基于微流控芯片电泳的单细胞及线粒体内多组份活性物质的同时检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球上的动、植物种类繁多,形态结构变化多样,但它们都是由细胞组成的。细胞是生命体的基本形态结构和功能单位,生命的运动都在细胞内得以实现,对细胞的研究是生命科学的出发点。细胞同外界进行物质、能量、信息交换的过程里,始终处于动态平衡之中,正常生理条件和特殊的病理状态下,机体在细胞水平的表达上是不同的。因此,了解动、植物细胞内各种组分的种类、水平、变化,将有助于对动、植物细胞基本生理功能的理解。
     动、植物细胞受内源或外源性因素作用而产生大量活性氧、活性氮自由基等,这些自由基的水平与生物的生理、病理密切相关。一方面,体内适当水平的自由基为机体维持正常功能所必需,它们参与信号转导、基因表达及细胞生理功能调控;另一方面,当自由基在体内生成过多,因其高反应活性,则易引起许多病理性变化。此外,自由基在体内处于不断产生、瞬间转化的动态平衡之中,一定生理条件下自由基的互相转化会导致自由基失衡,进而引起机体损伤。伴随着自由基的生成与存在,生物体内也形成了保护细胞免受氧化损伤的自由基清除、抗氧化防御系统,谷胱甘肽体系就是维持细胞内微环境氧化还原状态的重要体系。谷胱甘肽通过清除生命体内的自由基维持细胞的氧化还原平衡,使细胞免遭氧化伤害。
     由于对细胞内自由基、清除剂的生成、转化机制、生理作用的研究还远未达到今天生命科学发展所要求的精细和精确,很多机制的探讨仍缺乏细胞、亚细胞水平上自由基产生、变化与自由基的清除防御、损伤之间的基本关系探索。造成对细胞氧化胁迫深层次研究难以开展的原因是缺少对细胞内自由基及谷胱甘肽等调控氧化还原态的活性小分子物种的有效分析方法。基于此,本论文工作以微流控芯片电泳技术作为平台,选择肝癌(HepG2)细胞、大鼠肾上腺嗜铬细胞瘤(PC12)细胞作为研究对象,旨在建立高灵敏度、高选择性,能同时识别和检测细胞内多组份活性物质(自由基、谷胱甘肽)的新方法。本研究为在细胞内、分子水平上研究动、植物氧化胁迫提供了新策略与新方法,对自由基细胞生物学研究具有重要的科学意义。论文研究内容如下:
     建立了微流控芯片电泳-激光诱导荧光(MCE-LIF)方法用于凋亡细胞线粒体提取液中谷胱甘肽(GSH)和过氧化氢(H_2O_2)的同时测定。自行合成的有机硒荧光探针Rh-Se-2和二(对甲基苯磺酸酯基)二氯荧光素(FS)分别用作检测GSH和H_2O_2的荧光探针;自身不发荧光的Rh-Se-2与GSH反应生成量子产率较高的荧光产物罗丹明110(Rh-110);无荧光的FS与H_2O_2反应生成强荧光物质二氯荧光素(DCF);两种荧光探针对于他们的目标分子都表现出很好的选择性。得到了MCE-LIF同时检测GSH和H_2O_2的优化条件,实现了GSH和H_2O_2的同时、快速检测。我们利用该方法检测了HepG2细胞线粒体提取液中GSH和H_2O_2的含量,还进一步同时检测了经抗癌药物阿霉素和光动力学疗法诱导的HepG2细胞凋亡过程中线粒体提取液内两种活性物质的含量变化。
     应用微流控芯片电泳-激光诱导荧光(MCE- LIF)方法同时检测了细胞线粒体提取液中的活性氧/活性氮自由基—即超氧阴离子(O_2~(·-))和一氧化氮(NO)。荧光探针2-氯-1,3-二苯并噻唑啉环己烯(DBZTC)和3-氨基,4-氨甲基-2’,7’-二氯荧光素(DAF-FM)分别被用于检测线粒体提取液中的O_2~(·-)和NO。得到了MCE-LIF同时检测O_2~(·-)和NO的优化条件,脱氢抗坏血酸(DHA)和抗坏血酸(AA)对DAF-FM检测NO的潜在干扰,可以通过加入抗坏血酸氧化酶(AO)对AA催化氧化后结合微流控芯片电泳分离而得以消除。利用该方法检测了HepG2细胞和PC12细胞线粒体提取液中的O_2~(·-)和NO,证实了这种方法具有简单,快速,重现性好和高效的优点;该方法还被进一步用于检测白藜芦醇诱导的HepG2细胞和β-淀粉样蛋白诱导的PC12细胞凋亡过程中线粒体提取液O_2~(·-)和NO的水平变化。
     建立了微流控系统同时检测单个PC12细胞内O_2~(·-)和NO的分析方法。基于自行搭建的微流控分析系统,在具有辅助通道的“十字”芯片上,采用电动门式进样和激光诱导荧光检测,实现了细胞采样、单细胞捕获、电场溶膜、电泳分离和活性氧(O_2~(·-))/活性氮(NO)自由基同时检测的多步集成。利用荧光染料和荧光微球的流形实验证实了进样方法的有效性,并进行了单细胞连续进样的实验探索。利用该方法检测了单个PC12细胞中的O_2~(·-)和NO。
     本论文以微流控芯片电泳技术为研究平台,完成了凋亡细胞线粒体提取液中GSH和H_2O_2的同时测定;凋亡细胞线粒体提取液中O_2~(·-)和NO的同时测定;并完成了单细胞内O_2~(·-)和NO的同时检测。这些活性物质的同时检测有助于了解其各自的生物学功能以及在复杂生命活动过程中它们之间的作用机制。本论文内容从研究对象上,实现了从细胞群体匀浆样品到体现细胞异质性的单细胞样品中活性物质同时检测的跨越;从研究层面上,完成了影响细胞氧化还原态及活性氧/活性氮物质基本关系的探索。研究工作未见报道,为生命科学领域的自由基生物学研究提供了新途径、新方法。
Earth is a planet with a magnificent variety of plants and animals, they are diverse inmorphology and structure. But they are all consist of cells. Cell is the structural andfunctional unit of an organism, i.e., it is the basic unit of structure. A cell in itself is thesmallest part of an organism, which is capable of functioning independently and can carryout the fundamental duties of life like reproduction and metabolism. Under normalphysiological conditions and specific pathological conditions, the expression of organismat the cellular level is different. Awareness of the various types of reactive species, theirlevels and changes within the plant and animal cells will contribute to the understanding ofthe basic physiological functions of plant and animal cells.
     Affection of cells by endogenous or exogenous factors will result in the production ofreactive oxygen species and reactive nitrogen species, whose levels are closely related tophysiology and pathology. On one hand, appropriate levels of free radicals in the organismare required to maintain normal functions. They are involved in signal transduction,regulation of gene expression and cellular physiological function. On the other hand, whenfree radicals are overproduced in the organism, they will result in many pathologicalchanges because of their high reactivity. What’s more, production of free radicals is in aconstant, instantaneous transformation state in the organism. Accompanied by theformation of free radicals, there exists a scavenging, antioxidant defense systems, whichwill protect cells from oxidative injury. Among them, glutathione (GSH) system is animportant part in maintaining cellular microenvironmental redox state. GSH protects cellsfrom oxidative damage by depleting free radicals and maintaining plant and animalintracellular redox balance.
     Research on the formation of free radicals within cells, their scavenging andtransformation mechanism are far from being reached. But developments in the lifesciences today still require precise and accurate information on them. The reason thatdeeper research on cells’oxidative stress is difficult to carry out is mainly because oflacking of effective analytical methods for determination of free radicals and glutathione.Based on this, we choose microchip electrophoresis technology as our research platform, and selected HepG2 cells and PC12 cells as our research cell targets, aiming at establishinga simultaneous determination method of cellular reactive species (free radicals, GSH). Thestudy is of great scientific importance, not only for the research on free radical cell biology,particularly for cellular oxidative stress, but also provides new strategies and methods forstudy on oxidative stress in plants and animals at the cellular level. Three parts areincluded as follows:
     The application of microchip electrophoresis with laser-induced fluorescence(MCE-LIF) detection to simultaneously determine GSH and H_2O_2in mitochondria extractwas described. Organoselenium probe Rh-Se-2 and bis(p-methylbenzenesulfonate)dichloro- fluorescein (FS) synthesized in our laboratory were utilized as fluorescent probesfor GSH and H_2O_2, respectively. Rh-Se-2, which is non-fluorescent, reacts with GSH toproduce rhodamine 110 (Rh110) with high quantum yield. Similarly, non-fluorescent FSreacts with H_2O_2and produces dichlorofluorescein (DCF) accompanied by drasticfluorescence enhancement. Both probes exhibit good sensitivity toward their respectivetarget molecule determination. Fast, simple and sensitive determination of GSH and H_2O_2was realized within 37 s using a running buffer of 50 mM mannitol, 40 mM HEPES (pH7.4) and an electric field of 360V/cm for separation. The MCE-LIF assay was utilized toinvestigate the levels of GSH and H_2O_2in mitochondria extract isolated from HepG2 cells.The method was further extended to observe situations of the two species in mitochondriaextract of HepG2 cells experiencing cell apoptosis that were induced by doxorubicin andphotodynamic therapy.
