水泥土桩体加固不同密实度液化砂土的振动台试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饱和砂土在地震作用下易产生液化,对建筑物或构筑物产生破坏作用。对于如何预防砂土液化也成了岩土工程界的一个重要研究问题。水泥土桩是一种应用广泛的加固软土的处理措施,用水泥土桩加固液化砂土,目前被一些实际工程所采用,但对其抗液化性能和加固机理等方面的研究较少,在模拟地震荷载作用下,对水泥土桩加固模型地基的液化特征研究就更少了。
     鉴于此,本文依托国家自然科学基金资助项目“桩体加固液化砂土作用机理的试验研究”(项目号50578104),主要进行了以下三方面工作:从太原市漪汾桥北约5公里处取土约1吨,筛选试验用的砂土,制备试验用的水泥土桩;制备三种不同密实度(1.45g/cm3、1.55g/cm3、1.65g/cm3)的模型地基;对未加固模型地基和水泥土桩体加固模型地基进行振动台试验,对试验中所得到的孔隙水压力、孔隙水压力比、承压板的沉降量等资料进行分析。
     试验结果表明:未加固地基在振动过程中,从浅层到深层地基的超静孔压比都在1.1左右,表明土体全部液化,深层的孔压比大于浅层和中部的孔压比,说明地基的下部的液化程度比下部大;从振动过程中分析得出,浅层和中部的孔压比比深层的先达到峰值,说明液化先从地基上部开始逐渐发展到深部。未加固模型地基随着密实度的增大,同一位置的孔压比有减小的趋势,即抗液化能力有增大的趋势。
     水泥土桩加固地基在振动过程中,在同一密度情况下,超静孔隙水压力随着深度的增加而增大。孔压比也随着深度的增加而增大,进而液化的趋势随深度的增加而增大。表明液化先在下部发生;在不同密度情况下,水泥土桩加固地基在振动过程中,随着密度的增大,测量位置的孔压比有所减小,即随着地基密度的增大,抗液化能力有所提高。
     承压板的沉降量随着密度的增加而减小,说明有承台作用的加固液化土体具有明显的抗液化效果;在同一密度情况下,有承压台的水泥土桩加固地基的抗液化能力强于比无承台的加固地基的抗液化能力。
The saturated sandy soil is easy to have the trend of liquefication under the earthquake force, which has the destruction to the building or the construction.the prevention of sandy soil liquefaction has also become an important subject in geotechnical engineering.soil-cement pile has been widely used in soft-soil ground. soil-cement pile is carried out consolidating on liquefiable ground by a few practical engineering, but studies on anti-liquefaction mechanism of soil-cement pile and reinforcement mechanism is rare.The study on the liquefaction characteristics of saturated sand ground improved by soil -cement pile under under modeling the earthquake force is poorer.
     In response to these circumstances ,under the support of National Science Fund Project“The experimental study on mechanism of piles improving liquefiable soil”(No.50578104), The following three parts of the experimental study have been made :soil used in the experiment is from Yi Fen Bridge north about 5 kilometers and soil-cement piles have been made; Three different types of dry densities (1.45g/cm3,1.55g/cm3,1.65g/cm3) model ground have been made;Pore water pressure、pore water pressure ratio and bearing plate settlement are analyzed in non-improved and improved soil.
     The experimental results indicate that, In non-improved soil, the excess pore water pressure ratio reached nearly the same value of 1.1 in all the three layers, so the entire layer liquefied. However, the excess pore water pressure ratio in the deeper layer was a little smaller than in the middle and shallow layers. Among the liquefaction levels of the three layers, the deep layer was the highest. The time of excess pore water pressure reached peak in the deeper layer was longest, so the liquefaction region firstly appeared in shallow layer, then penetrated to the deeper. At last, the entire layer liquefied.with the increase of the ground density ,the pore water pressure of the same location become smaller ,it is said that the ability of anti-liquefaction is improved;
     In the vibration of soil-cement pile under the same density, the excess pore water pressure ratio and the excess pore water pressure are improved with increasing depth.it is said that the trend of liquefaction is increased with increasing depth. Liquefaction occurred at the lower part ;In the process of vibration of soil-cement pile ground in different density , As the density increases, the pore pressure has been reduced in the same measurement location, that is to say ,as the ground density increased, the ability of anti-liquefaction is improved.
