纳米CeO_2、TiO_2粒子组合物用作润滑油添加剂的摩擦学性能和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着经济的增长,我国的润滑油以及润滑油添加剂的需求量在逐年递增,而且对润滑油的品质要求也越来越高,传统意义上油溶性添加剂越来越无法满足我国工业发展的需要;另一方面人们的环保意识也在逐渐提高,传统的润滑油添加剂由于含有硫、氯、磷等污染环境的元素,所以这些添加剂也逐渐被划入淘汰者的行列。同时常规微米数量级的无机粒子在润滑油中的分散性较差,并且会对摩擦副表面造成损坏,因此也严重制约了这些添加剂的广泛应用。因此,面对这种情况,各个润滑油公司、科研机构和大中专院校都在努力寻找新的突破点。
     随着纳米技术的出现和应用,纳米润滑添加剂为解决这一难题带来了新的希望。本文选用了适当的纳米CeO_2和TiO_2粒子,经过对纳米粒子表面改性后将其加入到基础油中,并在四球磨损试验机上对纳米CeO_2、TiO_2粒子及其粒子组合物作为润滑油添加剂的摩擦学性能进行了测试,最后探讨了这些纳米粒子用作润滑油添加剂的抗磨减摩作用机理。本文主要结论如下;
     1.采用X-线衍射仪(XRD)和透射电子显微镜(TEM)测定了纳米CeO_2和TiO_2粒子的晶体结构、粒径大小和晶体形貌,测定结果为;纳米CeO_2粒子呈球形,平均粒径为10.4nm;纳米TiO_2粒子呈颗粒状,平均粒径为15.2nm。
     2.根据亲水亲油平衡值(HLB),选用了Tween-20、Tween-60、Span-20和十二烷基苯磺酸钠作为纳米CeO_2和TiO_2粒子的表面活性剂,并且按照质量比为2;2;1;1进行配制时,该复合表面活性剂对纳米CeO_2和TiO_2粒子具有较好的分散稳定效果。
     3.在磨损试验机上对纳米CeO_2、TiO_2粒子以及粒子组合物用作润滑油添加剂的摩擦学性能进行了测试,试验表明纳米粒子作为润滑油添加剂能明显提高润滑油的最大无卡咬负荷P_B值、减小磨斑直径WSD和降低摩擦因数μ。
     4.纳米CeO_2、TiO_2粒子组合物添加剂的最佳添加量为;Wt_(CeO_2);Wt_(TiO_2)=1;3,总质量分数为0.6%左右。
     5.通过对所配制润滑油油样、钢球磨斑形貌观察和实验数据的分析,可知表面活性剂将纳米CeO_2粒子和纳米TiO_2粒子包围形成了“微胶粒”,从而使纳米粒子在润滑油中得到了良好的分散,并且使得纳米润滑油稳定性相对较好;同时还发现纳米CeO_2粒子对纳米TiO_2粒子在润滑油中的团聚具有良好的抑制作用,并可以适当减少纳米TiO_2粒子的使用量。
     6.通过采用TEM分析、XRD分析、SEM分析等现代测试手段,从纳米粒子的晶体结构、晶粒大小和磨斑形貌等处着手,探讨了纳米CeO_2、TiO_2粒子用作润滑油添加剂可能的抗磨、减摩作用机理,提出了自己的观点。主要机理有;(a)“微抛光”作用机理;(b)“微滚珠”作用机理;(c)“填充修复”作用机理;(d)协同作用机理。
     本课题所开展的工作是“纳米技术在润滑油中的应用”研究领域的探索性工作,是上海市教委科研项目“纳米材料润滑油添加剂产业化应用的关键技术研究”(05FZ31)和“纳米润滑油添加剂在发动机中的应用研究”(06FZ008)中的一部分,大量的工作和验证还有待今后继续深入研究。
As the development of our economy,our country is needing more and more high quality lubricanting oils and lubricanting oil additives.The traditional oil-soluble anti-wear and friction-reducing additives which contain harmful elements such as sulfide,chlorine and phosphorus have not met the needs of development of modern industry for the poor qualities of lubricant products and rising consciousness of environment protection.So they will be fallen into disuse. The routine micron inorganic particles can抰be dispersed in the oil,and can scratch the working surfaces,so they are not be used widely.In this condition, many lubricant companies,academes and college schools are searching new breaks to meet the needs.
