新疆胀果甘草多糖的分离纯化、结构分析和生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘草(Glycyrrhiza spp.)是传统常用中草药,具有清热解毒、健脾补气、润肺止咳之功效,民间用于治疗乳腺炎、胃及十二指肠溃疡、慢性气管炎、咳嗽、气喘、慢性咽喉炎、食物中毒等症。甘草也是新疆具有区域特色的民族药资源和重要的大宗药材之一。甘草的现代化学及药理活性研究重点多集中在甘草酸、甘草次酸等三萜皂苷类化合物和甘草苷等黄酮类化合物上,而对甘草中另一类重要的生物活性物质甘草多糖(Glycyrrhiza Polysacchiade,GPS)的研究报道相对较少。本文以新疆甘草中资源最为丰富的主要原料草-胀果甘草(Glycyrrhiza inflata Bat.)为研究对象,首次系统研究胀果甘草多糖的提取、分离、纯化、理化性质、一级结构,对不同结构多糖的免疫活性、抗氧化活性以及抗肿瘤活性进行研究,并探讨活性多糖的构效关系。
     目的
     对新疆胀果甘草多糖进行系统的研究,阐明新疆胀果甘草多糖的化学结构和生物活性,探讨其构效关系,为研发多糖类新药和开发利用甘草多糖提供科学依据。
     方法
     1.胀果甘草多糖的提取分离和纯化:采用水提醇沉方法从胀果甘草中提取粗多糖,透析后经DEAE纤维素离子交换柱色谱分级,各级分采用Sephadex、Sepharose等凝胶色谱填料进行分离纯化,HPGPC法检测纯度并测定平均分子量。
     2.胀果甘草多糖的结构鉴定:采用GC、HPLC、GC-MS、IR、NMR、MS等现代色谱、光谱技术,结合酸水解、部分酸水解、甲基化、酶解等经典化学方法进行多糖的结构鉴定。
     3.胀果甘草多糖的生物活性研究:通过小鼠脾细胞体外增殖实验,对各多糖组分的免疫活性进行比较研究;通过4种肿瘤细胞株的体外抑制实验对胀果甘草粗多糖及其分离纯化得到的均一多糖进行抗肿瘤活性实验;运用化学发光体系产生自由基模型研究胀果甘草多糖清除自由基的能力,以评价其抗氧化活性。
     4.胀果甘草多糖的构效关系研究:采用部分酸水解、酶解及糖醛酸还原方法处理胀果甘草活性多糖,对各结构片断进行活性研究,确定活性片段,阐明构效关系。
     结果
     1.胀果甘草通过水提醇沉,再以Sevag法和反复醇洗除去蛋白质和色素,得到粗多糖。经DEAE-52离子交换柱色谱及Sepharose CL-6B和Sephadex G-50凝胶柱色谱反复分离纯化,首次从该植物中得到13个均一多糖组分,并研究分析了胀果甘草粗多糖和各均一多糖的性质和化学结构。分离纯化得到的13个均一多糖中,Gi-A1和Gi-A2为中性阿拉伯半乳葡聚糖;Gi-A3和Gi-A4为中性阿拉伯半乳聚糖; Gi-B1、Gi-C1、Gi-D1具有典型的RGⅠ型果胶多糖的结构特征:其主链包括1→4连接的α-D-GalpA构成的无分支的光滑区和由1,2-连接的α-L-Rhap和1,4-连接的的α-GalAp交替连接构成的带分支的毛发区,在Rha的的4位有分支;其它的包括2个中性杂多糖和4个酸性杂多糖。
     2.对胀果甘草粗多糖及各个分离部分进行免疫调节、抗肿瘤及抗氧化活性研究。小鼠脾细胞增殖实验结果表明,粗多糖中的透析袋内级分具有更好的免疫活性。经DEAE柱色谱分离,从水和低浓度盐洗脱的多糖级分以及从这些级分中分离纯化的多糖具有较高的体外免疫活性。体外肿瘤细胞抑制实验结果表明透析带外粗多糖以及通过较高浓度盐洗脱级分中分离纯化的大分子量多糖具有较好的抗肿瘤活性。清除自由基实验的结果表明,胀果甘草粗多糖及各均一多糖对DPPH自由基、羟自由基(·OH)和超氧自由基(O2·)具有一定的清除作用,提示胀果甘草多糖具有一定的抗氧化活性。
     3.探讨胀果甘草多糖的构效关系。对果胶多糖Gi-B1、Gi-C1、Gi-D1及其还原产物、部分酸水解产物、酶解产物的免疫活性及抗肿瘤活性等进行比较研究,探讨果胶多糖结构中中性糖支链、鼠李糖-半乳糖醛酸核心区及糖醛酸基团对其活性的影响,结果表明,去掉部分阿拉伯糖或半乳糖支链后的产物的免疫活性显著下降;酸性果胶多糖在糖醛酸被还原后,对小鼠脾细胞增殖能力显著下降;果胶多糖中Rha-GalA核心损失,其整体活性降低。抗肿瘤活性实验结果也证实了果胶多糖结构中中性糖支链、鼠李糖-半乳糖醛酸核心区及糖醛酸基团对其活性具有相似的影响作用。
     结论
     1.首次从新疆胀果甘草中分离纯化得到13个均一多糖组分,并对其一级结构进行了解析,发现胀果甘草多糖均为多分支的杂多糖,结构类型包括阿拉伯半乳葡聚糖、阿拉伯半乳聚糖和以多聚半乳糖醛酸夹杂有鼠李半乳糖醛酸聚糖为主链的果胶多糖等。
     2.新疆胀果甘草多糖具有多种生物活性,对小鼠脾细胞体外增殖反应具有显著的促进作用,体外抗肿瘤实验表明其对人胃癌细胞株BGC823等四种癌细胞株的生长具有一定的抑制作用,清除自由基实验表明其具有一定的抗氧化活性。
     3.胀果甘草中活性果胶多糖的构效关系实验证实了其结构中的部分活性片段:中性糖支链、鼠李糖-半乳糖醛酸核心及糖醛酸基团,这些活性片段的存在与胀果甘草果胶多糖体外免疫活性和抗肿瘤活性的表达有关。
     以上研究丰富了胀果甘草化学成分研究的内容,填补了我国对该种植物多糖研究的空白,明确了胀果甘草多糖的结构、生物活性及其构效关系,为阐明甘草药理、药效作用的物质基础研究提供了新资料,也为今后甘草的合理用药、综合利用提供了科学依据。
As an important traditional Chinese medicine, the roots and rhizomes of Glycyrrhiza spp. have been used for centuries with the activities of heat-clearing and detoxifying, invigorating the spleen and replenishing qi, moistenning lung, relieving cough and alleviate the drug property, etc. Glycyrrhiza spp. are also the ethnic medicine resource with the reginal characteristics and the famous medicinal materials in Xinjiang. Morden researches of chemistry and pharmacology of Glycyrrhiza spp. have focused on the chemical constituents, such as triterpenoids and flavonoids. Meanwhile, there are less researches of another active constituent-Glygyrrhiza polysaccharide(GPS). We have studied for the first time the structural elucidation, biological activities and structure-activity relationships of polysaccharides from Glycyrrhiza. inflata Bat.-the main resource of Xinjiang licorice.