     With the increase in density, the settlement of bearing plates is reduced,which has a clear effect of anti-liquefaction; In the same density, the ability of anti-liquefaction of soil-cement pile with bearing plate is stronger than the anti-liquefaction capacity of the ground without bearing plate.
引文
[1]闵子群,中国历史强震目录(公元前23世纪~公元1911年)[M].北京:地震出版社,1995.
    [2]杨庆陶.桩体加固液化砂土的振动台试验研究[D].太原理工大学,2008.
    [3]吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报,1998,(3):125-131.
    [4] A Casagrande,Characteristics of cohesionless soils affecting the stability of slopes and earthfills[J]. Journal of the Boston Society of Civil Engineers,1936,23(1):257-276.
    [5] Seed H B,Lee K L,Liquefaction of saturated sands during cyclic loading [J]. Journal of the Soil Mechanics and Foundation Division,ASCE,1966,(6):105-134.
    [6] Huang W X,Investigation on stability of saturated soil foundation and slope against liquefaction [A]//Proceedings of 5th International Conference of Soil Mechanics and Foundation Engineering [C]. 1961.
    [7]汪闻韶.饱和砂土振动孔隙水压力的产生、扩散和消散,中国土木工程学会第一届土力学及基础工程学术会议论文集[M]. 1964.
    [8]汪闻韶.土的动强度和液化特性[M].北京:中国电力出版社,1997.
    [9] Seed H B,Idriss I M,Arango I,Evaluation of liquefaction potential using field performance data [J]. Journal of Geotechnical,Engineering,ASCE,1983,(3):458-482.
    [10] Cadagrande A,Liquefaction and cyclic deformation of sands,a critical review [A]//Proceedings of 5th Pan-American Conference on Soil Mechanics and Foundation Engineering[C]. Buenos Aires,Argentina,1975.
    [11] Castro G,Liquefaction and cyclic mobility of saturated sands[J]. Journal of Geotechnical Engineering,ASCE,1975,(6):551-569.
    [12] Castro G,Poulous S J,Factors affecting liquefaction and cyclic mobility[J]. Journal of Geotechnical Engineering,ASCE,1977,(6):501-516.
    [13] Poulous S J,Castro G,France J W,Liquefaction evaluation procedure[J],Journal of Geotechnical Engineering,ASCE,1985,(6):772-791.
    [14] Castro G,Seed R B,Keller T O,Steady-state strength analysis of lower San Fernandodam slide [J]. Journal of Geotechnical Engineering,ASCE,1992,(3):406-427.
    [15] Ishihara K,Liquefaction and flow failure during earthquake[J]. Geotechnique,1993,(3):351-415.
    [16] Bazier,Dobry R,Residual strength and large-deformation potential of loose silty sands [J]. Journal of Geotechnical Engineering,ASCE,1995,(6):896-906.
    [17] Pescock W H,Seed H B,Sand liquefaction under cyclic loading simple shear conditions[J]. Journal of Mechanics and Foundations,ASCE,1968,(3):689-708.
    [18] Seed H B,driss I M,Simplified procedure for evaluating soil liquefaction potential [J],Journal of Geotechnical Engineering,ASCE,1971,(9):1249-1273.
    [19]《建筑抗震设计规范》(GB50011-2001),北京:中国建筑工业出版社,2001.
    [20] Lee K L,Seed H B,Cyclic stress conditions causing liquefaction of sand[J]. Journal of Geotechnical Engineering,ASCE,1976,(1).
    [21] Ishihara K,Yasuda S,Sand liquefaction in hollow cylinder torsion under irregular excitation[J]. Soils and Foundations,1975,(1):29-45.