     As the development of nanotechnology,nano-lubricant additives will give a bright future of resolving the problems well.In this paper,nano-particles of CeO_2 and TiO_2 were selected appropriately,the surfaces of nano-particles of CeO_2 and TiO_2 were modified with surfactants,nano-lubritanting oils were prepared by putting nano-particles of CeO_2 and TiO_2 into base oil,the nano-lubricanting oils were tested on a four-ball tribotester and the anti-wear and friction-reducing mechanisms of nano-particles of CeO_2 and TiO_2 as lubricanting oil additives were studied with modern testing tools.The main conclusions are following;
     1.The crystal structure and average sizes of nano-particles of CeO_2 and TiO_2 were tested by a X-ray Diffractometer.And the morphologies and average sizes of nano-particles of CeO_2 and TiO_2 were measured with a Transmission Electron Microscope.The results indicated that nano-particles of CeO_2 whose diameters are about 10.4nm appeared as spherical powders and nano-particles of TiO_2 whose diameters are about 15.2 nm appeared as granular particles.
     2.On the basis of HLB values,suitable surfactants such as Tween-20, Tween-60,Span-20 and sodium sodecylbenzenesulfonate were selected to modify the surfaces of nano-particles of CeO_2 and TiO_2.The results indicated that nano-particles of CeO_2 and TiO_2 have the good dispersion and stability in the lubricating oils after modification when the qualitatively proportion of surfactants is 2;2;1;1.
     3.Tribological properties of nano-particles of CeO_2 and TiO_2 as lubricanting oil additives were tested on a four-ball tribotester.The results implied that nano-additives of CeO_2 and TiO_2 can improve the tribological properties of the lubricating oils by rising P_B and reducing WSD andμ.
     4.The optimal proportion of nano-additives of CeO_2 and TiO_2 as lubricanting oil additives is Wt_(CeO_2);Wt_(TiO_2)=1;3,and the content is about 0.6%。
     5.Through observing the examples of nano-lubricanting oils and the morphologies of the worn steel balls and analyzing experimental datum,the results could imply that the compound surfactants encircled the nano-particles and they formed many microcapsules in the lubricating oil,so the nano-particles of CeO_2 and TiO_2 could disperse well and not reunite again.It might also be that nano-particles of CeO_2 could restrain the reunification of nano-particles of TiO_2.
     6.By using modern testing tools,such as TEM,X-ray diffractometer and SEM, the mechanisms of anti-wear and friction-reducing of nano-particles of CeO_2 and TiO_2 as lubricanting oil additives were discussed according to crystal structures, sizes of nano-particles and the morphologies of worn steel balls.Some mechanisms could be揗inute Ball Bearing Effect Mechanism?揗inute Polishing Effect Mechanism?揊illing and Repairing Effect Mechanism ?and搕he Compound Effect Mechanism?
     This paper was a groping study of揘anometer Material抯Application in Lubricanting Technology?and it is one part of揜esearch on the Key Techniques of Industrialization of Nanometer Materials as Lubricanting Oil Additives(05FZ31)" and揜esearch on Nanometer Material抯Application in Engine Lubricanting oil (06FZ008)?of Shanghai Scientific and Technological Committee.More research works are expected to be further developed.
引文
[1]乔玉林编著.纳米微粒的润滑和自修复技术[M].北京;国防工业出版社,2005,9;2.
    [2]曹茂盛,曹传宝,徐甲强编著.纳米材料学[M].哈尔滨;哈尔滨工程大学出版社,2002,8;34-39.