     Objective
     To systematically study the polysaccharides from Glycyrrhiza inflata Bat. in Xinjiangand clarify the chemical structure, biological activities and structure-activity relationship of the polysaccharides, which will provide scientific basis for new polysaccharide drug research and comprehensive utilization of Glycyrrhiza polysaccharide.
     Methods
     1 . Extraction, isolation and purification of GPS. Water extracting-alcohol precipitating method was applied to extract crude polysaccharide and dialysis and DEAE cellulose ion-exchange chromatography were applied to fractionalize. Every fraction was purified by Sepharose and Sephadex gel chromatography.Purity and molecular weight of every homogeneous polysaccharide were determined by HPGPC method.
     2 . Structural elucidation of homogeneous polysaccharide.Based on chemical methods (including sugar compositin analysis, methylation analysis, uronic acid reduction, partial acid hydrolysis and enzymatic digestion) and spectral analysis (IR, NMR,GC-MS), the structural characteristics of homogeneous polysaccharide was investigated.
     3.Study on the biological activities of GPS.Mouse splenocyte proliferation assay in vitro, free-radicals scavenging assay and antiblastic assay of cancer cell in vitro.were applied respectively to investigate the immunological activity, antioxidation activity and antitumor activity.
     4.Study on the activity-structure relationship of active polysaccharides. Partial acid hydrolysis, uronic acid reduction and enzymatic digestion were used to treat the active polysaccharides from Glycyrrhiza Inflata Bat.To compare the immunostimulating and antitumor activities between the structural fragments and the original polysaccharides and clarify the active fragments and structure-activity relationship.
     Results
     1.The roots and rhizomes of Glycyrrhiza Inflata Bat.were extracted with distilled water and precipitated with ethnol. The deproteinized and decolored residues were separated and purified by DEAE ion-exchange chromatography and Sepharose CL-6B, Sephadex G-50 gel-filtration chromatography repeatedly. Thirteen homogeneous polysaccharides were obtained for the first time from Glycyrrhiza inflata Bat. Their properties and structures were identified on the basis of chemical methods and spectral methods. Among the 13 homogeneous polysaccharides, Gi-A1 and Gi-A2 were neutral arabinogalactoglucan; Gi-A3 and Gi-A4 were neutral arabinogalactan; Gi-B1,Gi-C1,Gi-D1 were typical RGⅠtype pectic polysaccharides,which contained a backbone of the repeating disaccharide[→4)-α-D-GalAp-(1→2)-α-L-Rhap-(1→],with substitution at O-4 of the rhamnopyranosyl residues; the rest included 2 neutral complicated heteropolysaccharides and 4 acidic complicated heteropolysaccharides.
     2.The results of the biological activities indicated that the crude GiP and its purified fractions had remarkable immunostimulating activities, especially the H2O and lower concentration NaCl eluate fractions from DEAE ion-exchange chromatography and their purified fractions. The results of antitumor tests on GiP and its purified fractions showed only the higer concentration NaCl eluate fractions had certain antitumor activities. Additionally, GiP and some purified fractions showed certain activities on scavenging free-radicals, such as DPPH·,·OH, and O2·, which indicated they would have antioxidation activity.
     3.Compared with their reduced products, partial hydrolysis products and enzymatic digestion products, three typical pectic polysaccharides Gi-B1, Gi-C1 and Gi-D1 have showed more potent biological activities. The results of the studies on the relationships between the structures and the activities of the active polysaccharides from Glycyrrhiza inflata Bat.indicated that the neutral glycosyl side chains, the uronic acid unit and the rhamnogalacturonan core of the active pectic polysaccharide were each involved in the expression of biological activities.
     Conclusion
     1.13 homogeneous polysaccharides were obtained from Glycyrrhiza inflata Bat.and their structure were elucidated for the first time.All of them were complicated heteropolysaccharides with multi-branch,including arabinogalactoglucan, arabinogalactan and pectin possessed anα-(1→4)-galacturonan backbone with some insertions ofα-(1→2)-rhamnopyranosyl residues.
     2.Crude and homogeneous polysaccharides from Glycyrrhiza inflata Bat.had various biological activities.They could stimulate mouse slenocyte proliferation in vitro, inhibitate the growth of some cancer cell in vitro and scanvenge free-radicals, such as DPPH,·OH, and O2·.
     3.Some active fragments of pectic polysaccharides from Glycyrrhiza inflata Bat. were revealed. The neutral glycosyl side chains, the uronic acid unit and the rhamnogalacturonan core of the active pectic polysaccharide were each involved in the expression of biological activities.
     For the first time, the structural characterizations and activities of polysaccharides of Glycyrrhiza inflata Bat. were reported. These researches enriched the studies on chemical constituents of Glycyrrhiza inflata Bat., filled the gaps in the studies on the polysaccharide of Glycyrrhiza inflata Bat., identifed the chemical structure, biological activities and the structure-activity relationship of the polysaccharides from Glycyrrhiza inflata Bat., which would provide research data for clarifying the efficient substance and for the comprehensive utilization of Glycyrrhiza.
引文
[1]郭忠武,王来曦.糖化学研究进展[J].化学进展, 1995, 7(1):10-29.
    [2] Franz G. Polysaccharides in pharmacology. Current application and future concepts[J]. Planta. Med., 1998, 55(6): 493-497.
    [3]田庚元,冯宇澄,林颖.植物多糖的研究进展[J].中国中药杂志, 1995, 20(7): 441-444.
    [4]李学禹.甘草属分类系统与新分类群的研究[J].植物研究, 1993, 13(1): 13- 43.
    [5]国家药典委员会.中华人民共和国药典2005版(一部) [M].化学工业出版社, 2005, 1:60.
    [6]江苏新医学院.中药大辞典(上册) [M].上海人民出版社, 1975:570.
    [7]梁冰,杨爱馥,黄凤兰,等.甘草属(Glycyrrhiza)化学成分及药理作用研究进展[J].东北农业大学学报, 2006, 37(1):115-119.
    [8]田庆来,官月平,张波,等.甘草有效成分的药理作用研究进展[J].天然产物研究与开发, 2006, 18:343-347.
    [9] Tookey H. L., Quentin J. New sources of water-soluble seed gums[J]. Economic Botany, 1965, 19(2):165-174.
    [10] Dzhumamuratova A., Seitmuratov E., Rakhimov D. A.et al. Polysaccharides from some Glycyrrhiza species. Khimiya Prirodnykh Soedinenii.1978, (4):513-514.
    [11]赵秀英,李遂英.甘草种子中多糖的分离和鉴定[J].西北药学杂志, 1989, 4(2):8.
    [12]刘丙灿,方积年.甘草葡聚糖的分离纯化与化学结构[J].药学学报.1991, 26(9):672-675.
    [13]周蓉,齐莉,王雅芬,等.甘草多糖的分离纯化及高效毛细管电泳分析[J].分析化学, 1999, 27(2): 245
    [14]王岳五,张海波,陈水平,等.甘草残渣中多糖的分离纯化及性质分析[J].南开大学学报:自然科学版, 1999, 32(4):36-38.
