合金化元素钛对U-0.79wt.%Ti合金氢化行为影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铀及其合金性质活泼,极易与环境气氛相互作用而发生腐蚀,导致材料使用性能降低甚至失效。这些反应中,氢化腐蚀由于具有反应剧烈、伴随有较大体胀、反应产物易燃等特性,对材料的破坏损伤也极为严重,因而备受研究者关注。由于具有非常重要的科学研究和工程应用价值,因此过去的几十年间,铀及其合金的氢化腐蚀行为一直是核材料科学研究的热点前沿。但是,铀及其合金的氢化反应相当复杂,气氛压力、反应温度、杂质气体、氧化层性质和金属的微观组织结构等诸多因素都会产生影响。更为重要的是,氢化反应具有点蚀特性,在某些特殊位置会优先成核生长。目前,研究者普遍接受晶界等处是金属铀氢化反应的优先成核点,但在反应机理方面存在争议,主要有两种观点:以英国AWE和以色列NRC-Negev为代表的一派学者认为表面氧化层差异是决定氢化成核点位的决定因素;另外一派以美国LANL和LLNL为主的研究者认为金属自身的性质特别是化学组成和微观组织结构才是决定氢化成核生长点的根本因素。从工程应用角度来讲,确定氢化反应特别是成核行为的根本机理,可以作为铀及其合金材料工程防护方案设计的出发点和支撑点。此外,这一研究领域公开的文献报道更多集中在金属铀,对于工程上应用更为广泛的铀合金涉及却相对较少。
     铀钛合金--作为一种重要的铀合金材料,一方面由于较好的机械力学和抗氧化腐蚀行为在核工业中作为结构和功能材料得到广泛应用,因此研究铀钛合金氢化行为具有重要的实际应用价值;另一方面,可以对铀钛合金采取不同的热处理方法得到多样化的微观组织结构和化学组成分布,这也为氢化腐蚀成核机制等未解决的重大基础问题提供了独特的模型体系和研究机遇。所以,本论文的研究工作综合运用多种分析方法,以U-0.79wt.%Ti(后文用U-0.79Ti指代)为模型体系,我们首先确定了合金化元素钛在铀合金中的不同存在形态;制备了具有不同微观组织结构和化学分布的合金试样并研究了不同样品反应初期氢化成核点的形成、初期生长行为的差异性;观测到U-0.79Ti合金氢化成核生长点与金属微观组织结构之间存在显著关联性;实验结果为铀氢反应成核点的学术争论提供了新的实验证据,并探讨了氢化反应初期成核生长行为的反应机理。
     本论文得到的主要结果如下:
     (1)系统研究了U-0.79Ti合金微观组织结构的多样性,特别是合金化元素钛的添加、热处理工艺、时效处理等的影响。首次阐述了钛在U-0.79Ti合金中主要以固溶(α’)、金属间化合物(U2Ti)和夹杂物等三种形态存在的观点,并指出了利用U-0.79Ti合金微观组织结构的热处理过程敏感性,可以针对性地设计样品来考察钛的各种存在形态对氢化行为的影响行为;
     (2)通过原位XPS研究从室温到700℃真空热处理过程中表面化学性质的变化,结合铀钛合金相图确定了适合于U-0.79Ti合金氢化实验研究的200℃真空热处理的实验方案。确认了低温热处理(<200℃)会将铀及U-0.79Ti合金最外层氧化物从U02+x转化成U02,或者生成UOxCy,并讨论了其对缩短铀氢反应孕育期,加速铀氢反应的影响。此外,通过与贫铀样品的对比,本论文第一次观察到高温真空热处理过程(>45℃)中U-0.79Ti合金表面UOxCy的逆分解以及钛向表面的偏析行为,揭示了钛对合金表面物理化学性质的影响,这些发现可以为铀合金中合金元素的扩散、偏析及其与微量元素相互作用的研究提供特殊而有趣的模型。
     (3)利用在线体视显微镜、激光共聚焦显微镜和扫描电镜研究了具有"β+U2Ti"微观组织结构的铀钛合金氢化成核及初期生长行为,首次在实验上观察到具有某种优先取向、条状生长的铀氢化物,而且氢化物的成核在表面有较厚氧化层的α-U,生长也沿着α--U相并受到U2Ti相的约束。而且,这种结构为我们讨论氢化成核的机理提供了非常独特的模型。'β+U2Ti"铀钛合金微观上由交替的α-U和U2Ti条纹组成。扫描Kelvin探针的实验结果揭示了两种相表面功函数具有较大的差别,反映出两种相与气氛反应的活性存在差异。经分析我们发现α-U反应活性更强。因此,α-U表面生长有更厚的氧化层,如果AWE和NRC-Negev的“氧化层”观点具有普适性的话,后续的氢化成核点应该在U2Ti相,但是我们的实验结果并不支持这样一种推论,因此这一实验结果至少说明氧化层的影响是次要的,而非决定性的因素。与此相反,氢化物的成核与初期生长过程与微观组织结构之间非常好的关联对应表明金属基底的性质——微观组织结构、化学分布、物理化学性质等才是决定氢化成核生长行为的根本因素。
     (4)利用在线体视显微镜和激光共聚焦显微镜,我们进一步研究了500℃时效2h的U-0.79Ti合金的氢化行为,观察到氢化成核点非常形象地勾勒出了铀钛合金原高温Y相的晶界。结合500℃时效会导致马氏体首先沿着晶界分解为α+U2Ti的实验事实,通过对比相分解区域和未发生分解区域的氢化行为,我们发现固溶钛能够提升铀的抗氢化腐蚀能力。这一实验现象进一步佐证了“金属材料的性质是影响和决定氢化成核点的主要因素”的观点。
     (5)进一步运用在线体视显微镜我们原位研究了钛的夹杂物在氢化反应初期与成核点之间的关联性,发现夹杂物附近通常毗邻氢化成核点,而且夹杂物附近的氢化反应更加剧烈,大部分扩展为成核生长点,对金属材料的损伤更具侵略性。通过与文献中关于金属铀中夹杂物(主要指UC)氢化行为的对比,我们发现,两者之间存在一定的可类比性。这种缺陷加速氢化反应的机制目前还不是十分清楚,需要开展进一步的研究工作。但是,这个实验发现和展示了化学元素分布的不均匀性、微观结构的不连续性对氢化反应的显著影响。