     Next we applied MCE-LIF method for concurrent determination of reactive oxygenspecies (ROS) and reactive nitrogen species (RNS), i. e. superoxide (O2-·) and nitric oxide(NO) in mitochondria, using fluorescent probes 2-chloro-1,3- dibenzothiazoline-cyclohexene (DBZTC) and 3-amino,4-aminomethyl-2',7'-difluorescein (DAF-FM),respectively. Potential interference of intracellular dehydroascorbic acid (DHA) andascorbic acid (AA) for NO detection with DAF-FM were eliminated through oxidation ofAA on addition of ascorbate oxidase, followed by subsequent MCE separation. Fluorescentproducts of O_2~(·-)and NO, that is, DBZTC oxide (DBO) and DAF-FM triazole (DAF-FMT)realized excellent baseline separation within 1 min with a running buffer of 40 mM Tris solution (pH 7.4) and a separating electric-field of 500 V/cm. Using the method, weinvestigated the levels of DBO and DAF-FMT in mitochondria extract isolated fromnormal HepG2 cells and PC12 cells, and further extended the method to detect DBO andDAF-FMT level change in mitochondria extract isolated from apoptotic HepG2 cellsinduced by reseveratrol, and PC12 cells induced by amyloidβpeptide, which was provedto be simple, fast, reproducible and efficient.
     Based on the electrokinetic gated injection, we established the automation andintegration of multiple single-cell operations, including cell sampling, single cell loading,single cell cytolysis, electrophoresis separation and ROS/RNS simultaneous detection, on asimple cross microchip with assistant channel using a a microfluidic system. Fluid shapesof fluorescent dyes and microsphere confirms the validity of the method, and we nextinvestigated the possibility of single-cell continuous injection. With the method, wedetermined O_2~(·-)and NO in single cells.
     Using microchip electrophoresis technology as our research platform, we realizedsimultaneous determination of GSH and H_2O_2, O_2~(·-)and NO in mitochondria extractisolated from apoptotic cells, then we attempted to determine O_2~(·-)and NO in single cellsconcurrently. Determination of intracellular bioactive species will afford beneficialinformation related to cell metabolism, signal transduction, cell function and diseasetreatment. Simultaneous measurement of those species with the method will helpunderstand their distinctive functions in addition to the interaction between them, and willprovide a new insight into the role that those species play in biological systems. Ourresearch realized determination of biological samples from cellular extracts to single cell,and investigated the factors that influence cellular redox state and the basic relationshipbetween ROS and RNS. The research work has not been reported previously and hasprovided new strategy and new method for free radical biology in life science field.
引文
1.翟中和.细胞生物学[M].北京:高等教育出版社,2007:2
    2. Batandier C, Fontaine E, Keriel C, Leverve X M. Determination of mitochondrialreactive oxygen species: methodological aspects[J]. J. Cell. Mol. Med. 2002, 6(2):175-187.
    3. Sathishkumar K, Gao X, Raghavamenon A C, Murthy S N, Kadowitz P J, Uppu R M.Determination of glutathione, mitochondrial transmembrane potential, and cytotoxicityin H9c2 cardiomyoblasts exposed to reactive oxygen and nitrogen species[J]. MethodsMol. Biol. 2010, 610: 51-61.
    4. Yetisen A K, Jiang L, Cooper J R, Qin Y, Palanivelu R, Zohar Y. A microsystem-basedassay for studying pollen tube guidance in plant reproduction[J]. J. Micromech.Microeng. 2011, 21(5): 1-9.
    5. Abhyankar V V, Toepke M W, Cortesio C L, Lokuta M A, Huttenlocher A, Beebe D J.A platform for assessing chemotactic migration within a spatiotemporally defined 3Dmicroenvironment[J]. Lab Chip. 2008, 8(9): 1507-1515.
    6. Beltran B, Mathur A, Duchen M R, Erusalimsky J D, Moncada S. The effect of nitricoxide on cell respiration: A key to understanding its role in cell survival or death[J].Proc. Natl. Acad. Sci. U S A. 2000, 97(26): 14602-14607.
    7. Hong R, Han G, Fernandez J M, Kim B J, Forbes N S, Rotello V M.Glutathione-mediated delivery and release using monolayer protected nanoparticlecarriers[J]. J. Am. Chem. Soc. 2006, 128(4): 1078-1079.
    8. Kizek R, Vacek J, Trnkova L, Jelen F. Cyclic voltammetric study of the redox systemof glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine[J].Bioelectrochemistry. 2004, 63(1-2): 19-24.
    9. Kleinman W A, Richie JP Jr. Status of glutathione and other thiols and disulfides inhuman plasma[J]. Biochem. Pharmacol. 2000, 60(1): 19-29.
    10. Franco R, Panayiotidis M I, Cidlowski J A. Glutathione depletion is necessary forapoptosis in lymphoid cells independent of reactive oxygen species formation[J]. J.Biol. Chem. 2007, 282(42): 30452-30465.
    11. Wardman P. The importance of radiation chemistry to radiation and free radicalbiology (The 2008 Silvanus Thompson Memorial Lecture)[J]. Br. J. Radiol. 2009,82(974): 89-104.
    12. Winterbourn C C. Reconciling the chemistry and biology of reactive oxygen species[J].Nat. Chem. Biol. 2008, 4(5): 278-286.
    13. Zhou G, Li J, Chen Y, Zhao B, Cao Y, Duan X, Cao Y. Determination of reactiveoxygen species generated in laccase catalyzed oxidation of wood fibers from Chinesefir (Cunninghamia lanceolata) by electron spin resonance spectrometry[J]. Bioresour.Technol. 2009, 100(1): 505-508.
    14. Vasquez-Vivar J, Kalyanaraman B, Kennedy M C. Mitochondrial aconitase is a sourceof hydroxyl radical. An electron spin resonance investigation[J]. J. Biol. Chem. 2000,275(19): 14064-14069.
    15. Owen R W, Spiegelhalder B, Bartsch H. Generation of reactive oxygen species by thefaecal matrix[J]. Gut. 2000, 46(2): 225-232.
    16. Wada M. ChemInform Abstract: Sensitive Determination of Reactive Oxygen Speciesby Chemiluminescence Methods and Their Application to Biological Samples andHealth Foods[J]. ChemInform. 2008, 39(45): 667.
    17. Webb C, Bedwell C, Guth A, Avery P, Dow S. Use of flow cytometry andmonochlorobimane to quantitate intracellular glutathione concentrations in felineleukocytes[J]. Vet. Immunol. Immunopathol. 2006, 112(3-4): 129-140.
    18. Shanker G, Aschner J L, Syversen T, Aschner M. Free radical formation in cerebralcortical astrocytes in culture induced by methylmercury[J]. Brain Res. Mol. Brain Res.2004, 128(1): 48-57.
    19. Brandes R P, Janiszewski M. Direct detection of reactive oxygen species ex vivo[J].Kidney Int. 2005, 67(5): 1662-1664.
    20. Coolen S A, Huf F A, Reijenga J C. Determination of free radical reaction productsand metabolites of salicylic acid using capillary electrophoresis and micellarelectrokinetic chromatography[J]. J. Chromatogr. B. Biomed. Sci. Appl. 1998, 717(1-2):119-124.
    21. Afanasev I. Detection of superoxide in cells, tissues and whole organisms[J]. Front.Biosci. (Elite ed.). 2009, 1: 153-160.
    22. Madden K P, Taniguchi H. The role of the DMPO-hydrated electron spin adduct inDMPO-*OH spin trapping[J]. Free Radic. Biol. Med. 2001, 30(12): 1374-1380.