    [15] Takada K., Tomoda M., Shimizu N., et al. Core Structure of Glycyrrhizan GA, the Main Polysaccharide from the Stolon of Glycyrrhiza glabra var.glandulifera: Anti-complementary and Alkaline Phosphatase-Inducing of the Polysaccharide and its Degradation Products[J]. Chem.Pharm.Bull., 1992, 40(9):2487-2490.
    [16] Tomoda M., Tsuchiya K., Shimizu N., et al. Two polysaccharides with biological activities from the stolon of Glycyrrhiza glabra var. glandulifera[J]. Pharmaceu. Pharmacolo. L., 1994, 4(1):36-39.
    [17] Shimizu N., Tomoda M., Satoh M., et al. Characterization of a polysaccharide havingactivity on the reticuloendothelial system from the stolon of Glycyrrhiza glabra var. glandulifera[J]. Chem.Pharma. Bull., 1991, 39(8):2082-2086.
    [18] Tomoda M, Shimizu N, Kanari M, et al. Characterization of two polysaccharides having activity on the reticuloendothelial system from the root of Glycyrrhiza uralensis [J].Chem.Pharm.Bull., 1990, 38(6): 1667-1671.
    [19] Shimizu N, Tomoda M, Kanari M, et al. A novel neutral polysaccharide having activity on the reticuloendothelial system from the root of Glycyrrhiza uralensis[J]. Chem.Pharm.Bull., 1990, 38(11): 3069-3071.
    [20] Shimizu N., Tomoda M., Takada K., et al. The Core Structure and Immunological Activities of Glycyrrhizan UA, the Main Polysaccharide from the Root of Glycyrrhiza uralensis[J]. Chem.Pharm.Bull., 1992, 40(8):2125-2128.
    [21] Zhao J.F., Kiyohara H., Yamada H., et al. Heterogeneity and characterization of mitogenic and anticomplementary pectic polysaccharides from the roots of Glycyrrhiza uralensis Fisch et D.C[J].Carbohydr. Res., 1991, 219:149-172.
    [22] Tomoda M., Tsuchiya K., Shimizu N., et al The arabinogalactan core structure and immunological activities of glycyrrhizan UB, a polysaccharide from the root of Glycyrrhiza uralensis[J]. Pharmaceu. Pharmacolo. L., 1994, 3(6):229-32.
    [23] Kiyohara H., Takemoto N., ZHAO J.F., et al. Pectic Polysaccharide from Roots of Glycyrrhiza uralensis: Possible Contribution of Neutral Oligosaccharides in the Galacturonase-Resistant Region to Anti-Complementary and Mitogenic Activities[J]. Planta Med., 1996, 62(1):14-19.
    [24] Hirano M., Kiyohara, H., YAMADA H. Existence of a RhamnogalacturonanⅡ–like Region in Bioactive Pectins from Medicinal Herbs[J].Planta Med., 1994, 60(5):450-454.
    [25] Tunde K., Gyongyi G., Bela D., et al. Investigation of polysaccharides of Glycyrrhiza glabra L. and Glycyrrhiza echinata L. [J]. Acta Pharmaceu. Hungarica, 1998, 68(5):263-268.
    [26]孙润广,张静.甘草多糖螺旋结构的原子力显微镜研究[J].化学学报.2006, 64(24):2467-2472.
    [27] Gyongyi G., Bela L., Pal N.. Comparative study of Glycyrrhiza glabra L. and Glycyrrhriza echinata L. of different origin[J]. Acta Pharmaceu. Hungarica, 2001, 71(3): 325-328.
    [28] Tomoda M., Takada K, Shimizu N. Anti-complementary and alkaline phosphatase-inducing activities of glycyrrhizans UA, UB, UC and GA, the mainimmunologically active polysaccharides from licorice roots and stolons[J]. Pharmaceu. Pharmacolo. L., 1991, 1(2), :61-63.
    [29] Zhao J. F., Kiyohara H., Sun X. B., et al. In vitro immunostimulating polysaccharide fractions from roots of Glycyrrhiza uralensis Fish. et DC. [J]. Phytotherapy Res., 1991, 5(5):206-210.
    [30] Yamada H., Kiyohara, H., Takemoto N., et al. Mitogenic and complement activating activities of the herbal components of Juzentaihoto[J].Planta Med., 1992, 58(2):166-170.
    [31] Kiyohara, H. Elucidation of pharmacologically active polysaccharides from Kampo medicines and component herbs[J]. I. Congress Series ., 1998, 1157:161-171.
    [32] Nose M., Terawaki K., Oguri K., et al. Activation of macrophages by crude polysaccharide fractions obtained from shoots of Glycyrrhiza glabra and hairy roots of Glycyrrhiza uralensis in vitro[J].Biol.Pharm.Bull., 1998, 21(10):1110-1112.
    [33] Hirano M., Matsumoto, T., Kiyohara H., et al. Lipopolysaccharide-independent Limulus amebocyte lysate activating, mitogenic and anti-complementary activities of pectic polysaccharides from Chinese herbs[J]. Planta Med., 1994, 60(3):248-252.
    [34] Hwang J.H., Lee K.H., Yu, K.W. Characterization of the immunologically active components of Glycyrrhiza uralensis prepared as herbal kimchi[J]. Nutraceu. Food, 2003, 8(1): 29-35.
    [35]郑尧,何景华,高建华,等.甘草多糖对小鼠巨噬细胞吞噬功能的影响[J].中医药学刊, 2003, 21(2):254-255.
    [36]程安玮,金征宇,万发春.甘草多糖对小鼠腹腔巨噬细胞的激活作用[J].食品科学, 2007, 28(12):431-434.
    [37]史勇,杨贵贞.甘草多糖对小鼠淋巴细胞的激活增值效应[J].中国免疫学杂志.1986, 2(5):295-300.
    [38]聂小华,尹光耀,史宝军.甘草有效成分体外抗肿瘤活性和免疫活性的研究[J].中药材, 2003, 26(7):507-509.
    [39]王忱,谢广茹,史玉荣,等.甘草多糖的体内抑瘤作用及其机制的研究[J].临床肿瘤学杂志, 2003, 8(2):85-87.
    [40]王岳五,史玉荣,张海波,等.甘草残渣中多糖GPS抗肿瘤作用的研究[J].南开大学学报, 2000, 33(4):46-48.
    [41]史玉荣,魏熙胤,杨毅,等.流式细胞仪检测甘草多糖对小鼠S-180肉瘤的凋亡诱导作用.现代仪器?2005, (4):31-33.
    [42]常雅萍,毕无邪,杨贵贞.甘草多糖抗病毒作用研究[J].中国中药杂志, 1989,14(4):44-46.
    [43]王岳五,史玉荣,张海波,等.甘草多糖GPS对病毒的抑制作用[J].南开大学学报, 2001, 34(2):126-128.
    [44]杨玲,汪河滨,罗锋.甘草多糖清除自由基活性的研究[J].塔里木大学学报.2007, 19(1):1-3.
    [45]刘金荣,赵文彬,江发寿,等.不同生长期栽培甘草中多糖的含量测定[J].中成药.2005, 27 (6):708-710.