     通过本博士论文研究工作的开展,一方面确定了合金化元素钛在合金中的不同存在形态,以及各种形态对氢化腐蚀成核生长的影响;另一方面,铀钛合金微观组织结构多样性的特征为研究氢化成核机制提供了独特的模型,而实验上观察到的氢化成核点和微观组织结构之间的对应、关联性为“金属的性质是决定氢化成核点的主要因素”的观点提供了有力佐证,促进了氢化腐蚀成核机制的研究。此外,研究结果揭示出合金中化学组分分布的不均匀性和微观组织结构的差异性往往会对材料的抗氢化腐蚀带来不利的影响,这也为工程上改善铀及其合金的抗氢化腐蚀能力提供了有益的指导和支撑。
Uranium and uranium alloys are very sensitive to the enviroment and readily react with many kinds of gases, which causes corrosion and decrease in material nature and may lead to failure. Hydriding is characterized with fast reaction rate, big volume expansion and pitting corrosion, which could destroy the mother material very seriously and have drawn much research attension in the last few decades. The study on the hydriding behavior of uranium and uranium alloys was one of the frontiers in nuclear materials science due to the great scientifical and engineering value. However, this reaction is very complex and influenced by many factors, including hydrogen pressure, temperature, impurity gases, characters of the oxidation layer, microstructures of the metal and so on. What is the most important, the hydide corrosion of uranium has been observed to be localized, spatially hetorogeneous, and seemingly random, the hydride seems to nucleate at some special locations. Until now, with virtually no reports to the contrary, a strong correlation of hydride corrosion to misorientation boundaries on uranium has been repeatedly observed. Despite the near unanimity in associating hydride corrosion with at least certain types of defects, there is a considerable divergence of opinion on causation. Researchers at AWE and NRC-Negev regard the properties of the superficial oxide layer as the determinants of initiation site. While other institutions such as LANL and LLNL hold the opposite opinion, relegating the oxide layer to a secondary role while implicating the metal properties. A thorough review of uranium hydride corrosion reports reveals that, the dissension on the issue of'essential'causation in the community of uranium hydride research continues, and the chief goal is to identify the root causes and the mechanism for hydride corrosion, especially for hydride nucleation sites. The later could used to define protection strategies of uranium and uranium alloys. Besides, although uranium has been extensively studied, in contrast, the more widely used uranium alloys have been less concerned in the literatures.