    23. Van Aken B, Cameron M D, Stahl J D, Plumat A, Naveau H, Aust S D, Agathos S N.Glutathione-mediated mineralization of 14C-labeled 2-amino-4,6-dinitrotoluene bymanganese-dependent peroxidase H5 from the white-rot fungus Phanerochaetechrysosporium[J]. Appl. Microbiol. Biotechnol. 2000, 54(5): 659-664.
    24. Damian G., Petrisor D, Miclaus V. Free radicals detection by ESR PBN spin-traptechnique[J]. J. Optoelectron. Adv. M. 2007, 9(4): 1010-1013.
    25. Mendis E, Kim M M, Rajapakse N, Kim S K. Sulfated glucosamine inhibits oxidationof biomolecules in cells via a mechanism involving intracellular free radicalscavenging[J]. Eur. J. Pharmacol. 2008, 579(1-3): 74-85.
    26. Inoue K Y, Ino K, Shiku H, Kasai S, Yasukawa T, Mizutani F, Matsue T.Electrochemical monitoring of hydrogen peroxide released from leucocytes onhorseradish peroxidase redox polymer coated electrode chip[J]. Biosens. Bioelectron.2010, 25(7): 1723-1728.
    27. Amatore C, Arbault S, Chen Y, Crozatier C, Tapsoba I. Electrochemical detection in amicrofluidic device of oxidative stress generated by macrophage cells[J]. Lab Chip.2007, 7(2): 233-238.
    28. Pacsial-Ong E J, McCarley R L, Wang W, Strongin R M. Electrochemical detection ofglutathione using redox indicators[J]. Anal. Chem. 2006, 78(21): 7577-7581.
    29. Miao P, Liu L, Nie Y, Li G.. An electrochemical sensing strategy for ultrasensitivedetection of glutathione by using two gold electrodes and two complementaryoligonucleotides[J]. Biosens. Bioelectron. 2009, 24(11): 3347-3351.
    30. Wang W, Xin H, Shao H, Jin W. Determination of glutathione in single humanhepatocarcinoma cells by capillary electrophoresis with electrochemical detection[J]. J.Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2003, 789(2): 425-429.
    31. Xue J, Ying X, Chen J, Xian Y, Jin L. Amperometric ultramicrosensors forperoxynitrite detection and its application toward single myocardial cells[J]. Anal.Chem. 2000, 72(21): 5313-5321.
    32. Wang W, Li L, Liu S, Ma C, Zhang S. Determination of physiological thiols byelectrochemical detection with piazselenole and its application in rat breast cancercells 4T-1[J]. J. Am. Chem. Soc. 2008, 130(33): 10846-10847.
    33. Borgmann S. Electrochemical quantification of reactive oxygen and nitrogen:challenges and opportunities[J]. Anal. Bioanal. Chem. 2009, 394(1): 95-105.
    34. Fink B, Laude K, McCann L, Doughan A, Harrison D G, Dikalov S. Detection ofintracellular superoxide formation in endothelial cells and intact tissues usingdihydroethidium and an HPLC-based assay[J]. Am. J. Physiol. Cell Physiol. 2004,287(4): C895-902.
    35. Zhao H, Joseph J, Fales H M, Sokoloski E A, Levine R L, Vasquez-Vivar J,Kalyanaraman B. Detection and characterization of the product of hydroethidine andintracellular superoxide by HPLC and limitations of fluorescence[J]. Proc. Natl. Acad.Sci. U S A. 2005, 102(16): 5727-5732.
    36. Biondi R, Xia Y, Rossi R, Paolocci N, Ambrosio G, Zweier J L. Detection of hydroxylradicals by D-phenylalanine hydroxylation: a specific assay for hydroxyl radicalgeneration in biological systems[J]. Anal. Chem. 2001, 290(1): 138-145.
    37. Biondi R, Ambrosio G, Liebgott T, Cardounel A J, Bettini M, Tritto I, Zweier J L.Hydroxylation of D-phenylalanine as a novel approach to detect hydroxyl radicals:application to cardiac pathophysiology[J]. Cardiovasc. Res. 2006, 71(2): 322-330.
    38. Spadaro A, Ronsisvalle G, Pappalardo M. Rapid Analysis of Glutathione in HumanProstate Cancer Cells (DU145) and Human Lung Adenocarcinoma Cells (A549) byHPLC with Electrochemical Detection[J]. J. Pharm. Sci. & Res. 2011, 3(12):1637-1641.
    39. Yilmaz O, Keser S, Tuzcu M, Guvenc M, Cetintas B, Irtegun S, Tastan H, Sahin K.A Practical HPLC Method to Measure Reduced (GSH) and Oxidized (GSSG)Glutathione Concentrations in Animal Tissues[J]. J. Anim. Vet. Adv. 2009, 8(2):343-347.
    40. Yap L P, Sancheti H, Ybanez M D, Garcia J, Cadenas E, Han D. Determination ofGSH, GSSG, and GSNO using HPLC with electrochemical detection. MethodsEnzymol. 2010, 473: 137-147.
    41. Fingerova H, Oborna I, Novotny J, Svobodova M, Brezinova J, Radova L. Themeasurement of reactive oxygen species in human neat semen and in suspendedspermatozoa: a comparison[J]. Reprod. Biol. Endocrinol. 2009, 7: 118.
    42. Su R, Lin J M, Uchiyama K, Yamada M. Integration of a flow-typechemiluminescence detector on a glass electrophoresis chip[J]. Talanta. 2004, 64(4):1024-1029.
    43. Tarpey M M, Fridovich I. Methods of detection of vascular reactive species: nitricoxide, superoxide, hydrogen peroxide, and peroxynitrite[J]. Circ. Res. 2001, 89(3):224-236.
    44. Van Dyke K, Patel S, Vallyathan V. Lucigenin chemiluminescence assay as anadjunctive tool for assessment of various stages of inflammation: A study of quiescentinflammatory cells[J]. J. Biosci. 2003, 28(1): 115-119.
    45. Ng C K, Deshpande S S, Irani K, Alevriadou B R. Adhesion of flowing monocytes tohypoxia-reoxygenation-exposed endothelial cells: role of Rac1, ROS, and VCAM-1[J].Am. J. Physiol. Cell Physiol. 2002, 283(1): C93-102.
    46. Sun H Y, Wang N P, Kerendi F, Halkos M, Kin H, Guyton R A, Vinten-Johansen J,Zhao Z Q. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROSgeneration and intracellular Ca2+overload[J]. Am. J. Physiol. Heart Circ. Physiol.2005, 288(4): H1900-1908.
    47. Munzel T, Afanas'ev I B, Kleschyov A L, Harrison D G. Detection of superoxide invascular tissue[J]. Arterioscler. Thromb. Vasc. Biol. 2002, 22(11): 1761-1768.
    48. Ryu H C, Kim C, Kim J Y, Chung J H, Kim J H. UVB radiation induces apoptosis inkeratinocytes by activating a pathway linked to "BLT2-reactive oxygen species"[J]. J.Invest. Dermatol. 2010, 130(4): 1095-1106.
    49. Mukhopadhyay P, Rajesh M, Bátkai S, Kashiwaya Y, HaskóG, Liaudet L, SzabóC,Pacher P. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-inducedcell death in vivo and in vitro[J]. Am. J. Physiol. Heart Circ. Physiol. 2009, 296(5):H1466-1483.
    50. Srikun D, Miller E W, Domaille D W, Chang C J. An ICT-based approach toratiometric fluorescence imaging of hydrogen peroxide produced in living cells[J]. J.Am. Chem. Soc. 2008, 130(14): 4596-4597.
    51. Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T. Highly sensitive fluorescenceprobes for nitric oxide based on boron dipyrromethene chromophore-rational design ofpotentially useful bioimaging fluorescence probe[J]. J. Am. Chem. Soc. 2004, 126(10):3357-3367.
    52. Gao J J, Xu K H, Tang B, Yin L L, Yang G W, An L G. Selective detection ofsuperoxide anion radicals generated from macrophages by using a novel fluorescentprobe[J]. FEBS J. 2007, 274(7): 1725-1733.
    53. Tang B, Xing Y, Li P, Zhang N, Yu F, Yang G. A rhodamine-based fluorescent probecontaining a Se-N bond for detecting thiols and its application in living cells[J]. J.Am. Chem. Soc. 2007, 129(38): 11666-11667.