    [3]张立德,牟季美编著.纳米材料和纳米结构[M].北京;化学工业出版社,2001,2;51-66.
    [4]袁哲俊编著.纳米科学与技术[M].哈尔滨;哈尔滨工业大学出版社,2005,8;9-12.
    [5]丁亚红编著.纳米;革命与颠覆的时代[M].北京;昆仑出版社,2004,1;171-175.
    [6]白春礼著.纳米科技现在与未来[M].四川;四川教育出版社,2002;127-156.
    [7]马远荣编著.纳米科技[M].汕头;汕头大学出版社,2003,7;49-148.
    [8]许并社编著.纳米材料及应用技术[M].北京;化学工业出版社,2003,12;1-12.
    [9]韦东远.纳米材料与纳米科技发展态势[J].海峡科技与产业,2006,(3);20-23.
    [10]张立德著.第四次浪潮——纳米冲击波[M].北京;中国经济出版社,2003,1;38.
    [11]梁国藩.中国石油润滑油的现在和未来[J].北京石油管理干部学院学报,2004,(4);38-40.
    [12]袁维心,杨上明.不安全的石油将导致不安全的经济.在线国际商报,2003,12,15.
    [13]范少卿.纳米碳酸钙、铜粒子用作润滑油添加剂的摩擦学性能和机理研究[D].上海;上海海事大学,2005;8-10.
    [14]陈志刚.纳米碳酸钙、稀土粒子用作润滑油添加剂的摩擦学性能和机理研究[D].上海;上海海事大学,2004;11-13.
    [15]2006-2007年中国润滑油市场分析及投资咨询报告(上卜卷).中国投资咨询网,2006,7.
    [16]S.Tarasov,A.Kolubaev S Belyaev.Study of friction reduction by nanocopper additives to motor oil.Wear,2002,252;63-69.
    [17]L Rapoport,M Lvovsky,I Lapsker,et al.Friction and wear of bronze powder composites including fullerene-like WS_2 nanoparticles[J].Wear,2001,249;150-157.
    [18]L Rapoport,V Leshchinsky,M Lvovsky,et al.Friction and wear of powdered composites impregnated with WS_2 inorganic fullerent-like nanoparticles[J].Wear,2002,252;518-517.
    [19]L.Rapoport.Behavior of fullerene-like WS_2 nanoparticles under severe contact conditions[J].Wear,2005,259;703-707.
    [20]Bhushan B,et al.Appl.Phys.lett,1993,62(25);3253-3255.
    [21]Bhushan B,et al.Tribology Transacaions,1993,16(4);573-580.
    [22]T Hisakado,T Tsukizoe,H Yosikawa.Lubrication Mechanism of Solid Lubricants in Oil(81-Lub-50)[J].Journal of Lubrication Technolony,1983,105;245.
    [23]李斌,夏延秋,薛群基等.纳米Cu在聚乙二醇溶液中的摩擦磨损性能研究[J].摩擦学学报,2005,25(5);385-389.
    [24]王丽平,高燕,薛群基.Ni-Co/纳米金刚石复合镀层抗磨损性能的研究[J].中国表面工程,2005(1);24-26.
    [25]刘维民,薛群基,周静芳.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究[J].中国表面工程,2001,21-25.
    [26]邵鑫,薛群基.纳米和微米SiO_2颗粒对PPESK复合材料摩擦学性能的影响[J].机械工程材 料,2004,28(6);39-43.
    [27]赵彦保,周静芳,张治军等.聚合物纳米微球的合成及摩擦学行为[J].应用化学,1999,16(4);33-36.
    [28]常跃,蔡逸飞,徐建生等.纳米润滑添加剂的摩擦学特性研究[J].材料保护,2005,38(10);30-32.
    [29]郭志光,顾卡丽,徐建生.纳米润滑添加剂的润滑自修复效应[J].材料保护,2003,36(9);22-24.