     Firstly, U-0.79wt.%Ti alloy——one kind of the most important uranium alloys, is widely used in the nuclear industry for its good mechanical and anti-corrosion nature. Hence, it is of practical value to study the the hydride corrosion of U-0.79Ti alloy. Secondly, samples of various microstructure and chemical elements distribution could be prepared through different thermal treatment, which provides an idea model system for studies of fundamental problems in the issue of root causes for hydride nucleation. In this thesis, by applying and combining different kinds of analysis method to U-0.79wt.%Ti (U-0.79Ti) as a model system, we studied the reaction behaviror with hydrogen. We firstly identified the three forms of titanium elements in U-0.79Ti alloy, and then studied the hydride nucleation and growth in the early stage of the specially-prepared samples of different microstructures. We have oberved a strong correlation of hydride sites with the microstructures of the underlying metals. The results provided new evidences for the dispute on the issue of root causation for uranium nucleation sites. And finally we discussed the reaction mechanisms of hydride corrosion for U-0.79Ti alloy.
     The main research work and contents are listed as follows:
     (1) We have systematically studied the variety in the microstructures of U-0.79Ti alloy and revealed the effect of the introduction of alloying element Ti, thermal aging on the microstructure of U-Ti alloy. For the first time, we identified that titanium exists mainly in three forms, solution (a'), intermetallic (U2Ti) and titanium inclusions. And we pointed out that, by using the U-0.79Ti microstructure's thermal treatment sensitivity, the effects of the difference existing forms of titanium on hydride corrosion could be studied by specially-prepared samples.
     (2) The method of pre-treatment for U-0.79Ti was determined by in-situ XPS monitoring the character on the very surface of uranium and U-Ti alloy during vacuum thermal heating from room temperature to700℃. The XPS spectrum suggested that, during the low temperature heat treatment (<200℃), the outmost UO2+x oxidation layer was transformed into UO2or UOxCy, which accouts for the decrease in the induction time. As we know, by comparing with uranium metal, it is the first time in the reports that, a novel decomposition of UOxCy and segeration of titanium on the very surface was obsevered. Which show the influence of titanium on the surface physical characters of U-Ti alloy. The results provide an intesting model for the study of diffusion, segeragation, and interaction with minor elements.
     (3) We firstly observed the strip-like hydride corrosion in U-0.79Ti alloy with the so-called "p+U2Ti" microstructure. The hydride nucleates in and grows along α-U phase and is constrained by α-U/U2Ti boundary. The samples are composed of alternative α-U and U2Ti planelets. The Scanning Kelvin Probe (SKP) results shew that the work function of these two phases are quite different. The reactivity of a-U is higher. In our experiments, the a-U phase developed a thicker oxide layer. If the view-point of AWE and NRC-Negev is suitable for all kinds of uranium alloys, the hydride should nucleate in the U2Ti phase, the results did not support such a deduction. This means that the oxidation layer is of secondary importance in determing the nucleation sites. In contrast, the correlation between the hydride nucleation and the microstructure indicates that the metal properties are the determinant factor.