    54. Xu K, Tang B, Huang H, Yang G, Chen Z, Li P, An L. Strong red fluorescent probessuitable for detecting hydrogen peroxide generated by mice peritoneal macrophages[J].Chem. Commun. (Camb.). 2005, 28(48): 5974-5976.
    55. Setsukinai K, Urano Y, Kakinuma K, Majima H J, Nagano T. Development of novelfluorescence probes that can reliably detect reactive oxygen species and distinguishspecific species[J]. J. Biol. Chem. 2003, 278(5): 3170-3175.
    56. LeBel CP IH, Bondy S C. Evaluation of the probe 2',7'-dichlorofluorescin as anindicator of reactive oxygen species formation and oxidative stress[J]. Chem. Res.Toxicol. 1992, 5(2): 227-231.
    57. Zent R, Ailenberg M, Waddell T K, Downey G P, Silverman M. Puromycinaminonucleoside inhibits mesangial cell-induced contraction of collagen gels bystimulating production of reactive oxygen species[J]. Kidney Int. 1995, 47(3):811-817.
    58. Keller A MA, Drose S, Brandt U, Fleming I, Brandes R P. Analysis ofdichlorodihydrofluorescein and dihydrocalcein as probes for the detection ofintracellular reactive oxygen species[J]. Free Radic. Res. 2004, 38(12): 1257-1267.
    59. Maeda H, Fukuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H, Yamauchi Y,Yoshida K, Hirata K, Miyamoto K. Fluorescent probes for hydrogen peroxide basedon a non-oxidative mechanism[J]. Angew. Chem. Int. Ed. Enql. 2004, 43(18):2389-2391.
    60. Tang B, Zhang L, Zhang L L. Study and application of flow injectionspectrofluorimetry with a fluorescent probe of 2-(2-pyridil)-benzothiazoline forsuperoxide anion radicals[J]. Anal. Biochem. 2004, 326(2): 176-182.
    61. Miller E W, Dickinson B C, Chang C J. Aquaporin-3 mediates hydrogen peroxideuptake to regulate downstream intracellular signaling[J]. Proc. Natl. Acad. Sci. U S A.2010, 107(36): 15681-15686.
    62. Miller E W, Tulyathan O, Isacoff E Y, Chang C J. Molecular imaging of hydrogenperoxide produced for cell signaling[J]. Nat. Chem. Biol. 2007, 3(5): 263-267.
    63. Chang M C, Pralle A, Isacoff E Y, Chang C J. A selective, cell-permeable optical probefor hydrogen peroxide in living cells[J]. J. Am. Chem. Soc. 2004, 126(47):15392-15393.
    64. Albers A E, Dickinson B C, Miller E W, Chang C J. A red-emittingnaphthofluorescein-based fluorescent probe for selective detection of hydrogenperoxide in living cells[J]. Bioorg. Med. Chem. Lett. 2008, 18(22): 5948-5950.
    65. Maeda H, Fukuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H, Yamauchi Y,Yoshida K, Hirata K, Miyamoto K. Fluorescent Probes for Hydrogen Peroxide Basedon a Non-Oxidative Mechanism[J]. Angew. Chem. Int. Ed. Engl. 2004, 43(18):2369-2391.
    66.徐克花刘芬,汪会霞,王姗姗,王璐璐,唐波.基于磺酸酯的荧光探针用于活细胞内过氧化氢的成像检测[J].中国科学B辑:化学. 2009, 39(6): 473-480.
    67. Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T. Novel FluorescentProbes for Singlet Oxygen[J]. Angew. Chem. Int. Ed. Engl. 1999, 38(19), 2899-2901.
    68. Gomes A, Fernandes E, Lima J. Fluorescence probes used for detection of reactiveoxygen species[J]. J. Biochem. Biophys. Methods. 2005, 65 (2-3): 45–80.
    69. Yang X, Guo X. Investigation of the anthracene–nitroxide hybrid molecule as a probefor hydroxyl radicals[J]. Analyst. 2001, 126: 1800-1804.
    70. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y,Nagano T. Detection and imaging of nitric oxide with novel fluorescent indicators:diaminofluoresceins[J]. Anal. Chem. 1998, 70(13): 2446-2453.
    71. Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T. FluorescentIndicators for Imaging Nitric Oxide Production[J]. Angew. Chem. Int. Ed. Engl. 1999;38(21): 3209-3212.
    72. Nagano T. Practical methods for detection of nitric oxide[J]. Luminescence. 1999,14(6):283-290.
    73. Yang X F, Guo X Q, Zhao Y B. Development of a novel rhodamine-type fluorescentprobe to determine peroxynitrite[J]. Talanta. 2002, 57(5): 883-890.
    74. Tang B, Yin L, Wang X, Chen Z, Tong L, Xu K. A fast-response, highly sensitive andspecific organoselenium fluorescent probe for thiols and its application inbioimaging[J]. Chem. Commun (Camb). 2009, 35: 5293-5295.
    75. Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N.2,4-Dinitrobenzenesulfonyl Fluoresceins as Fluorescent Alternatives to Ellman'sReagent in Thiol-Quantification Enzyme Assays[J]. Angew. Chem. Int. Ed. Engl. 2005,44(19): 2922-2925.
    76. Zhang L Y, Sun M X. Fast determination of glutathione by capillary electrophoresiswith fluorescence detection using beta-cyclodextrin as modifier[J]. J. Chromatogr. B.Analyt. Technol. Biomed. Life Sci. 2009, 877(31): 4051-4054.
    77. Musenga A, Mandrioli R, Bonifazi P, Kenndler E, Pompei A, Raggi M A. Sensitiveand selective determination of glutathione in probiotic bacteria by capillaryelectrophoresis-laser induced fluorescence[J]. Anal. Bioanal. Chem. 2007, 387(3):917-924.
    78. Wang Q, Ding F, Zhu N, Li H, He P, Fang Y. Determination of hydroxyl radical bycapillary zone electrophoresis with amperometric detection[J]. J. Chromatogr. A. 2003,1016(1): 123-128.
    79. Cao Y, Chu Q, Ye J. Determination of hydroxyl radical by capillary electrophoresisand studies on hydroxyl radical scavenging activities of Chinese herbs[J]. Anal.Bioanal. Chem. 2003, 376(5):691-695.
    80. Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems: Anovel concept for chemical sensing[J]. Sens. Actuators B. Chem. 1990, 1(1-6):244-248.
    81.方肇伦.微流控分析芯片[M].北京:科学出版社,2003:147
    82.林炳承,秦建华.图解微流控芯片实验室[M].北京:科学出版社,2008:216
    83. El-Ali J, Sorger P K, Jensen K F. Cells on chips[J]. Nature. 2006, 442(7101): 403-411.
    84. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M R, Weigl B H.. Microfluidicdiagnostic technologies for global public health[J]. Nature. 2006, 442(7101): 412-418.
    85. Nejentsev S, Walker N, Riches D, Egholm M, Todd J A. Rare variants of IFIH1, a geneimplicated in antiviral responses, protect against type 1 diabetes[J]. Science. 2009,324(5925): 387-389.
    86.林炳承,秦建华.微流控芯片分析化学实验室[J].高等学校化学学报. 2009, 30(3):433-445.
    87. Phillips K S, Lai H H, Johnson E, Sims C E, Allbritton N L. Continuous analysis ofdye-loaded, single cells on a microfluidic chip[J]. Lab Chip. 2011, 11(7): 1333-1341.
    88. Polson N A, Hayes M A. Microfluidics: controlling fluids in small places[J]. Anal.Chem. 2001, 73(11): 312A-319A.
    89. Thomas C D, Jacobson S C, Ramsey J M. Strategy for repetitive pinched injections ona microfluidic device[J]. Anal. Chem. 2004, 76(20): 6053-6057.
    90. Blas M, Asselin E L, Liu T, Rodriguez C, Panepucci R R, McCord B R. Minimizingthe number of voltage sources for pinched injection on a microfluidic device[J]. LabChip.2010, 10(10): 1319-1323.
    91. Jacobson S C,Koutny L B, Hergenroeder R, Moore Jr A W, Ramsey J M. MicrochipCapillary Electrophoresis with an Integrated Postcolumn Reactor[J]. Anal. Chem. 1994,66(20): 3472-3476.
    92. Lacharme F, Gijs M A. Single potential electrophoresis microchip with reduced biasusing pressure pulse injection[J]. Electrophoresis. 2006, 27(14): 2924-2932.
    93. Chen P, Feng X, Sun J, Wang Y, Du W, Liu B F. Hydrodynamic gating for sampleintroduction on a microfluidic chip[J]. Lab Chip. 2010, 10(11): 1472-1475.