    [30]史佩京,许一,徐滨士,Louise Drake,Bryan Draper.纳米减磨润滑剂在发动机中的应用效果研究[J].润滑与密封,2006,(7);73-75.
    [31]顾卓明,顾彩香,陈志刚.纳米碳酸钙,稀土复合粒子用作润滑油添加剂的研究[J].机械工程材料,2003,29(1);37-39.
    [32]顾卓明,顾彩香,王仁兵等.环境友好纳米粒子添加剂在润滑油中应用的研究[J].云南大学学报(自然科学版),2005,27(3A);20-25.
    [33]顾卓明,顾彩香,王仁兵等.含纳米碳酸钙粒子润滑油的摩擦学性能研究材料科学与工程学报,2005,23(2);269-272.
    [34]顾卓明,顾彩香,王仁兵等.纳米碳酸钙粒子用作润滑油添加剂的研究[J].上海海运学院学报,2003,24(3);227-231.
    [35]于立岩,郝春成,隋丽娜等.纳米粒子改善润滑油摩擦磨损性能的研究[J].材料科学与工程学报,2002,22(6);901-905.
    [36]赵修臣,刘颖,余智勇.纳米粒子作润滑油添加剂的研究与展望[J].润滑与密封,2002,(6);80-83.
    [37]方建锋,柳学全,李红云等.纳米材料在润滑领域中的应用[J].新材料产业,2003,(4);63-66.
    [38]许汉立编著.内燃机润滑油产品与应用[M].北京;中国石化出版社,2004;158-175.
    [39]杨儒,刘建红,李敏.非表面活性剂合成CeO_2介孔材料[J].中国稀土学报,2004,22(6);739-744.
    [40]豆立新,龚烈航,沈健等.纳米稀土对复合材料中超细粒子团聚现象的抑制[J].中国稀土学报,2003,21(增刊);67-73.
    [41]蒋晓明,王晓勇,陈月珠.TiO_2纳米粒子的表面修饰及摩擦磨损性能评定[J].石油学报(石油加工),2002,18(1);61-65.
    [42]孙秀果,李更辰,张建民.纳米二氧化钛粉体的性质及其表面改性的研究[J].石家庄铁道学院学报,2005,18(1);39-43.
    [43]史丽萍.纳米TiO_2/PTFE复合材料的干摩擦磨损性能[J].塑料工业,2005,33(1);49-51.
    [44]邵鑫,田军,薛群基等.纳米TiO_2填充聚醚砜酮复合材料的摩擦学性能[J].高分子材料科学与工程,2003,19(3);208-210.
    [45]林鸿溢编著.新的推动力——纳米技术最新进展[M].北京;中国青年出版社,2003;312-314.
    [46]李玲,向航编著.功能材料与纳米技术[M].北京;化学工业出版社,2002,7;69-71.
    [47]马远荣编著.纳米科技[M].汕头;汕头大学出版社,2003,7;112-130.
    [48]乔玉林编著.纳米微粒的润滑和自修复技术[M].北京;国防工业出版社,2005,9;116-123.
    [49]Kelsall Robert,Hamley Ian,Geoghegan Mark.Nanoscale Sci.& Tech.[M].北京;科学出版社,2007,1;56-62.
    [50]张立德,牟季美编著.纳米材料和纳米结构[M].北京;化学工业出版社,2001,2;147-148.
    [51]范少卿.纳米碳酸钙、铜粒子用作润滑油添加剂的摩擦学性能和机理研究[D].上海;上海海事大学,2005;18-19.
    [52]郝顺利,王心,崔银芳等.纳米粉体制备过程中粒子的团聚及控制方法研究[J].人工晶体学报,2006,35(2);342-346.
    [53]李玲编著.表面活性剂与纳米技术[M].北京;化学工业出版社.2003,12;155-157.
    [54]乔玉林编著.纳米微粒的润滑和自修复技术[M].北京;国防工业出版社,2005,9;169-185.
    [55]罗颖,容敏智,章明秋.纳米粒子表面改性的研究进展[J].宇航材料工艺,2005,(5);5-10.