    [22] Ishihara K,Soil behaviour in earthquake geotechnics[M]. Oxford:Claredon Press,1971
    [23]任文杰,苏经宇,窦远明.砂土液化判别的神经网络方法[J].河北工业大学学报, 2002, 31(2): 23-25.
    [24]马骥,傅光翮,罗国煜.基于MATLAB的BP神经网络在砂土液化评价中的应用[J].水文地质工程地质,2004(2): 54-58.
    [25]赵胜利,赵红英,刘燕.基于SOFM神经网络的砂土液化评价[J].华中科技大学学报(城市科学版), 2005, 22(2): 23-26.
    [26]李方明,陈国兴.基于BP神经网络的饱和砂土液化判别方法[J].自然灾害学报, 2005, 14(2): 108-114.
    [27]潘健,刘利艳,林慧常.基于BP神经网络的砂土液化影响因素的综合评估[J].华南理工大学学报(自然科学版),2006, 34(11): 76-8.
    [28]赵洪波,冯夏庭,尹顺德.基于支持向量机的岩体工程分级[J].岩土力学,2OO2, 23(6): 698-701.
    [29]师旭超,范量,韩阳.基于支持向量机方法的砂土地震液化分析[J].河南科技大学学报(自然科学版),2004,25(3): 74-77.
    [30]陈荣淋,林建华,黄群贤.支持向量机在砂土液化预测中的应用研究[J].中国地质灾害与防治学报, 2005, 16(2): 15-19.
    [31]夏建中,罗战友,龚晓南等.基于支持向量机的砂土液化预测模型[J].岩石力学与工程学报,2005, 24(22): 4139-4144.
    [32]周仲景,熊传祥.基于支持向量机的砂土地震液化判别模型[J].岩土工程界,2006, 9(12): 74-76.
    [33]谢君斐.关于修改抗震审计规范砂土液化判别规定的综述和建议[J],地震工程与工程振动,1984,(2):95-126.
    [34]陈国兴,张克绪,谢君斐.液化判别的可靠性研究[J],地震工程与工程振动,1991,(2):85-96.
    [35]张建民.水平地基液化后大变形对桩基的影响[J].建筑结构学报, 2001, 22(5): 75-78.
    [36] FinnW D L. Post-liquefaction flow deformation[C] //In: Pak,Yamamura, eds. SoilDynamics and Liquefaction 2000.ASCE Geotechnical Special Publication, 2000: 108-122.
    [37]刘惠珊,徐风萍,李鹏程.液化引起的地面大位移对工程的影响及研究现状[J].工程抗震,1997(2): 21-26.
    [38] Arulanandan K, Li X, Sivathasan K.Numerical simulation of liquefaction- induced deformations[ J] . Geotech and Geoenviron Engrg, 2000, 7(126): 657-666.
    [39] Yasuda S,NagaseH,KikuH, eta1.Themechanism and a simplified procedure for the analysis ofpermanentground displacementdue to liquefac-tion[J].Soilsand Foundations, 1992, 32(1): 149-160.
    [40]徐斌,孔宪京,邹德高等.饱和砂砾料液化后应力与变形特性试验研究[J].岩土工程学报, 2007,29(1): 103-106.
    [41]张会荣,刘松玉.地震液化引起的地面大变形对桥梁桩基的影响研究综述[J].防灾减灾工程学报, 2004, 24(3): 350-354.
    [42] Proceedings of13thWorld Conference on Earthquake Engineering[C],Vancouver, Canada, CD-ROM, 2004.
    [43]邹坚.深搅桩复合地基的计算理论及其应用研究[D].河海大学,2001.
    [44]李江莉.喷粉搅拌桩桩体质量检测方法探讨[J].甘肃科技2002,(5):36-37.
    [45]刘孝江.水泥搅拌桩和塑料排水板联合处理软基的试验研究和工程应用[D].南京林业大学硕士研究生学位论文,2005.
    [46]高贵才,申京涛.粉喷桩对桩间土性状的影响[J].岩土力学,1996,17(2):70—75.