    94. Wu D, Qin J, Lin B. Electrophoretic separations on microfluidic chips[J]. J.Chromatogr. A. 2008, 1184(1-2): 542-559.
    95. Phillips K S, Lai H H, Johnson E, Sims C E, Allbritton N L. Continuous analysis ofdye-loaded, single cells on a microfluidic chip[J]. Lab Chip. 2011, 11(7): 1333-1341.
    96. Wang X, Yin X, Cheng H, Shen H. A compact and low-cost miniaturized analysissystem composed of microchip electrophoresis and chemiluminescence detectionmanipulated by a simple subatmospheric pressure fluid-driven device[J]. Analyst. 2010,135(7): 1663-1671.
    97. Sandlin Z D, Shou M, Shackman J G, Kennedy R T. Microfluidic electrophoresis chipcoupled to microdialysis for in vivo monitoring of amino acid neurotransmitters[J].Anal. Chem. 2005, 77(23): 7702-7708.
    98. Dawoud A A, Sarvaiya H A, Lazar I M. Microfluidic platform with mass spectrometrydetection for the analysis of phosphoproteins[J]. Electrophoresis. 2007, 28(24):4645-4660.
    99. Fridovich I. Superoxide anion radical (O2-.), superoxide dismutases, and relatedmatters[J]. J. Biol. Chem. 1997, 272(30): 18515-18517.
    100.McCord J M. Free radicals and inflammation: protection of synovial fluid bysuperoxide dismutase[J]. Science. 1974, 185(4150): 529-531.
    101.Cerutti P A. Prooxidant states and tumor promotion[J]. Science. 1985, 227(4685):375-381.
    102.Sohal R S, Sohal B H, Orr W C. Mitochondrial superoxide and hydrogen peroxidegeneration, protein oxidative damage, and longevity in different species of flies[J].Free Radic. Biol. Med. 1995, 19(4): 499-504.
    103.Meany D L, Thompson L, Arriaga E A. Simultaneously monitoring the superoxide inthe mitochondrial matrix and extramitochondrial space by micellar electrokineticchromatography with laser-induced fluorescence[J]. Anal. Chem. 2007, 79(12):4588-4594.
    104.Xu X, Arriaga E A. Chemical cytometry quantitates superoxide levels in themitochondrial matrix of single myoblasts[J]. Anal. Chem. 2010, 82(16): 6745-6750.
    105.Xu X, Thompson L V, Navratil M, Arriaga E A. Analysis of superoxide production insingle skeletal muscle fibers[J]. Anal. Chem. 2010, 82(11): 4570-4576.
    106.Zhu L, Lu M, Yin X. Ultrasensitive determination of intracellular superoxide inindividual HepG2 cells by microfluidic chip electrophoresis[J]. Talanta. 2008, 75(5):1227-1233.
    107.Liu X, Li Q, Gong X, Li H, Chen Z, Tong L, Tang B. Rapid determination ofsuperoxide free radical in hepatocellular carcinoma cells by MCE with LIF[J].Electrophoresis. 2009, 30(6): 1077-1083.
    108.Gong X, Li Q, Xu K, Liu X, Li H, Chen Z, Tong L, Tang B, Zhong H. A new route forsimple and rapid determination of hydrogen peroxide in RAW264.7 macrophages bymicrochip electrophoresis[J]. Electrophoresis. 2009, 30(11): 1983-1990.
    109.Zhang X, Li Q, Chen Z, Li H, Xu K, Zhang L, Tang B. Electrokinetic gatedinjection-based microfluidic system for quantitative analysis of hydrogen peroxide inindividual HepG2 cells[J]. Lab Chip. 2011, 11(6): 1144-1150.
    110.Moncada S, Erusalimsky J D. Does nitric oxide modulate mitochondrial energygeneration and apoptosis?[J]. Nat. Rev. 2002, 3(3): 214-220.
    111.Kojima H, Hirotani M, Nakatsubo N, Kikuchi K, Urano Y, Higuchi T, Nagano T.Bioimaging of nitric oxide with fluorescent indicators based on the rhodaminechromophore[J]. Anal. Chem. 2001, 73(9): 1967-1973.
    112.Kojima H, Sakurai K, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, AkaikeT, Maeda H, Nagono T. Development of a fluorescent indicator for the bioimaging ofnitric oxide[J]. Biol. Pharm. Bull. 1997, 20(12): 1229-1232.
    113.Zhang X, Kim WS, Hatcher N, Potgieter K, Moroz L L, Gillette R, Sweedler J V.Interfering with nitric oxide measurements. 4,5-diaminofluorescein reacts withdehydroascorbic acid and ascorbic acid[J]. J. Biol. Chem. 2002, 277(50):48472-48478.
    114.Kim W S, Ye X, Rubakhin S S, Sweedler J V. Measuring nitric oxide in single neuronsby capillary electrophoresis with laser-induced fluorescence: use of ascorbate oxidasein diaminofluorescein measurements[J]. Anal. Chem. 2006, 78(6): 1859-1865.
    115.Yang Q, Zhang X, Bao X, Lu H, Zhang W, Wu W, Miao H, Jiao W. Single celldetermination of nitric oxide release using capillary electrophoresis with laser-inducedfluorescence detection[J]. J. Chromatogr. A. 2008, 1201(1): 120-127.
    116.Mainz E R, Gunasekara D B, Caruso G, Jensen D T, Hulvey M K, Fracassi da Silva JA, Metto E C, Culbertson A H, Culbertson C T, Lunte S M. Monitoring intracellularnitric oxide production using microchip electrophoresis and laser-induced fluorescencedetection[J]. Analytical. Methods. 2012, 4(2): 414-420.
    117.Wang Y, Yin M. Sensitive and rapid determination of nitric oxide in human serumusing microchip capillary electrophoresis with laser-induced fluorescence detection[J].Microchim. Acta. 2009, 166(3-4): 243–249.
    118.Hulvey M K, Frankenfeld C N, Lunte S M. Separation and detection of peroxynitriteusing microchip electrophoresis with amperometric detection[J]. Anal. Chem. 2010,82(5): 1608-1611.
    119.Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation anddetection of intracellular constituents on a microfluidic chip[J]. Lab Chip. 2004, 4(1):47-52.
    120.Yu L, Huang H, Dong X, Wu D, Qin J, Lin B. Simple, fast and high-throughputsingle-cell analysis on PDMS microfluidic chips[J]. Electrophoresis. 2008, 29(24):5055-5060.
    121.Zhao S, Li X, Liu Y M. Integrated microfluidic system with chemiluminescencedetection for single cell analysis after intracellular labeling[J]. Anal. Chem. 2009,81(10): 3873-3878.
    122.Shackman J G, Dahlgren G M, Peters J L, Kennedy RT. Perfusion and chemicalmonitoring of living cells on a microfluidic chip[J]. Lab Chip. 2005, 5(1): 56-63.
    123.Dishinger J F, Kennedy R T. Serial immunoassays in parallel on a microfluidic chipfor monitoring hormone secretion from living cells[J]. Anal. Chem. 2007, 79(3):947-954.
    124.Dishinger J F, Reid K R, Kennedy R T. Quantitative monitoring of insulin secretionfrom single islets of Langerhans in parallel on a microfluidic chip[J]. Anal. Chem.2009, 81(8): 3119-3127.
    125.Reid K R, Kennedy R T. Continuous operation of microfabricated electrophoresisdevices for 24 hours and application to chemical monitoring of living cells[J]. Anal.Chem. 2009, 81(16): 6837-6842.
    126.Mellors J S, Jorabchi K, Smith L M, Ramsey J M. Integrated microfluidic device forautomated single cell analysis using electrophoretic separation and electrosprayionization mass spectrometry[J]. Anal. Chem. 2010, 82(3): 967-973.
    127.Toriello N M, Douglas E S, Thaitrong N, Hsiao S C, Francis M B, Bertozzi C R,Mathies R A. Integrated microfluidic bioprocessor for single-cell gene expressionanalysis[J]. Proc. Natl. Acad. Sci. U S A. 2008, 105(51): 20173-20178.
    128.Qin J, Ye N, Yu L, Liu D, Fung Y, Wang W, Ma X, Lin B. Simultaneous and ultrarapiddetermination of reactive oxygen species and reduced glutathione in apoptoticleukemia cells by microchip electrophoresis[J]. Electrophoresis. 2005, 26(6):1155-1162.