    [46]高丽娟,田晓燕.甘草残渣中多糖含量的分光光度法测定[J].宁夏大学学报.2002, 23(2):182-183.
    [47]徐红,帕丽达,堵年生,等.甘草多糖的提取及含量测定[J].天津药学.1998, 10(1):74-75.
    [48]王航宇,刘金荣,江发寿,等.新疆甘草多糖的超声提取及含量测定[J].基层中药杂志.2002, 16(1):7-8.
    [49]刘霞,谢建新,李艳,等.甘草多糖的超声提取及含量分析[J].西北药学杂志.2004, 19(2):60-61.
    [50]孙萍,李艳,顾承志,等.甘草多糖的微波提取及含量测定[J].基层中药杂志.2001, 15(6):22-23.
    [51]刘晔玮,宋海,马振远,等.甘草多糖提取工艺的研究[J].中成药.2006, 28(5):729-731.
    [52]赵春建,李春英,付玉杰,等.甘草多糖超声提取工艺及数学模拟[J].应用化学.2004, 24(11):1181-1183.
    [53]李晓瑾,杨卫东,文浩.简析新疆甘草资源现状[J].中药研究与信息, 2002, 4(2):26-29.
    [54]赵玉英,张如意,刘鸣.胀果甘草化学成分的研究(Ⅱ)[J].北京医科大学学报, 1990, 22(4):283-285.
    [55]邹坤,赵玉英,张如意,等.胀果甘草化学成分的研究(Ⅱ)[J].北京医科大学学报, 1994, 26(5):390.
    [56]邹坤,赵玉英,张如意.胀果甘草中皂苷Ⅰ和Ⅱ的结构鉴定[J].药学学报, 1994, 29(5):393-396.
    [57] Navarini L, Gilli R, Gombac V, et al. Polysaccharides from hot water extracts of roasted coffea Arabica beans:isolation and characterization[J].Carbohydr. Polym., 1999,40(1):71-81.
    [58]魏远安.高效凝胶渗透色谱法测定多糖纯度及分子量.药学学报, 1989, 24(7):532-536.
    [59] Chaplin M.F, Kennedy J.F., Hydrazinolysis of N-glycosidic linkage. Carbohydrate Analysis. IRL Press, Oxford, Washington DC., 1986:151
    [60] Nelly B, Gustav A. A New method for quantitative determination of uronic acids[J]. Anal. Biochem., 1973, 54:484~489.
    [61] Needs P W, Selvendran R R. Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide[J]. Carbohydr. Res., 1993, 245:1-10.
    [62] Johansson A., Jasson P.K., Widmalm G. et al. Structure of the polysaccharide zanfloelaborated by Erwinia tahitica ATCC217 11[J]. Carbohydr. Res., 1994, 264:129-134.
    [63] Tomoda M, Shimizu N, Shimada K, et al. Isolation and structural features of two glucans from the rhizomes of Crinum latifolium[J]. Chem. Pharm. Bull., 1985, 33:16~21.
    [64] Taylor R L, Conrad H. Stiochiometric depolymarization of polyuronides and glycosamino glycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups[J]. Biochem., 1972, 11:1383~1388.
    [65] Bensadoum A, Weinstein D. Assay of proteins in the presence of interfering materials[J]. Anal. Biochem., 1976, 70, 241~250.
    [66]徐任生.天然产物化学(第二版)[M].北京:科学出版社.1993:112.
    [67]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社, 1999.
    [68] Rosenbohm C., Lundt I., Christensen TM, et al. Chemically methylated and reduced pectins: preparation, characterization by 1H NMR spectroscopy, enzymatic degradation and gelling properties[J]. Carbohydr. Res., 2003, 338():637-649
    [69]方积年.多糖体的结构分析[J].国外医学(药学分册), 1981, 4:222-228.
    [70]Jansson P.E., Kenne L.. A practical guide to the methylation analysis of carbohydrates(A). Chemical Communication[M]. Stockholm: University of Stockholm., 1976, 8:1-74.
    [71]李文雍,董群,方积年.夹竹桃叶中一种阿拉伯半乳葡聚糖的化学结构[J].中草药, 1999, 30(12):891-893.
    [72]霍贤,梁忠岩,张雅君,等.红花水溶性多糖CTP的结构研究[J].高等学校化学学报, 2005, 26(9):1656-1658.
    [73] Duan JY, Wang XS, Dong Q, et al. Structural features of a pectic arabinogalactan with immunological activity from the leaves of Diospyros kaki[J]. Carbohydr.Res., 2003, 338:1291-/1297.
    [74] Peng YF, Zhang LN, Zeng FB. et al.Structure and antitumor activities of the water-soluble polysaccharides from Ganoderma tsugae mycelium [J].Carbohydr. Polym., 2005, 59:385-392.
    [75] Roger O., Kervarec N., Ratiskol J., et al.Structural studies of the main exopolysaccharide produced by the deep-sea bacterium Alteromonas infernos [J].Carbohydr.Res., 2004, 339:2371-2380.
    [76] Bao X.F., Wang X.S., Dng Q., et al. Structural features of immunologically active polysaccharides from Ganoderma lucidum[J]. Phytochem., 2002, 59:175-181.
    [77] Zhao C. Li M., Luo YF., et al. Isolation and structural characterization of an immunostimulating polysaccharide from fuzi, Aconitum carmichaeli [J]. Carbohydr. Res., 2006, 341:485-/491.
    [78]霍贤,梁忠岩,张雅君,等.红花水溶性多糖CTP的结构研究[J].高等学校化学学报, 2005, 26(9):1656-1658.
    [79]于德泉,杨峻山.分析化学手册/第七分册(核磁共振波谱解析)[M].北京:化学工业出版社, 1999: 904-906.
    [80]郭振楚.糖类化学[M].北京:化学工业出版社, 2005:
    [81]王顺春,金丽伟,方积年.徐长卿中阿拉伯半乳聚糖CPB64的化学结构[J].药学学报, 1999, 34(10):755-758.
    [82] Vieira I. G. P., Mendes F.N. P., Gallao M. I. et al. NMR study of galactomannans from the seeds of mesquite tree (Prosopis juliflora (Sw) DC) [J].Food Chem., 2007, 101:70–73.
    [83]王顺春,方积年.徐长卿多糖CPB54的结构及其活性的研究[J].药学学报, 2000, 35(9):675-678.
    [84]缪平,贺峰,金声.罂粟花粉中阿拉伯半乳聚糖的结构及圆二色性的研究[J].高等学校化学学报, 1994, 15(3):379-382.
    [85]黄琳娟,田庚元,齐春会,等.枸杞子糖缀合物LbGp4糖链的结构及其免疫活性的研究[J].高等学校化学学报, 2001, 22(3):407-411.
    [86] Dong Q, Yao J, Fang JN. Structural characterization of the water-extractable polysaccharides from Sophora subprostrata roots[J]. Carbohydr. Polym., 2003, 54: 13-19.
    [87] Martinez M., Pinto G.L., Rivas C., et al. Chemical and spectroscopy studies of the gum polysaccharide from Acacia macracantha [J].Carbohydr.Polym., 1996, 29:247-252.