     (4) By using the state-of-the-art hot stage microscopy and laser confocal microscope, we studied the hydride corrosion of500℃/2h aged U-0.79Ti alloy and observed the preferred hydride nucleation in the phase boundary of the mother y phase. It is well known that, the thermal annealing at500℃cause the decompostion of martensite into α+U2Ti along the phase boundary. By composition of the hydride corrosion in the decomposed area and the martensite, it is concluded that the solution titanium could decrease the reactivity toward hydride corrosion. The results supported the viewpoint of "metal properties is the key factor that determine where the hydride corrosion starts".
     (5) The relationship between titanium inclusions and hydride nucleation in the early stage was studied by in-situ hot stage microscope. We found that inclusions are always connected with hydride nucleation sites, most of them developed into growth centers and are more aggeresive for the metal. The effects of inclusions on hydriding in U-Ti alloy is similar to that of the inclusions (most are UC) in uranium. Until now, the root causation of this behavior is not clear. Which need further researches. However, the results shew the influence of chemical elements'distribution on hydriding corrosion.
     Through these systematic experimental studies, the effects of the triple forms of titanium on hydride nucleation have been identified. Besides, the variety in the microstructure of U-0.79Ti alloy provides an ideal model for the study of the root causation. The experimentally observed link between the microstructure and chemical elements distribution and the hydriding nucleation sites provided further evidence to support the opinion of "metal properties is the determinants for the hydride nucleation", which put forward the study on the root causation of hydride corrosion. It can help us understand the pitting corrosion character of uranium hydriding, and provide some beneficial guidance in the corrosion protection for uranium and uranium alloys.
引文
1 Owen L W, Scudamore R A. a microscope study of the initiation of hydrogen-uranium reation [J]. Corrosion Science,1966,6:461-465.
    2 Bingert J, Hanrahan R, Field R, Dickerson P. Microtextural investigation of hydrided alpha-uranium [J]. Journal of Alloys And Compounds,2004,365 (1):138-148.
    3 Scott T B, Allen G C, Findlay I, Glascott J. UD3 formation on uranium:evidence for grain boundary precipitation [J]. Philosophical Magazine,2007,87 (2):177-187.
    4 Rundle R E. The Structure of Uranium Hydride and Deuteride [J]. Journal of The American Chemical Society,1947,69:1719.
    5 Rundle R E. The Hydrogen Positions in Uranium Hydride by Meutron Diffraction [J]. Journal of The American Chemical Society,1951,73 (9):35.
    6 Abraham B M, Flotow H E. The Heats of Formation of Uranium Hydride, Uranium Deuteride and Uranium Tritide at 25 degree [J]. Journal of The American Chemical Society,1955,77 (6):13.
    7 Flotow H E, Lohr H R, Abraham B M, Osborne D W. Heat capacity and thermodynamic functions of beta-uranium hydride from 5 to 350 K [J]. Journal of The American Chemical Society,1959,81:3529.
    8 Powell G, Condon J, Hydrogen in uranium alloys,Y-DA--5317 [R]:Oak Ridge Y-12 Plant, Tenn.(USA),1973..
    9 Katz O M, Gulbransen E A. Some observations on the uranium-niobium-hydrogen system [J]. Journal of Nuclear Materials,1962,5:269-279.
    10 杨江荣.U-2.5wt%Nb合金的氧化动力学与环境气氛腐蚀对力学性能的影响研究[D].中国工程物理研究院博士论文,2007.
    11 Glascott J. Hydrogen and uranium interaction between the first and last naturally occurring elements [J]. The science and technology journal of AWE,2003,6:16-27.
    12 Bloch J. Mintz M H, The Kinetics of Hydride Formation in Uranium:IAEC-Annual Report 2001,2001.
    13 Ben-Eliyahu Y, Brill M, Mintz M. Hydride nucleation and formation of hydride growth centers on oxidized metallic surfaces—kinetic theory [J]. The Journal of chemical physics,1999,111:6053.