    129.Ling Y Y, Yin X F, Fang Z L. Simultaneous determination of glutathione and reactiveoxygen species in individual cells by microchip electrophoresis[J]. Electrophoresis.2005, 26(24): 4759-4766.
    130.Yue S, Xue-Feng Y. Novel multi-depth microfluidic chip for single cell analysis[J]. J.Chromatogr. A. 2006, 1117(2): 228-233.
    131.Xu C X, Yin X F. Continuous cell introduction and rapid dynamic lysis forhigh-throughput single-cell analysis on microfludic chips with hydrodynamicfocusing[J]. J. Chromatogr. A. 2011, 1218(5): 726-732.
    1. Prabhakar R, Vreven T, Morokuma K, Musaev D G. Elucidation of the mechanism ofselenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction bytwo glutathione molecules: a density functional study[J]. Biochemistry. 2005, 44(35):11864-11871.
    2. Linnane A W, Kios M, Vitetta L. Healthy aging: regulation of the metabolome bycellular redox modulation and prooxidant signaling systems: the essential roles ofsuperoxide anion and hydrogen peroxide[J]. Biogerontology .2007, 8(5): 445-467.
    3. Jin N, Hatton N D, Harrington M A, Xia X, Larsen S H, Rhoades R A,H(2)O(2)-induced egr-1, fra-1, and c-jun gene expression is mediated by tyrosinekinase in aortic smooth muscle cells[J]. Free Radic Biol. Med. 2000, 29(8): 736-746.
    4. Yamamoto T, Sakaguchi N, Hachiya M, Nakayama F, Yamakawa M, Akashi M, Roleof catalase in monocytic differentiation of U937 cells by TPA: hydrogen peroxide as asecond messenger[J]. Leukemia. 2009, 23(4): 761-769.
    5. Costa N J, Dahm C C, Hurrell F, Taylor E R, Murphy M P. Interactions ofmitochondrial thiols with nitric oxide[J]. Antioxid Redox Sign. 2003, 5(3): 291-305.
    6. Han D, Canali R, Rettori D, Kaplowitz N. Effect of glutathione depletion on sites andtopology of superoxide and hydrogen peroxide production in mitochondria[J]. Mol.Pharmacol . 2003, 64(5): 1136-1144.
    7. Hong R, Han G, Fernandez J M, Kim B J, Forbes N S, Rotello V M.Glutathione-mediated delivery and release using monolayer protected nanoparticlecarriers[J]. J. Am. Chem. Soc. 2006, 128(4): 1078-1079.
    8. Kizek R, Vacek J, Trnkova L, Jelen F. Cyclic voltammetric study of the redox systemof glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine[J].Bioelectrochemistry. 2004, 63(1-2): 19-24.
    9. Kleinman W A, Richie J P. Status of glutathione and other thiols and disulfides inhuman plasma[J]. Biochem. Pharmacol. 2000, 60(1): 19-29.
    10. Franco R, Panayiotidis M I, Cidlowski J A. Glutathione depletion is necessary forapoptosis in lymphoid cells independent of reactive oxygen species formation[J]. J.Biol. Chem. 2007, 282(42): 30452-30465.
    11. Jo S H, Son M K, Koh H J, Lee S M, Song I H, Kim Y O, Lee Y S, Jeong K S, Kim WB, Park J W, Song B J, Huh T L, Control of mitochondrial redox balance and cellulardefense against oxidative damage by mitochondrial NADP+-dependent isocitratedehydrogenase[J]. J. Biol. Chem. 2001, 276(19): 16168-16176.
    12. Esworthy R S, Ho Y S, Chu F F. The Gpx1 gene encodes mitochondrial glutathioneperoxidase in the mouse liver[J]. Arch. Biochem. Biophys. 1997,340(1): 59-63.
    13. Armstrong J S, Steinauer K K, Hornung B, Irish J M, Lecane P, Birrell G W, Peehl DM, Knox S J. Role of glutathione depletion and reactive oxygen species generation inapoptotic signaling in a human B lymphoma cell line[J]. Cell Death Differ. 2002, 9(3):252-263.
    14. Mayer B, Oberbauer R. Mitochondrial regulation of apoptosis[J]. News Physiol Sci.2003, 18: 89-94.
    15. Allen P B, Doepker B R, Chiu D T. High-throughput capillary-electrophoresis analysisof the contents of a single mitochondria[J]. Anal. Chem. 2009,81(10): 3784-3791.
    16. Kanno A, Ozawa T, Umezawa Y. Genetically encoded optical probe for detectingrelease of proteins from mitochondria toward cytosol in living cells and mammals[J].Anal. Chem. 2006, 78(23): 8076-8081.
    17. Meany D L, Thompson L, Arriaga E A. Simultaneously monitoring the superoxide inthe mitochondrial matrix and extramitochondrial space by micellar electrokineticchromatography with laser-induced fluorescence[J]. Anal. Chem. 2007, 79(12):4588-4594
    18. Shen D, Dalton T P, Nebert D W, Shertzer H G. Glutathione redox state regulatesmitochondrial reactive oxygen production[J]. J. Biol. Chem. 2005, 280(27):25305-25312.
    19. Yang W, Sun X, Wang H Y, Woolley A T. Integrated microfluidic device for serumbiomarker quantitation using either standard addition or a calibration curve[J]. Anal.Chem. 2009,81(19): 8230-8235.
    20. Wheeler A R, Throndset W R, Whelan R J, Leach A M, Zare R N, Liao Y H, Farrell K,Manger I D, Daridon A. Microfluidic device for single-cell analysis[J]. Anal. Chem.2003,75(14): 3581-3586.
    21. Easley C J, Karlinsey J M, Bienvenue J M, Legendre L A, Roper M G, Feldman S H,Hughes M A, Hewlett E L, Merkel T J, Ferrance J P, Landers J P. A fully integratedmicrofluidic genetic analysis system with sample-in-answer-out capability[J]. Proc.Natl. Acad. Sci. U S A. 2006, 103(51): 19272-19277.
    22. Huebner A, Olguin L F, Bratton D, Whyte G, Huck W T, de Mello A J, Edel J B,Abell C. Hollfelder F. Development of quantitative cell-based enzyme assays inmicrodroplets[J]. Anal. Chem. 2008, 80(10): 3890-3896.
    23. Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation anddetection of intracellular constituents on a microfluidic chip[J]. Lab. Chip. 2004, 4(1):47-52.
    24. Qin J, Ye N, Yu L, Liu D, Fung Y, Wang W, Ma X. Lin B. Simultaneous andultrarapid determination of reactive oxygen species and reduced glutathione inapoptotic leukemia cells by microchip electrophoresis[J]. Electrophoresis. 2005, 26(6):1155-1162.
    25. Ling Y Y, Yin X F, Fang Z L. Simultaneous determination of glutathione and reactiveoxygen species in individual cells by microchip electrophoresis[J].Electrophoresis.2005, 26(24): 4759-4766.
    26. Tang B, Yin L L, Wang X, Chen Z Z, Tong L L, Xu K H. A fast-response, highlysensitive and specific organoselenium fluorescent probe for thiols and its applicationin bioimaging[J]. Chem. Commun. (Camb). 2009, 5293-5295.
    27.徐克花刘芬,汪会霞,王姗姗,王璐璐,唐波.基于磺酸酯的荧光探针用于活细胞内过氧化氢的成像检测[J].中国科学B辑:化学. 2009, 39(6): 473-480.
    28. Li H M, Li Q L, Wang X, Xu K H, Chen Z Z, Gong X C, Liu X, Tong L L, Tang B.Simultaneous determination of superoxide and hydrogen peroxide in macrophageRAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescencedetection[J]. Anal. Chem. 2009, 81(6): 2193-2198.
    29. Gong X C, Li Q L, Xu K H,Liu X, Li H M, Chen Z Z, Tong L L, Tang B, Zhong H B.A new route for simple and rapid determination of hydrogen peroxide in RAW264.7macrophages by microchip electrophoresis[J]. Electrophoresis. 2009, 30(11):1983-1990.
    30. Ricci J E, Gottlieb R A, Green D R. Caspase-mediated loss of mitochondrial functionand generation of reactive oxygen species during apoptosis[J]. J Cell Biol. 2003,160(1): 65-75.
    31. Green D R, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science.2004, 305(5684): 626-629.
    32. Circu M L, Rodriguez C, Maloney R, Moyer M P, Aw T Y. Contribution ofmitochondrial GSH transport to matrix GSH status and colonic epithelial cellapoptosis[J]. Free Radic Biol. Med. 2008, 44(5): 768-778.