    [56]李春霞,李立平,洒金婷等.纳米粒子表面改性的研究进展[J].北京纺织,2003,23(1);57-61.
    [57]沈钟,赵振国,王国庭编著.胶体与表面化学[M].北京;化学工业出版社.2004.5;387-391.
    [58]陈宗淇,王光信,徐桂英编.胶体与界面化学[M].北京;高等教育出版社.2001.9;224-228.
    [59]徐燕莉编著.表面活性剂的功能[M].北京;化学工业出版社.2000.6;20-34.
    [60]乔玉林编著.纳米微粒的润滑和自修复技术[M].北京;国防工业出版社,2005,9;206-208.
    [61]沈钟,赵振国,王国庭编著.胶体与表面化学[M].北京;化学工业出版社.2004,5;452-477.
    [62]章丽娟,郑忠编著.胶休与界面化学[M].广州;华南理工大学出版社.2006,2;158-162.
    [63]宇海银,顾家山,关明云等.纳米二氧化钛表面改性及表征[J].高分子材料科学与工程,2004,20(5);194-196.
    [64]查振林,罗亚田.纳米二氧化钛的改性及应用研究[J].北方环境,2004,29(1);30-33.
    [65]王国宏,李定或.纳米TiO_2的表面改性研究[J].化工时刊,2004,18(4);25-27.
    [66]A.Yu.Suslov,et al.,Surface-capped molybdenum sufide nanoparticles——a novel type of lubricant additives,National tribology conference,2003;254-256.
    [67]Klaus Friedrich,Effects of various fillers on the sliding wear of polymer composites Composites Science and Technology,2005,652;329-2343.
    [68]宇海银,顾家山,关明云等.纳米二氧化钛表面改性及表征[J].高分子材料科学与工程,2004,20(5);194-196.
    [69]查振林,罗亚田.纳米二氧化钛的改性及应用研究[J].北方环境,2004,29(1);30-33.
    [70]王国宏,李定或.纳米TiO_2的表面改性研究[J].化工时刊,2004,18(4);25-27.
    [71]姚超,高国生,林西平等.硅烷偶联剂对纳米二氧化钛表面改性的研究[J].无机材料学报,2006,21,(2);315-321.
    [72]付新建,张道洪,吴璧耀.纳米二氧化钛表面的化学改性及表征[J].武汉化工学院学报,2003,25(4);51-53.
    [73]J X Dong,Z S Hu.A study of the anti-wear and friction-reduction properties of the lubricant additive,nanometer zinc borate[J].Tribology International,1998,31(5);219-223.
    [74]Drees D,Cells J P,Dekempeneer E,et al.The electrochemical and wear behavior of amorphous diamond-like carbon coatings and multilayered coatings in aquous environments[J].Surface and Coatings Technology,2004,13;867-871.
    [75]彭华湘,陈彦模,朱美芳等.纳米CeO_2的表面改性及其在聚丙烯中的分散研究[J].中国稀土学报,2004,22(6);791-794
    [76]李志军,王红英.纳米二氧化钛分散性的实验研究[J].广州化工,2005,33(6);26-29.
    [77]中华人民共和国国家质最技术监督局.GB/T12583—1998.润滑剂极压性能测定法.北京;中国标准出版社,1999-05.
    [78]干蜀毅,陈长琦,朱武等.环境扫描电子显微镜工作原理及实现[J].真空电子技术,2003,(6);29-32.
    [79]满一新主编.船机维修技术[M].大连;大连海事出版社,1998,1;24~34.
    [80]乔玉林编著.纳米微粒的润滑和自修复技术[M].北京;国防工业出版社,2005,9;307-308.
    [81]陈莲英,章文贡.纳米润滑材料研究及应用[J].化学通报,2003,(6);404-408.
    [82]方建华,陈波水,张斌等.纳米润滑添加剂的抗磨减摩机理[J].合成润滑材料,2001,(2);15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700