    14 Bazley S G., Petherbridge J R, Glascott J. The influence of hydrogen pressure and reaction temperature on the initiation of uranium hydride sites [J]. Solid State Ionics, 2012,211:1-4.
    15 Dion L, Fiot M, Fontaine J, Hemet P, Loves G. Etude de l'hydruration d'un alliage uranium-vanadium a 0.2% en poids [J]. Journal of the Less Common Metals,1986,121: 531-536.
    16 Powell G L, Kirkpatrick J R. Solubility of hydrogen and deuterium in bcc uranium-titanium alloys [J]. Journal of Alloys And Compounds,1997,253-254: 167-170.
    17 Bloch J, Mintz M H. the hydriding kinetics of quenched uranium-0.1%chromium [J]. J Alloys Comp 1996,241:224-231.
    18 Weirick L. Corrosion of uranium and uranium alloys [J]. ASM Handbook,1987,13: 813-822
    19 Loui A, The Hydrogen Corrosion of Uranium:Identification of Underlying Causes and Proposed Mitigation Strategies,LLNL-TR-607653 [R]:Lawrence Livermore National Laboratory (LLNL), Livermore, CA,2012.
    20 Moreno D, Arkush R, Zalkind S, Shamir N. Physical discontinuities in the surface microstructure of uranium alloys as preferred sites for hydrogen attack [J]. Journal of Nuclear Materials,1996,230 (2):181-186.
    21 Arkush R, Venkert A, Aizenshtein M. Site related nucleation and growth of hydrides on uranium surfaces [J]. Journal of Alloys And Compounds,1996,244:197-205.
    22 Jones C P, Scott T B, Petherbridge J R, Glascott J. A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructure [J]. Solid State Ionics,2013,231 (0):81-86.
    23 Balasubramanian K S W, Me Lean Ⅱ W. Potential energy surfaces for the uranium hydriding reaction [J]. J Chem Phys,2003,119:5889-5901.
    24 J L Nie, H Y Xiao, Zu X T, Gao F. Hydrogen adsorption, dissociation and diffusion on the α-U(001) surface [J]. J Phys:Condens Matter,2008,20:445001-445011.
    25 Christopher D. Taylor R S L. Ab-initio calculations of the hydrogen-uranium system: Surface phenomena, absorption, transport and trapping [J]. Acta Materialia,2009,57: 4707-4715.
    26 Christopher D. Taylor T L, R. Scott Lillard. Ab initio calculations of the uranium-hydrogen system:Thermodynamics, hydrogen saturation of a-U and phase-transformation to UH3 [J]. Acta Materialia,2010,58:1045-1055.
    27 Condon J B, Larson E A. Kinetics of the uranium-hydrogen system [J]. The Journal of chemical physics,1973,59:855.
    28 Condon J B. Alternative Model for Nonstoichiometry in Uranium Hydride [J]. The Journal of Physical Chemistry,1975,79:392-397.
    29 Condon J B. Nucleation and growth in the hydriding reaction of uranium [J]. Journal of the Less Common Metals,1980,73 (1):105-112.
    30 Bloch J, Mintz M H. Kinetics and mechanism of the U-H reaction [J]. Journal of the less-common metals,1981,81:301-320.
    31 Powell G, Harper W, Kirkpatrick J. The kinetics of the hydriding of uranium metal [J]. Journal of the Less Common Metals,1991,172:116-123.
    32 Kirkpatrick J, Condon J. The linear solution for hydriding of uranium [J]. Journal of the Less Common Metals,1991,172:124-135.
    33 Bloch J, Mintz M H. Types of hydride phase devolopent in bulk uranium and holmium [J]. Journal of Nuclear Matter,1982,110:251-255.
    34 Balooch M, Hamza A V. Hydrogen and water vapor adsorption on and reaction with uranium [J]. Journal of Nuclear Materials,1996,230:259-270.