    [88] Dong Q, Fang JN. Structural elucidation of a new arabinogalactan from the leaves ofNerium indicum[J]. Carbohydr. Polym., 2001, 332: 109-114.
    [89] Christopher J, Xavier. Full NMR assignment and revised structure for the capsular polysaccharide from Streptococcus pneumoniae type 15B[J]. Carbohydr. Res., 2005, 340:403~409.
    [90] Guetta O, Mazeau K, Auzely R, et al. Structure and properties of a bacterial polysaccharide named Fucogel[J]. Biomacromolecules, 2003, 4:1362~1371.
    [91] Stroop C. J.M., Xu Q.W., Retzlaff M. et al.Structural analysis and chemical depolymerization of the capsular polysaccharide of Streptococcus pneumoniae type 1 [J].Carbohydr.Res., 2002, 337:335-344.
    [92] Oerrone P., Hewage C.M. Thomson A.R., et al. Patterns of methyl and O-acetyl easterification in spinach pectins: new complexity [J]. Phytochem., 2002, 60:67-77.
    [93] Vignon M. R., Carcia-Jaldon. Structural features of the pectic polysaccharides isolated from retted hemp bast fibres[J].Carbohtdr. Res., 1996, 296:249-260.
    [94] Ridley B L, O’Neill M A, Mohnen D A, et al. Pectins: structure, biosynthesis, and oligogalacturonide -related signaling[J]. Phytochem., 2001, 57:929~967.
    [95] Bushneva O. A., Ovodova R. G., Shashkov A. S., et al. Structure of Silenan, a Pectic Polysaccharide from Campion Silene vulgaris (Moench) Garcke[J]. Biochemistry (Moscow), 2003, 68(12): 1360-1368.
    [96] An JH, Zhang L, O’Neill M.A., et al. Isolation and structural characterization of endo-rhamnogalacturonase-generated fragments of the backbone of rhamnogalacturonanⅠ[J]. Carbohydr.Res., 1994, 264:83-96.
    [97]Habibia Y., Mahrouzb M., Vignon M.R. Arabinan-rich polysaccharides isolated and characterized from the endosperm of the seed of Opuntia ficus-indica prickly pear fruits [J].Carbohydr. Polym., 2005, 60:319-/329.
    [98] Iacomini M., Serrato R. V., Sassaki G. L., et al. Isolation and partial characterization of a pectic polysaccharide from the fruit pulp of Spondias cytherea and its effect on peritoneal macrophage activation [J].Fitoterapia, 2005, 76: 676–683.
    [99] Jia L.M., Liu L., Dong Q. et al. Structural investigation of a novel rhamnoglucogalactan isolated from the fruiting bodies of the fungus Hericium erinaceus [J].Carbohydr.Res., 2004, 339:2667-2671.
    [100]Kardosova A., Ebringerova A., Alfoldi J., et al.Structural features and biological activity of an acidic polysaccharide complex from Mahonia aquifolium (Pursh) Nutt [J].Carbohydr. Polym., 2004, 57:165-176.
    [101]Bushneva O.A., Ovodova R.G., Shashkov A.S., et al. Structural studies on hairyregion of pectic polysaccharide from campion Silene vulgaris (Oberna behen) [J].Carbohydr. Polym. 2002, 49:471-478.
    [102]Golovchenko V.V., Ovodova R.G., Shashkov A.S., et al. Structural studies of the pectic polysaccharide from duckweed Lemna minor L. [J].Phytochem.2002, 60:89-97.
    [103]Zhao Z.H., Li J., Wu X.M.. et al. Structures and immunological activities of two pectic polysaccharides from the fruits of Ziziphus jujuba Mill. cv. jinsixiaozao Hort. [J]. Food Res. Int., 2006, 39:917–923.
    [104]Zhao Z.H., Dai H., Wu X.M.. et al. Characterization of a pectic polysaccharide from the fruit of Ziziphus jujuba [J]. Chem. Nat. Comp., 2007, 43(4):374-376.
    [105]Polle A.Y., Ovodova R.G., Shashkov A.S., et al. Some structral features of pectic polysaccharide from tancy, Tanacetum vulgare L. [J].Carbohydr. Polym., 2002, 49:337-344.
    [106]Zhan D.F., Janssen P., Mort A.J.. Scarcity or complete lack of single rhamnose residues interspersed within the homogalacturonan regions of citrus pectin [J]. Carbohydr. Res., 1998, 308:373-380.
    [107]Habibi Y., Heyraud A., Mahrouz m., et al. Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits [J]. Carbohydr. Res., 2004, 339:1119-1127.
    [108]Kiessling P., Senchenkova S. N., Ramm M. et al. Structural studies on the exopolysaccharide from Erwinia persicina [J]. Carbohydr.Res., 2005, 340:1761-1765.
    [109]Porolis H., Porolis L.A.S. The structure of O-specific polysaccharide from Escherichia coli O133 lipopolysaccharide [J]. Carbohydr.Res., 1995, 267:263-269.
    [110]黄桂东,钟先锋.阿拉伯半乳聚糖的研究进展[J].食品与机械, 2006, 22(4): 141-144.
    [111]Vidal S., Doco T., Williams P. et al. Structural characterization of the pectic polysaccharide rhamnogalacturonanII:evidence for the backbone location of the aceric acid-containing oligoglycosylside chain. Carbohydr.Res., 2000 326:277-294.
    [112]田美红,张铁民,张丽萍,等.人参果胶SB2-1的结构研究[J].东北师范大学学报(自然科学版), 2007, 39(3):88-91.
    [113]田美红,魏民,张丽萍,等.人参果胶SB的分离纯化及其结构特征[J].东北师范大学学报(自然科学版), 2005, 37(2):93-96.
    [114]陈璇,张翼,张剑波.植物多糖的研究进展[J].中国新药杂志, 2007,16(13):1000-1005.
    [115]Lee S.K., Lee M.K., Yun YP, et al. Acemannan purified from Aloe vera induced phenotypic and functional maturation of immature dendritic cells[J]. Int. Immunopharmaco., 2001, 1:1275-1284.
    [116]方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社, 2002.
    [117]颜军,郭小强,邬晓勇,等.银耳多糖的提取及其清除自由基作用[J].成都大学学报, 2006, 25(1): 35-38.
    [118]韩强,林惠芬.一些天然提取物对超氧自由基和羟基自由基的清除作用[J].日用化学工业, 2000, 30(3): 14-17.
    [119]张均田.现代药理实验方法,上册[M].北京:北京医科大学?中国协和医科大学联合出版社, 1998. 819-822.
    [120]徐叔云.药理实验方法学[M].北京:人民卫生出版社, 2002.1798.
    [121]孙元琳,汤坚.果胶类多糖的研究进展[J].食品与机械, 2004, 20(6):60~63.
    [122]王雪松.积雪草多糖的分离纯化?结构分析?生物活性研究及葡聚糖和半乳聚糖的化学修饰研究[D].上海:中国科学院上海药物研究所, 2004.
    [1]郭忠武,王来曦.糖化学研究进展[J].化学进展, 1995, 7(1):10~29.