    [47]邵卫建,熊巨华,杨敏.挤密砂桩和水泥搅拌桩处理可液化粉土层的试验与应用[J].地基基础,1997,3:36-42.
    [48] Shui-long Shen,Behavior of deep mixing columns in soft clay ground[D]. Saga University(in japanese),1998.
    [49]曲文,宁勇.水泥土搅拌桩在蚌埠市地基处理中的研究与应用[J].水利水电技术,1998,29(5):19-22.
    [50]程礼来,郜云峰,苗先文等.水泥粉体深层喷射搅拌桩复合地基处理及其效果[J].河南地质,1998,16(1):45—52.
    [51]姚文斌,王书斋,郜云峰.粉喷桩处理液化地基的作用机理、设计要点和检测方法[J].世界地震工程,2002,18(1):163—167.
    [52]鲁明.深层搅拌桩在粉砂土地基处理中的应用[J].中山大学学报论丛,2002,22(5):205-208.
    [53] Gohl W, Finn W, Seismic Response of Single Piles in Shake Table Studies[J]. Proc. 5th Canadian Conf Earthquake Eng,Ottawa,1987:435-443.
    [54] Liu H,Chen K,Test on Behavior of Pile Foundation in Liquefiable Soils[J]. Proc 2nd Int. Conf. on Recent Advances in Geotech. Eng. and Soil Dyn., St.Louis, 1991:233-235.
    [55]石兆吉,张延军,郁寿松等.土层液化对地面运动特性的影响[J].地震工程与工程振动,1994,14(4):14-23.
    [56] Makris N., Tazoh T., Yun X.,, Fill A.,Prediction of the Measured Response of a Scaled Soil-Pile-Superstructure System[J]. Soil Dyn. Earthquake Eng.,1997:113-124.
    [57]陈跃庆,吕西林,侯建国等.有建筑物存在的软土地基液化模拟地震振动台试验研究[J].武汉大学学报:工学版,2003,36(1):59-63.
    [58]凌贤长,王臣,王志强等.自由场地液化大型振动台模型试验研究[J].地震工程与工程振动,2003,23(6):139-143.
    [59]孟上九,刘汉龙,袁晓铭等.可液化地基上建筑物不均匀震陷机制的振动台试验研究[J].岩石力学与工程学报,2005,24(11):1978-1985.
    [60]苏栋,李相菘.砂土自由场地震响应的离心机试验研究[J].地震工程与工程振动, 2006, 26(2): 166-170.
    [61]冯士伦,王建华,郭金童.液化土层中桩基抗震性能振动台试验研究[J].土木工程学报, 2005, 38(7): 92-95.
    [62]闫卫泽.散体材料砂桩加固液化砂土的振动台试验研究[D].太原理工大学,2007.
    [63]郑建国.碎石桩复合地基液化判别方法的探讨[J].工程勘探,1999,2:5-7.
    [64]郑建国,姚克俭,郝增志.振动挤密碎石桩加固粉土地基试验研究[C].第三届地基处理学术讨论会论文集[A],浙江大学出版社,1992:367—374.
    [65] Shui-long Shen,Behavior of deep mixing columns in soft clay ground[D]. Saga University(in japanese),1998.
    [66]石兆吉,张延军,郁寿松等.土层液化对地面运动特性的影响[J].地震工程与工程振动,1994,14(4):14-23.
    [67] Makris N., Tazoh T., Yun X.,, Fill A.,Prediction of the Measured Response of a Scaled Soil-Pile-Superstructure System[J],Soil Dyn. Earthquake Eng.,1997:113-124.
    [68]陈跃庆,吕西林,侯建国等.有建筑物存在的软土地基液化模拟地震振动台试验研究[J].武汉大学学报:工学版,2003,36(1):59-63.
    [69]牛琪瑛,徐增杰.水泥土桩复合地基的抗液化研究[C].第17届全国结构工程学术会议论文集,2008,II:368-372.
    [70]《土工试验规程》(SL237-1999) [M].北京:中国建筑工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700