    35 Brian Somerday P S, Russell Jones. Effects of hydrogen on materials:proceedings of the 2008 International Hydrogen Conference [M]. Materials Park, Ohio:ASM International,2009.
    36 Allen G C, Stevens J C. The behaviour of uranium metal in hydrogen atmospheres [J]. J Chem Soc, Faraday Trans 1,1988,84 (1):165-174.
    37 Nelson A, Felter T, Wu K, Evans C, Ferreira J, Siekhaus W, McLean W. Uranium passivation by C+ implantation:A photoemission and secondary ion mass spectrometry study [J]. Surface Science,2006,600 (6):1319-1325.
    38 Morrall P, Price D, Nelson A, Siekhaus W, Nelson E, Wu K, Stratman M, McLean W. ToF-SIMS characterization of uranium hydride [J]. Philosophical Magazine Letters, 2007,87 (8):541-547.
    39 Knowles J P, Findlay I M, Geeson D A, Bazley S G. The Influence of Vacuum Annealing on the Nucleation and Growth Kinetics of Uranium Hydride [J]. MRS Online Proceedings Library,2012,1444 (1):211-216.
    40 Vandermeer R A. An overview-constitution, structure, and transformation in uranium and uranium alloys [M]. US Atomic Energy Commission.1982.
    41 张广丰.超临界CO2与铀表面相互作用研究[D].硕士学位论文;中国工程物理研究院北京研究生部,2002.
    42 帅茂兵.铀合金的氢化特性和氢化处理研究[D].博士学位论文;中国工程物理研究院,2001.
    43 Katz J J S G T, L.R.Morss. The Chemistry of the Actinide Elements [M]. Chapman and Hall Ltd,,1986.
    44 武胜.铀及铀合金[J].中国工程物理研究院,2006:186-194.
    45 Taylor C D, Scott Lillard R. Ab-initio calculations of the hydrogen-uranium system: Surface phenomena, absorption, transport and trapping [J]. Acta Materialia,2009,57: 4707-4715.
    46 Burke J J.铀合金物理冶金[M].原子能出版社.1983.
    47 Ammons A M. Physica Metallurgica Uranium Alloys [M]. Proceedings of Army Material Technology Conference,3rd,1976.
    48 Greenholt C J, Weirick L J. The oxidation of uranium-0.75 wt% titanium in environments containing oxygen and/or water vapor at 140℃ [J]. Journal of Nuclear Materials,1987,144(1):110-120.
    49 Freeman A J, Lander G H. Handbook on the physics and chemistry of the actinide [M]. North-Holland.1987.
    50 Rundle R E. The Structure of Uranium Hydride and Deuteride [J]. Journal of The American Chemical Society,1947,69:1719.
    51 Mulford R, Ellinge F H, Zacharisen W H. A New Form of Uranium Hydride [J]. Journal of The American Chemical Society,1954,76 (1):94.
    52 Rundle R E. The Hydrogen Positions in Uranium Hydride by Meutron Diffraction [J]. Journal of The American Chemical Society,1951,73 (9):35.
    53 Ward J W, Cox L E, Smith J L, Stewart G R, Wood J H. some observations on the electronic structure of beta-UD3 [J]. J Phys(Paris), Colloq,1979,40 (4):15-17.
    54 Gouder T, Eloirdi R, Wastin F, Colineau E, Rebizant J, Kolberg D, Huber F. Electronic structure of UH3 thin films prepared by sputter deposition [J]. Phy Rev B,2004,70, 235108-235114.
    55 Halevy I, Salhov S, Zalkind S, Brill M, Yaar I. High pressure study of beta-UH3 crystallographic and electronic structure [J]. Journal of Alloys And Compounds,2004, 370:59-64.
    56 Ritchie A G The kinetic and mechanism of the uranium-water vapour reaction-an evaluation of some published work [J]. Journal of Nuclear Materials,1984,120: 143-153.
    57 Haschke J M, Reactions of Plutonium and Uranium with Water:Kinetics and Potential Hazards,LA-13069-MS [R]:Los Alamos National Lab.(LANL),New Mexico,1995.