    [2]方积年,丁侃.天然药物—多糖的主要生物活性及分离纯化方法[J].中国天然药物.2007,5(5):338-347.
    [3] Shear M.J, Turner F.C. Chemical treatment of tumors; isolation of hemorrhagic- producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrate[J]. J. Natural Cancer Inst., 1943, 4:81~87.
    [4] Whistler R.L., Bushway A.A., Singh P.P. Noncytotoxic, antitumor polysaccharides [J]. Adv Carbohydr. Chem. Biochem, 1976, 32:235~275.
    [5]方一苇.具有药理活性多糖的研究现况[J].分析化学, 1994, 22(9):955~960.
    [6] Cui Y, Kima D.S, Park K.C. Antioxidant effect of Inonotus obliquus[J]. J.Ethno- pharmacol., 2005, 96(1-2): 79-85.
    [7] Zhang G. L.,Wang Y.H,Niw,et al. Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury inmice [J].World J.Gastroenterol., 2002, 8(4): 728-733.
    [8] Chen Y.Y, Chang H.M. Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemicU937 and HL-60 cells[J].Food Chem. Toxicol.,2004, 42(5): 759-769.
    [9]谭周进,谢达平.多糖的研究进展[J].食品科技, 2002, 3:10~12.
    [10] Koh J.H., Kim J.M., Chang U.J., et al. Antifatigue and antistress effect of the hot-water extract from Mycella of Cordyceps Sinensis[J]. Biol. Pharm. Bull.,2003,26(5):691.
    [11] Shibata H., Kimura T.I., Nagaoka M., et al. Properties of fucoidan from Cladosiphon okamuranus tokida in gastric mucosal protection[J]. Biofactors,2000,11(4):235.
    [12] Mulloy B, Mourao P.A., Gyay E. Structure /function studies of anticoagulant sulphated polysaccharides using NMR[J]. J.Biotechnol.,2000,77(1):123.
    [13] Moseley R., Waddington R.J, Embery G. Hyaluronan and its potential role in periodontal healing[J]. Dent. Update,2002,29(3):114.
    [14] Rice K.G., Wu P.G., Brand L., et al. Experimental determination of oligosaccharide three-dimensional structure[J]. Curr.Opin.StruBiol.,1993,3:669.
    [15]巢志茂,庸一,神藤平三郎.水性二相系统与逆流色谱对牛膝多糖的化研究[J].中国药学杂志, 1999, 34(7):444~446.
    [16]殷刚,刘铮,李琛,等.螺旋藻糖蛋白的分离纯化及其性质研究[J].高等学校化学学报, 1999, 20(4):565~568.
    [17] Awal A., Hap Q. N., Quader A., et al. Structure study of a polysaccharide from the seeds of borassus flabellifer linn[J]. Carbohydr. Res., 1995, 277:189.
    [18] Jann B, Alexander S, Kochanowski H, et al. Structure of the O16 polysaccharide from escherichia colli O16: K1: an NMR investigation[J]. Carbohydr. Res., 1994, 264:305.
    [19]曾群力,霍亚楠,毛俊浩,等.肉苁蓉多糖的分离?纯化和鉴定[J].中草药.2002, 33(12):1057~1058.
    [20]鞠海,张建民,魏峰,等.天然多糖的分离?纯化和结构鉴定[J].国外医药·植物药分册,2000,15(3):107-113.
    [21]友田正司.生药中生物活性多糖(3)[J].国外医学中医中药分册,1990,12(5):20.
    [22]方积年.多糖的分离纯化及其纯度鉴别与分子量测定[J].药学通报.1984,19(10):46-49.
    [23]张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社, 1999:94-126.
    [24]张翼伸.有关糖复合物的分级纯化?结构确定?生物活性的几个问题[J].生命的化学, 1994, 14(6):42~44.
    [25]魏远安.高效凝胶渗透色谱法测定多糖纯度及分子量[J].药学学报.1989,24(7):532-536.
    [26] Wang Y., Zhang L.,Li Y.,et al. Correlation of structure to anti-tumor activities of five derivatives of aβ-glucan from Poria cocossclerotium[J].Carbhydr. Res., 2004, 339(15): 2567-2574.
    [27] Lucey J.A., Srinivasanm, Singh H.,et al .Characterization of commercial and experimental sodium caseinates by mutiangle laser light scattering and size-exclusion chromatography[J]. J. Agric. Food Chem., 2000, 48(5): 1610-1616.
    [28]陈晓明,徐愿坚,田庚元.牛膝多糖的理化性质研究及结构确证[J].药学学报, 2005, 40(1): 32-35.
    [29] Kim Y., Park H.W., Kim J.H., et al. Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus[J].Life Sci., 2006, 79(1): 72-80.
    [30] Volpin, Maccarif. Electrophoretic approaches to the analysis of complex polysaccharides[J].J. Chromatogr., 2006, 834(1 /2): 1-13.
    [31] Zaia J. Mass spectrometry of oligosaccharides[J].Mass Spectrom Rev., 2004, 23(1-2): 161-227.
    [32]黄瑞松.中草药多糖含量测定方法概述[J].中国药师,2005, 8(1): 68-70.
    [33]吴东儒.糖类的生物化学[M].北京:高等教育出版社, 1987.
    [34]来鲁华,杨婷.寡糖的构象分析[J].生物化学与生物物理进展,1995, 22 (4) : 290 - 291.
    [35] Peters T.,Meyer B., Stuike P.R., et al. Amontecarb method for conformational analysis of saccharides[J]. Carbohy.Res, 1993, 238: 49.
    [36] Imberty A., Perez S. Flexibilty in a tetrasaccharide fragment from the high mannose type of N - linked oligosaccharides[J]. Int. J. Biol. Macromol., 1993, 15 (2) : 17.
    [37] Olafsdottir E. S., Ingolfsdottir K. Polysaccharides from lichens: structural characteristics and biological activity[J]. Plant. Med., 2001, 67(3):199~208.
    [38] Mazeau K., Moine C., Krausy P., et al. Conformational analysis of xylan chains[ J].Carbohydr. Res., 2005, 340(18):2752-276
    [39] Tzianabos A.O.. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function[J]. Clin. Microbiol. Rev. 2000, 13(4):523~533.
    [40]方积年.多糖体的结构分析[J].国外医学.药学分册,1981,7(4) : 222 - 228.
    [41] Barbosaam, Stelutirm,Dekker R.F.H, et al. Structural characterization of Botryosphaeran: a (1→3; 1→6)-β-D-glucan produced by the ascomyceteous fungus, Botryosphaeriasp[J]. Carbohydr. Res., 2003, 338(16): 1691-1698.
    [42] Schmid F., Stone B.A.,Mcdougal B.M., et al. Structure of epiglucan, a highly side-chain: branched (1→3; 1→6)-β-glucan from the micro fungus Epicoccum nigrum Ehrenb·ex Schlecht[J].Carbohydr. Res., 2001, 331(2): 163-171·
    [43] Roffs B. Chemically bonded stationary phase for carbohydrate analysis in liquid chromatography[J]. J. Chromatogr., 1976, 117: 206.
