大学学报,2010,34(1):80-84.
    [190]余坤勇,刘健,赖日文,等.基于3S技术的闽江流域水土流失定量评价[J].中南林业科技大学学报(自然科学版,2009,29(4):54-59.
    [191]余坤勇,刘健,赖日文,等.基于3S技术闽江流域杉木商品林林地质量测定研究[J].福建林学院,2009,29(4):326-331.
    [192]余坤勇,刘健,赖日文,等.基于RS和GIS林地植被生产力估测研究[J].安徽农业科学,2009,37(29):14327-14329.
    [193]余坤勇,刘健,赖日文,等.基于生态脆弱性的营林退化区测定技术研究[C].第二届中国林业学术大会—S3森林经理与林业信息化的新使命论文集,2009.
    [194]余坤勇,刘健,缪丽娟,等.基于地物特征的遥感图像融合效果[J].福建农林大学学报(自然科学版),2010,39(2):196-201.
    [195]余坤勇,刘健,施聪智,等.基于土壤有机质含量流失的沿海防护林水土保持效益研究[J].北华大学学报(自然科学版),2009,10(4):362-367.
    [196]余坤勇,刘健,许章华,等.基于RS退化林地监测技术研究[J].东北林业大学学报(自然科学版),2010,38(1):60-63.
    [197]余坤勇,刘健,许章华,等.闽江流域生态服务功能的遥感监测研究[J].西南大学学报,2009,31(11):72-80.
    [198]余坤勇,刘健,许章华,等.南方地区竹资源专题信息提取研究[J].遥感技术与应用,2009,24(4):449-455.
    [199]俞新妥,张其水.杉木连栽林地土壤生化特性及土壤肥力的研究[J].福建林学院学报,1989,9(3):263-271.
    [200]俞新妥.杉木人工林地力和养分循环研究进展[J].福建林学院学报,1992,12(3):264-275.
    [201]俞新妥.中国杉木90年代的研究进展Ⅱ.杉木造林和经营的研究综述[J].福建林学院学报,2000,20(2):179-188.
    [202]俞新妥.中国杉木研究[J].福建林学院学报,1988,8(3):203-220.
    [203]俞新妥.中国杉木研究进展(2000-2005)II:杉木遗传育种、森林培育、经营、计测、木材加工利用的研究综述[J].福建林学院学报,2006,26(3):266-274.
    [204]俞元春,邓西海,盛炜彤,等.杉木连载对土壤物理性质的影响[J].南京林业大学学报,2000,24(6):36-40.
    [205]岳曼,常庆瑞,王飞.土壤有机碳储量研究进展[J].土壤通报,2008,39(5):1173-1178.
    [206]臧淑英,张冬有,王立明.GIS支持下的森林资源可持续利用规划[J].经济地理,2000,20(4):101-104.
    [207]张佳华,延晓冬,池宏康.植被碳同化估测与遥感信息的关系研究[J].中国生态农业学报,2007,11(3):5-8.
    [208]张三焕,金爱芬,田允暂,等.图们江下游地区林地资源适宜性评价及持续利用[J].延边大学学报,2001,27(1):51-56.
    [209]张铁砚.数学模型应用的研究一论立地指数曲线编制中数学模型的选择[J].辽宁林业科技,1980,(1):35-44.
    [210]张万儒,盛炜彤,蒋有绪.中国森林立地分类系统[J].林业科学研究,1992,5(3):251-262.
    [211]张文娟,王绍强,常华.遥感在土壤碳储量估算中的应用[J].地理科学进展,2005,24(3):118-127.
    [212]张宪武.杉木连栽与土壤中毒[A].中国科学院林业土壤研究所.杉木人工林生态学研究论文集[C].1980:143-151.
    [213]张晓丽,游先祥.应用“3S”技术进行北京市森林立地分类和立地质量评价的研究[J].遥感学报,1998,2(4):292-297.
    [214]张泱.维护生态环境的林地管理措施[J].森林工程,2004,20(3):1-2.
    [215]赵庚.森林采伐更新作业与林地生产力的维护[J].森林工程,1999,15(4):5-7.
    [216]赵桂久,刘燕华,赵名茶.生态环境综合整治与恢复技术研究—退化生态综合整治、恢复与重建示范工程技术研究[M].北京:北京科学技术出版社,1995.
    [217]赵焕巨.层次分析法[M].北京:科学出版社,1986.
    [218]赵其国,刘良梧.人类活动与土地退化[A].中国科学技术协会工作部.中国土地退化防治研究[C].北京:中国科学技术出版社,1990:1-6.
    [219]赵跃龙,张玲娟.脆弱生态环境定量评价方法的研究[J].地理科学.1998,18(1):73-78.
    [220]郑德祥,陈平留,张连金.人工神经网络方法在林地经济区划中的应用[J].福建林学院学报,2006,26(3):206-209.
    [221]郑韶明.基于生态脆弱性的顺昌县公益林持续经营研究[D].福建农林大学专业硕士学位论文,2010.
    [222]郑宇,胡业翠,刘彦随,等.山东省土地适宜空间分析及其优化配置研究[J].农业工程学报,2005,21(2):60-65.
    [223]钟杰.永安市水土流失现状及防治区划思路[J].亚热带水土保持,2006,18(4):14327-14329.
    [224]周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究[J].植物生态学报,1996,20(1):11-19.
    [225]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    [226]周涛,史培军,罗巾英.基于遥感与碳循环过程模型估算土壤有机碳储量[J].遥感学报,2007,11(1):127-136.
    [227]朱连奇,朱小立,李秀霞.土壤有机碳研究进展[J].河南大学学报(自然科学版),2006,36(3):72-75.
    [228]庄晨辉,张惠光,徐文辉.福建省用材林林地分等技术研究[J].林业勘察设计(福建),2006,(1),1-6.
    [229]庄作峰.多代经营与人工林林地生产力[J].陕西林业科技,1997,(2):47-51.
    [230]邹亚荣,欧阳二明,陈炳贵.基于GIS的FUZZY在土地评价中的应用研究[J].国土与自然资源研究,2000,4(2):46-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700