    33. Quillet-Mary A, Jaffrezou J P, Mansat V, Bordier C, Naval J, Laurent G. Implication ofmitochondrial hydrogen peroxide generation in ceramide-induced apoptosis[J]. J. Biol.Chem. 1997, 272: 21388-21395.
    34. Zhang R R, Wu C L, Tong L L, Tang B, Xu Q H. Multifunctional core-shellnanoparticles as highly efficient imaging and photosensitizing agents[J]. Langmuir.2009, 25(17): 10153-10158.
    35. Lluis J M, Colell A, Garcia-Ruiz C, Kaplowitz N, Fernandez-Checa J C. Acetaldehydeimpairs mitochondrial glutathione transport in HepG2 cells through endoplasmicreticulum stress[J]. Gastroenterology. 2003, 124(3): 708-724.
    36. Li Q, Zhang H, Wang Y, Tang B. Versatile programmable eight-path-electrode powersupply for automatic manipulating microfluids of a microfluidic chip. Sensors andActuators B. 2009, 136(1): 265–274.
    37. Liu X, Li Q L, Gong X C, Li H M, Chen Z Z, Tong L L,Tang B. Rapid determinationof superoxide free radical in hepatocellular carcinoma cells by MCE with LIF[J].Electrophoresis. 2009, 30(6): 1077-1083.
    38. Fu L M, Lin C H. Numerical analysis and experimental estimation of a low-leakageinjection technique for capillary electrophoresis[J]. Anal. Chem. 2003, 75(21):5790-5796.
    39. Rebrin I, Bayne A C V, Mockett R J, Orr W C, Sohal R S. Free aminothiols,glutathione redox state and protein mixed disulphides in aging Drosophilamelanogaster[J]. Biochem. J .2004, 382(Pt 1): 131-136.
    40. Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T. Current status of the molecularmechanisms of anticancer drug-induced apoptosis. The contribution of molecular-levelanalysis to cancer chemotherapy[J]. Cancer Chemoth. Pharm. 2002, 50(5): 343-352.
    41. Wang S, Konorev E A, Kotamraju S, Joseph J, Kalivendi S , Kalyanaraman B.Doxorubicin induces apoptosis in normal and tumor cells via distinctly differentmechanisms. intermediacy of H(2)O(2)- and p53- dependent pathways[J]. J. Biol.Chem. 2004, 279(24): 25535-25543.
    42. Magi B, Ettorre A, Liberatori S, Bini L, Andreassi M, Frosali S, Neri P, Pallini V, DiStefano A.Selectivity of protein carbonylation in the apoptotic response to oxidativestress associated with photodynamic therapy: a cell biochemical and proteomicinvestigation[J]. Cell Death Differ. 2004, 11(8): 842-852.
    43. Kotamraju S, Konorev E A, Joseph J, Kalyanaraman B. Doxorubicin-inducedapoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin trapsand ebselen. Role of reactive oxygen and nitrogen species[J]. J. Biol. Chem. 2000,275(43): 33585-33592.
    44. L'Ecuyer T, Sanjeev S, Thomas R, Novak R, Das L, Campbell W, Heide R V. DNAdamage is an early event in doxorubicin-induced cardiac myocyte death[J]. Am. J.Physiol. Heart Circ. Physiol. 2006, 291(3): H1273–H1280.
    45. Franco R, Cidlowski JA. Apoptosis and glutathione: beyond an antioxidant[J]. CellDeath Differ. 2009, 16: 1303-1314.
    1. West A P, Brodsky I E, Rahner C, Woo D K, Erdjument-Bromage H, Tempst P,Walsh M C, Choi Y, Shadel G S, Ghosh S. TLR signalling augments macrophagebactericidal activity through mitochondrial ROS[J]. Nature. 2011, 472(344): 476-480.
    2. Thomas D D, Ridnour L A, Isenberg J S, Flores-Santana W, Switzer C H, Donzelli S,Hussain P, Vecoli C, Paolocci N, Ambs S, Colton C A, Harris C C, Roberts D D,Wink D A. The chemical biology of nitric oxide: implications in cellular signaling[J].Free Radic Biol. Med. 2008, 45(1): 18-31.
    3. Ghafourifar P, Schenk U, Klein S D, Richter C. Mitochondrial nitric-oxide synthasestimulation causes cytochrome c release from isolated mitochondria. Evidence forintramitochondrial peroxynitrite formation[J]. J. Biol. Chem. 1999, 274(44):31185-31188.
    4. Poderoso J J, Lisdero C, Schopfer F, Riobo N, Carreras M C, Cadenas E, Boveris A.The regulation of mitochondrial oxygen uptake by redox reactions involving nitricoxide and ubiquinol[J]. J. Biol. Chem. 1999, 274(53): 37709-37716.
    5. Moncada S, Erusalimsky J D. Does nitric oxide modulate mitochondrial energygeneration and apoptosis? [J]. Nat. Rev. Mol. Cell Biol. 2002, 3(3): 214-220
    6. Deschacht M, Horemans T, Martinet W, Bult H, Maes L, Cos P. Comparative EPRstudy of different macrophage types stimulated for superoxide and nitric oxideproduction[J]. Free Radic Res. 2010, 44(7): 763-772.
    7. Amatore C, Arbault S, Bouton C, Drapier J C, Ghandour H, Koh A C. Real-timeamperometric analysis of reactive oxygen and nitrogen species released by singleimmunostimulated macrophages[J]. Chembiochem. 2008, 9(9): 1472-1480.
    8. Wegerich F, Turano P, Allegrozzi M, Mohwald H, Lisdat F. Cytochrome C mutantsfor superoxide biosensors. Anal. chem. 2009, 81(8): 2976-2984.
    9. Yamaguchi S, Kishikawa N, Ohyama K, Ohba Y, Kohno M, Masuda T, Takadate A,Nakashima K, Kuroda N. Evaluation of chemiluminescence reagents for selectivedetection of reactive oxygen species[J]. Anal. Chim. Acta. 2010, 665(1): 74-78.
    10. Cornelius J, Tran T, Turner N, Piazza A, Mills L, Slack R, Hauser S, Alexander J S,Grisham M B, Feelisch M, Rodriguez J. Isotope tracing enhancement ofchemiluminescence assays for nitric oxide research[J]. Biol. Chem. 2009, 390(2):181-189.
    11. Mukhopadhyay P, Rajesh M, Batkai S, Kashiwaya Y, Hasko G, Liaudet L, Szabo C,Pacher P. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-inducedcell death in vivo and in vitro[J]. Am. J. Physiol. Heart Circ. Physiol. 2009, 296(5):H1466-1483.
    12. Carroll J S, Ku C J, Karunarathne W, Spence D M. Red blood cell stimulation ofplatelet nitric oxide production indicated by quantitative monitoring of thecommunication between cells in the bloodstream[J]. Anal. Chem. 2007, 79(14):5133-5138.
    13. Lebuffe G, Schumacker P T, Shao Z H, Anderson T, Iwase H, Vanden Hoek T L. ROSand NO trigger early preconditioning: relationship to mitochondrial KATP channel[J].Am. J. Physiol. Heart Circ. Physiol. 2003, 284(1): H299-308.
    14. Li H, Li Q, Wang X, Xu K, Chen Z, Gong X, Liu X, Tong L, Tang B. Simultaneousdetermination of superoxide and hydrogen peroxide in macrophage RAW 264.7 cellextracts by microchip electrophoresis with laser-induced fluorescence detection[J].Anal. Chem, 2009, 81(6): 2193-2198.
    15. Chen Z, Li Q, Wang X, Wang Z, Zhang R, Yin M, Yin L, Xu K, Tang B. Potentmethod for the simultaneous determination of glutathione and hydrogen peroxide inmitochondrial compartments of apoptotic cells with microchip electrophoresis-laserinduced fluorescence[J]. Anal. Chem. 2010, 82(5): 2006-2012.
    16. Brunati A M, Pagano M A, Bindoli A, Rigobello M P. Thiol redox systems andprotein kinases in hepatic stellate cell regulatory processes[J]. Free Radic Res. 2010,44(4): 363-378.
    17. Mishra D P, Shaha C. Estrogen-induced spermatogenic cell apoptosis occurs via themitochondrial pathway: role of superoxide and nitric oxide[J]. J. Biol. Chem. 2005,280(7): 6181-6196.