    [44]陶乐平,丁在富,张部昌.气相色谱在多糖结构测定中的应用[J].色谱, 1994, 12 (5) : 351 - 354.
    [45]陆德培,黄克武,李荣春.糖的高效液相色谱分析研究[J].生物化学与生物物理学报, 1982, 14 (5) : 501 - 506.
    [46]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学, 2000, 28 (2) : 240 - 247.
    [47]方一韦.糖结构与质谱分析[J].质谱学报, 1995, 16 (1) : 128.
    [48]蒋可, Burin G..糖复合物中糖链部分质谱测定[J].化学通报, 1990, (6) : 30 - 38.
    [49] Yanamoto K. Microbial endoglycosidases for analysis of oligosaccharide chains in glycoproteins [J]. J. Biochem., 1994, 116: 229 -235.
    [50] Edge C. J., Rademacher T.W.,Wormald M.R., et al. Fast sequencing ofoligoscaccharides: the reagent array analysis method[J].Pro. Natl. Acad .Sci. USA, 1992, 89: 6388 - 6342.
    [51] Weitzhandler M., Kadlecek D., Avdalovic N., et al. Monosaccharide and oligosaccharide analysis of protein transferred to polyvinylidence fluoride membrances after sodium dodecyl sulfate-polyacrylamide gel electropheresis[J].J. Biol. Chem., 1993,268(7): 5121.
    [52] Ruiter G.A., Schols H.A., Voragen A.G., et al. Carbohydrate analysis of water-soluble uronic acid containing polysaccharide with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods[J]. Anal. Biochem., 1992, 207:176~180.
    [53]辛梅华,徐金瑞,方伯山,等.蔗渣水解液及发酵液中糖及糖醇的高效液相色谱分析[J].分析测试学报, 1997, 16(6):44~46.
    [54]张津枫,王健刚,邓国才,等.葡萄糖发酵液D-核糖含量的高效液相色谱分析[J].高等学校化学学报, 2001, 22(1):43~45.
    [55]茂庆文,朱叔韬.毛细管电泳技术对单糖氨基吡啶衍生物的检测[J].色谱, 1994, 12(3):194~197.
    [56]张剑波,田庚元.寡糖分离与结构分析进展[J].生物化学与生物物理学报, 1998, 25(2):114~118.
    [57]丁侃,方积年.多糖类药物的毛细管电泳分析方法及其应用[J].色谱, 1999, 17(5):346~350.
    [58]张利,陈蓁蓁,王燕,等.糖类物质的毛细管电泳分析[J].化学研究与应用, 2003, 15(5):607~611.
    [59] Wang Q.J., Yu H., Zong J., et al. Determination of the composition of Chinese ligustrum lucidum polysaccharide by cap illary zone electrophoresis with amperometric letection[J]. Pharma. Biomed. Anal., 2003, 31 (3) : 473 - 480..
    [60] Kabelma, Heijniswh, Bakx E.J.,etal. Capillary electrophoresis fingerprinting, quantifi -cation and mass-identification of various 9-aminopyrene-1,4, 6-trisulfonate -derivatized oligomers derived from plant polysaccharides[J].J. Chromatogr., 2006,1137(1): 119-126.
    [61] Kabelma. Mass-identification of various 9-aminopyrene-1, 4, 6-trisulfonate-derivatize -d oligomers derived from plant polysaccharides[J].J. Chromatogr., 2006,1137(1): 119-126.
    [62]李廷富.毛细管电泳与质谱联用技术[J].国外医学.临床生物化学与检验学分册, 2002, (06):352~353.
    [63]董群,方积年.寡糖及多糖甲基化方法的发展及现状[J].天然产物研究于开发, 1995, 7(2):60~64.
    [64]李波,许时婴.难溶于二甲亚砜多糖的甲基化方法研究[J].天然产物研究与开发, 2004, (03):207~209.
    [65]邢其毅,徐瑞秋,周政,等.有机化学[M].北京:高等教育出版社,1993.
    [66]刘玉红,王凤山.核磁共振波谱法在多糖结构分析中的应用.食品与药品.2007,9(8):3 9-42.
    [67]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学, 2000, 28(2):240~247.
    [68]田媛,张尊建.糖类结构的核磁共振波谱及质谱分析[J].药学进展, 2003, 27(2):78~80.
    [69]陈伟,林新华,黄丽英,等.芦荟多糖中游离蛋白去除的分光光度法[J].光谱实验室, 2005, (01):113~115.
    [70]夏朝红,戴奇,房韦,等.几种多糖的红外光谱研究[J].武汉理工大学学报.2007,29(1):45-47.
    [71]方一苇.糖结构与质谱分析[J].质谱学报, 1995, 16(1):1~8.
    [72] Shen X.D, Perreaul T. Electrospray ionization mass spectrometry of 1-phenyl-3-methyl-5-pyrazolone derivatives of neutral and N-acetylated oligosaccharides[J]. J. Mass Spectr., 1999,34(5):502-510.
    [73]郝春燕,马秀丽,刘志强,等.糖的基质辅助激光解吸/电离质谱(MALDI-MS)研究[J].高等学校化学学报,1998,19(7):1090-1094.
    [74]司端运,钟大放.液相色谱-光谱联用技术在天然产物化学筛选中的应用[J].药学学报,2002,37(6):485-489.
    [75] Vinogradov E, Wasser S P. The structure of a polysaccharide isolated from Inonotus levis P. Karst. mushroom (Heterobasidiomycetes) [J].Carbohydr. Res.,2005,340(18):2821-2825.
    [76] Jun T, Shigeyoshi K, Hiroshi S. Structural determination of an exocellular mannan from Rhodotorula mucilaginosa YR-2 using ab initio assignment of proton and carbon NMR spectra[J]. Carbohydr. Res., 2001, 335(2):133-139.
    [77] Millane R.P. French A.D.,Brady J.W. In Computer Modeling of Carbohydrate Molecules[J]. American Chem. Society Washington,1990, 430:315.
    [78]王顺春,方积年. X-射线纤维衍射在多糖结构研究中的应用[J].天然产物研究与开发, 2000, 12(2):75~80.
    [79]李斌.原子力显微镜在多糖研究中的应用进展[J].食品科学.2005,26(4):264-269.
    [80]鲍幸峰,方积年.原子力显微镜在生物大分子结构研究中的应用进展[J].分析化学, 2000, 28(10):1300~1307.
    [81] Abu-Lail N. I., Camesano T. A. Polysaccharide properties probed with atomic force microscopy[J]. J. Microscopy. 2003, 212(3):217–238.
    [82]段金友,方积年.圆二色谱在糖类化合物结构研究中的应用[J].天然产物研究与开发.2004,16(1):71-75.
    [83]缪振春,冯锐,周永新,等.四川九节龙中新四糖三菇皂普结构和核磁共振研究[J].有机化学, 2000,20(3):361-366.
    [84] Terry L.B., Sarko A. The Triple Helical Structure of Lentinan, a Linearβ-(1→3)-D-Glucan[J].Can.J.Chem.,1977,55(2):293-299.
    [85] Radha A., Chandrasekaran R. X-Ray and Conformation Analysis of Arabinan[J].Carbohydr. Res.,1997,298:105-115.
    [86]周鹏,谢明勇,聂少平,等.茶多糖TGC的结构表征[J].中国科学C辑生命科学, 2004, 34(2): 178-185.
    [87] Gunning A.P., Kirby A.R., Ridout, et al. Investigation of Gellan Networks and Gels by Atomic Force Microscopy[J].Macromoleculues,1996, 29(21): 6791-6796.
    [88]戴玲,廖洪梅,沈业寿,等.原子力显微镜观察丹皮多糖分子的形貌结构及自组装行为[J].激光生物学报.2007,16(6):749-753.
    [89]强俊超,王明珍,房喻,等.荧光探针法研究壳聚糖水凝胶形成过程及其性能[J].化学学报,2000,58(6):627-630.
    [90]黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发, 1999, 11(5):90~98.
    [91] Mashihi K.N., Lange W. Immunotherapectic of Infection Diseases[M]. Berlin :Springer-Verlag, 1990, 9:23-51.
    [92] Misaki H., Kaluta M., et al. Studies on interrelation of structure and antitum or effects of polysaccharides[J]. Carbohydr. Res., 1981, 92:115~129.
    [93]Olafsdottir E.S., Omarsdottir S., Paulsen B.S., et al. Rhamnopyranosyl galactofuranan, a new immunologically active polysaccharide from Thamnolia sub liformis [J]. Phyto. Medicine, 1999, 6(4):273~279.
    [94]冯慧琴等.灰树花子实体多糖和菌丝体多糖的比较分析[J].华东师范大学学报,(自然科学版),2001,(3):91~96.
    [95] Demleitner S., Kraus J., Franz G. Synthesis and anti-tumor activity of derivatives of curdlan and lichenan branched at C6[J]. Carbohydr. Res., 1992, 226(2):239~246.
    [96] Edge C.J., Rademacher T.W., Wormald M.R., et al. Fast Sequencing ofOligosaccharides: the Reagent - array Analysis Method[J]. Proc. Nat. Acad. Sci., 1992, 89 (4) : 6338 ~6342.
    [97]杜巍,李元瑞,袁静.食药用菌多糖生物活性与结构的关系[J].食用菌,2001,(2):3~5.
    [98] Zhao G, Kan J, Li Z, et al. Characterization and immunostimulatory activity of an (1→6)-a-D-glucan from the root of Ipomoea batatas[J].Int. Immunopharmacol., 2005, (9):1436-1445.
    [99] Nair P.K., Melnick S.J., Ramachandran R.,et al. Mechanism of macrophage activation by (1,4)-alpha-D-glucan isolated from Tinospora cordifolia[J].Int. Immunopharmacol., 2006,6(12):1815-1824.
    [100]Groth F., Wangenknecht W. Anticoagulant potential of regioselective derivatized cellulose[J]. Biomarerials, 2001, 22:2719~2729.
    [101]Yoshida O., Nakashima H.M., Yoshida T., et al. Sulfation of the immunomodulating polysaccharide lentinan: a novel strategy for antivirals to human immunodeficiency virus (HIV)[J]. Biochem. Pharmacol., 1988, 37(15):2887~2981.
    [102]Pozo M.J., Azcon-Aguilar C., Dumas-Gaudot E., et al.β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection[J]. Plant. Science., 1999, 141(9):149~157.
    [103]Gao Y., Fukuda A., Katsuraya K., et al. Synthsis of region selective substiguted curdlan sulfates with medium molecular weight and their specific antiHIV1 activities[J]. Macrom., 1997, 30(11): 3224~3228.
    [104]杨洁彬,郭兴华,傅晓丽,等.乳酸菌生物学基础及应用[M].北京:中国轻工业出版社,1996.
    [105]Misaki A., Kawagnchi K. Structure of pestalotan, a highly branched (1,3)-β-D-glucan elaborated by pestlotia sp 815, and the enhancement of its antitumor activity by polyol modification of the side chains [J]. Carbohydr. Res., 1984, 129(1):209~227.
    [106]Mulloy B., Mourao P.A.S., Gray E. Structure: function studies of anticoagulant sulphated polysaccharides using NMR[J]. J. Biotech., 2000, 77(1):123~135.
    [107]Gohdes M., Mischnick P. Determination of the substitution pattern in the polymer chain of cellulose sulfates[J]. Carbohydr. Res., 1998, 309(1):109~115.
    [108]黄卉,王弘,刘欣.多糖的构效关系研究进展[J].广州食品工业科技,2004,20(3):159-160.
    [109]张丽萍,汉丽萍,王月秋,等.硫酸化高山红景天多糖(RSASL)的制备及鉴定[J].分子科学学报, 1999, 15(4):205~210.
    [110]Carlucci M. J., Pujol C.A., Ciancia M., et al. Antiherpetic activity and mode of action of natural carrageenans of diverse structural types[J]. Antiviral Res., 1999, 43(2):93~102.
    [111]Kraus J., Blaschek W., Schutz M., et al. Antitumor activity of cell wallβ-1,3/1,6-glucans from Phytophthora spp[J]. Planta. Med., 1992, 58(1):39~42.
    [112]Zhang P., Zhang L., Cheng S.. Effect of urea and sodium hydroxide on the molecular weight and conformation ofβ-(1,3)-D-glucan from Letinus edodes in aqueous solution [J]. Carbohydr. Res., 2000, 327(2):431~438.
    [113]Young S.H., Jacobs R.R. Sodium hydroxide induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue[J]. Carbohydr. Res., 1998, 310 (1):91~99.
    [114]Saito H., Yoshioka Y., Uehara N., et al. Relationship between conformation and biological response for (1,3)-β-D-glucans in the activation of coagulation Factor G from limulus amebocyte lysate and host mediated antitumor activity[J]. Carbohydr. Res., 1991, 217(1):181~190.
    [115]Ishibashi K., Miura N.N., Adachi Y.,et a1. Relationship between solubility of grifolan, a fungal1, 3-β-D-glucan, and production of tumor necrosis factor by macrophages in vitro[J].Biosci. Biotechnol. Biochem.,2001,65(9):1993~2000.
    [116]Zhang L., Zhang M., Chen J., et al. Solution properties of antitumor carboxy-methylated derivatives ofβ-(1,3)-D-glucan from Ganoderma Lucidum[J]. Chinese J. Polym. Sci., 2001, 19(3):283~289.
    [117]胡文祥,王来曦,恽榴红,等多糖及其衍生物的医药学研究[J].科学(中文版), 1994, 187(3):4~8.
    [118]Tabata K., Ito W., Kojima T. Ultrosonic degradation of schizophyllan, an antitumor polysaccharide produced by schizophyllan commune fries[J]. Carbohydr. Res., 1981, 89(1):121~135.
    [119]Jagdzinski P.P., Lewandowska M., Januchowski R,et al. The effect of high molecular weight dextran sulfate on the production of interleukin-8 in monocyte cell culture[J]. Biomed. Phannacother., 2002,56(5):254~257.
    [120]Alban S., Franz G. Characterization of the anticoagulant actions of a semi-synthetic curdlan sulfate[J]. Thromb. Res., 2000, 99(4): 377~388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700