    18. Burwell L S, Brookes P S. Mitochondria as a target for the cardioprotective effects ofnitric oxide in ischemia-reperfusion injury[J]. Antioxid. Redox. Signal. 2008, 10(3):579-599.
    19. Gao J J, Xu K H, Tang B, Yin L L, Yang G W, An L G. Selective detection ofsuperoxide anion radicals generated from macrophages by using a novel fluorescentprobe[J]. FEBS J. 2007, 274(7): 1725-1733.
    20. Zhang X, Kim W S, Hatcher N, Potgieter K, Moroz L L, Gillette R, Sweedler J V.Interfering with nitric oxide measurements. 4,5-diaminofluorescein reacts withdehydroascorbic acid and ascorbic acid. J. Biol. Chem. 2002, 277(50): 48472-48478.
    21. Kim W S, Ye X, Rubakhin S S, Sweedler J V. Measuring nitric oxide in singleneurons by capillary electrophoresis with laser-induced fluorescence: use of ascorbateoxidase in diaminofluorescein measurements[J]. Anal. Chem. 2006, 78(6): 1859-1865.
    22. Ye X, Rubakhin S S, Sweedler J V. Detection of nitric oxide in single cells[J]. Analyst.2008, 133(4): 423-433.
    23. Carreras M C, Poderoso J J. Mitochondrial nitric oxide in the signaling of cellintegrated responses. Am. J. Physiol. Cell. Physiol. 2007, 292(5): C1569-1580.
    24. Liu X, Feng L, Yan M, Xu K, Yu Y, Zheng X. Changes in mitochondrial dynamicsduring amyloid beta-induced PC12 cell apoptosis[J]. Mol. Cell Biochem. 2010,344(1-2): 277-284.
    25. Yang Q, ZhangX, Bao X, Lu H, Zhang W, Wu W, Miao H, Jiao B. Single celldetermination of nitric oxide release using capillary electrophoresis with laser-inducedfluorescence detection[J]. J. Chromatogr. A. 2008, 1201(1): 120-127.
    26. Liu X, Li Q, Gong X, Li H, Chen Z, Tong L, Tang B. Rapid determination ofsuperoxide free radical in hepatocellular carcinoma cells by MCE with LIF[J].Electrophoresis. 2009, 30(6): 1077-1083.
    27. Nagata N, Momose K, Ishida Y. Inhibitory effects of catecholamines and anti-oxidantson the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator ofnitric oxide[J]. J. Biochem. 1999, 125(4): 658-661.
    28. Manser R C, Houghton F D. Ca2+ -linked upregulation and mitochondrial productionof nitric oxide in the mouse preimplantation embryo[J]. J. Cell Sci. 2006, 119(10):2048-2055.
    29. Notas G, Nifli A P, Kampa M, Vercauteren J, Kouroumalis E, Castanas E. Resveratrolexerts its antiproliferative effect on HepG2 hepatocellular carcinoma cells, by inducingcell cycle arrest, and NOS activation[J]. Biochimica. Biophysica. Acta. 2006, 1760(11):1657-1666.
    30. 30. Ma X, Tian X, Huang X, Yan F, Qiao D. Resveratrol-induced mitochondrialdysfunction and apoptosis are associated with Ca2+ and mCICR-mediated MPTactivation in HepG2 cells[J]. Mol. Cell Biochem. 2007, 302(1-2): 99-109.
    31. Finocchietto P V, Franco M C, Holod S, Gonzalez A S, Converso D P, Antico ArciuchV G, Serra M P, Poderoso J J, Carreras M C. Mitochondrial nitric oxide synthase: amasterpiece of metabolic adaptation, cell growth, transformation, and death[J]. ExpBiol Med (Maywood). 2009, 234(9): 1020-1028.
    32. Hattori R, Otani H, Maulik N, Das D K. Pharmacological preconditioning withresveratrol: role of nitric oxide[J]. Am. J. Physiol. Heart Circ. Physiol. 2002, 282(6):H1988-1995.
    33. Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, MasutaniH, Yodoi J, Urano Y, Nagano T, Ichijo H. Amyloid beta induces neuronal cell deaththrough ROS-mediated ASK1 activation[J]. Cell Death Differ. 2005, 12(1): 19-24.
    1. El-Ali J, Sorger P K, Jensen K F. Cells on chips[J]. Nature. 2006, 442(7107): 403-411
    2. Tarpey M M, Fridovich I. Methods of detection of vascular reactive species: nitricoxide, superoxide, hydrogen peroxide, and peroxynitrite[J]. Circ. Res. 2001, 89(3):224-236
    3. Lin Y, Trouillon R, Safina G, Ewing A G. Chemical analysis of single cells[J]. Anal.Chem. 2011, 83(12): 4369-4392
    4.罗国安,王明义.单细胞水平的分析方法研究及进展[J].分析化学. 1995, 23(8):953-959
    5. Thomas D D, Ridnour L A, Isenberg J S, Thomas D D, Ridnour L A, Isenberg J S,Flores-Santana W, Switzer C H, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S,Colton C A, Harris C C, Roberts D D, Wink D A. The chemical biology of nitric oxide:implications in cellular signaling[J]. Free. Radic. Biol. Med. 2008, 45(8):18-31
    6.高健殷,方肇伦,夏方诠.微流控芯片单细胞进样和溶膜[J].高等学校化学学报2003, 24(9): 1582-1584
    7. Li P C, Harrison D J. Transport, manipulation, and reaction of biological cells on-chipusing electrokinetic effects[J]. Anal. Chem. 1997, 69(8): 1564-1568
    8. Cho S H, Chen C H, Tsai F S, Godin J M, Lo Y H. Human mammalian cell sortingusing a highly integrated micro-fabricated fluorescence-activated cell sorter(microFACS) [J]. Lab Chip. 2010, 10(12): 1567-1573
    9. Di Carlo D, Lee L P. Dynamic single-cell analysis for quantitative biology[J]. Anal.Chem. 2006, 78(23): 7918-7925
    10. Lin Y H, Yang Y W, Chen Y D, Wang S S, Chang Y H, Wu M H. The application of anoptically switched dielectrophoretic (ODEP) force for the manipulation and assemblyof cell-encapsulating alginate microbeads in a microfluidic perfusion cell culturesystem for bottom-up tissue engineering[J]. Lab Chip. 2012, 12(6): 1164-1173
    11. Lovchik R D, Tonna N, Bianco F, Matteoli M, Delamarche E. A microfluidic device fordepositing and addressing two cell populations with intercellular populationcommunication capability[J]. Biomed. Microdevices. 2010, 12(2):275-282
    12. Yasukawa T, Nagamine K, Horiguchi Y, Shiku H, Koide M, Itayama T, Shiraishi F,Matsue T. Electrophoretic cell manipulation and electrochemical gene-functionanalysis based on a yeast two-hybrid system in a microfluidic device[J]. Anal. Chem.2008, 80(10): 3722-3727
    13. Shi B, Huang W, Cheng J. Determination of neurotransmitters in PC 12 cells bymicrochip electrophoresis with fluorescence detection[J]. Electrophoresis. 2007, 28(10):1595-1600
    14. Zhang X, Li Q, Chen Z, Li H, Xu K, Zhang L, Tang B. Electrokinetic gatedinjection-based microfluidic system for quantitative analysis of hydrogen peroxide inindividual HepG2 cells[J]. Lab chip. 2011, 11(6): 1144-1150.
    15. Gao J J, Xu K H, Tang B, Yin L L, Yang G W, An L G. Selective detection ofsuperoxide anion radicals generated from macrophages by using a novel fluorescentprobe[J]. FEBS J. 2007, 274(7): 1725-1733.
    16. Yang Q, Zhang X, Bao X, Bao X, Lu H, Zhang W, Wu W, Miao H, Jiao B. Single celldetermination of nitric oxide release using capillary electrophoresis with laser-inducedfluorescence detection[J]. J. Chromatogr. A. 2008, 1201(1): 120-127
    17.Bao N, Le T T, Cheng J X, Lu C. Microfluidic electroporation of tumor and blood cells:observation of nucleus expansion and implications on selective analysis and purging ofcirculating tumor cells[J]. Integr. Biol. (Camb)2010, 2(2-3): 113-120
    18. Kim W S, Ye X, Rubakhin S S, Sweedler J V. Measuring nitric oxide in single neuronsby capillary electrophoresis with laser-induced fluorescence: use of ascorbate oxidasein diaminofluorescein measurements[J]. Anal. Chem. 2006, 78(6): 1859-1865

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700