    58 Ritchie A G. The kinetics of the uranium-oxygen-water vapour reaction between 40 and 100 degree [J]. Journal of Nuclear Materials,1986,139:121-136.
    59 Ritchie A G. Measurements of the rate of the uranium-water vapour reaction [J]. Journal of Nuclear Materials,1986,140:197-201.
    60 Magnani N J, The reaction of uranium and its alloys with water vapor at low temperatures,SAND-74-0145 [R]:Sandio Laboratory,1974.
    61 Fonnesbeck J E, Quantitative analysis of hydrogen gas formed by aqueous corrosion of metallic uranium,ANL-00/19 [R]:Argonne National Laboratory, USA,2000.
    62 Delegard C H, Schmidt A J, Uranium metal reaction behavior in water, sludge, and grout matrices,PNNL-17815 [R]:Pacific Northwest National Laboratory,2008.
    63 李瑞文.U-2.5wt%Nb合金的氢蚀及其对力学性能影响[D].中国工程物理研究院博士学位论文,2008.
    64 Bloch J, Mintz M H, The Kinetics of Hydride Formation in Uranium:IAEC-Annual Report 2001,2001.
    65 Benamar G M, Schweke D, Kimmel G, Mintz M H. Preferred hydride growth orientations on oxide-coated gadolinium surfaces [J]. Journal of Alloys And Compounds, 2012,520:98-104.
    66 Scott T B A G C, Findlay I. UD3 formation on uranium:evidence for grain boundary precipitation [J]. Philosophical Magazine,2007,87:177-187.
    67 Wilkinson W D. Uranium Metallurgy Volume II:Uranium corrosin and alloys [M]. Interscience Publishers. New York.1962.
    68 Teter D F, Hanrahan R J, Wetteland C J, Uranium Hydride Nucleation Kinetics:Effects of Oxide Thickness and Vacuum Outgassing,LA-13772-MS [R]:Los Alamos National Lab., NM (US),2001.
    69 Teter D F H R J, and Wetteland C J., Uranium Hydride Nucleation Kinetics:Effects of Oxide Thickness, LA-UR-80-4514[R]:Los Alamos National Lab., NM (US),2001.
    70 Hanrahan R J, Hawley M E, Brown G W, The infulence of surface morphology and oxide microstructure on the nucleation and growth of uranium hydride on alpha uranium,LA-UR-98-2193 [R]:Los Alamos National Laboratory,1998.
    71 Harker R M. The influence of oxide thickness on the early stages of the massive uranium-hydrogen reaction [J]. Journal of Alloys And Compounds,2006,426:106-117.
    72 Danon A, Koresh J E, Mintz M H. Temperature Programmed Desorption Characterization of Oxidized Uranium Surfaces:? Relation to Some Gas-Uranium Reactions [J]. Langmuir,1999,15 (18):5913-5920.
    73 Teter D F, Hanrahan R J, Wetteland C J, Uranium Hydride Nucleation Kinetics:Effects of Oxide Thickness and Vacuum Outgassing,LA-13772-MS [R]:Los Alamos National Lab., NM (US),2001.
    74 Danon A, Koresh J E, Mintz M H. Temperature Programmed Desorption Characterization of Oxidized Uranium Surfaces:? Relation to Some Gas-Uranium Reactions [J]. Langmuir,1999,15 (18):5913-5920.
    75 邹乐西,孙颖,齐连柱等.预热退火对铀和铀铌合金氢化动力学的影响[J].核化学与放射化学,2004,26:153-157.
    76 Arkush R, Brill M, Zalkind S, Mintz M H, Shamir N. The effect of N2+and C+ implantation on uranium hydride nucleation and growth kinetics [J]. Journal of Alloys And Compounds,2002,330-332:472-475.
    77 Brill M, Bloch J, Mintz M H. Experimental verification of the formal nucealtion and growth rate equations-initial UH3 development on uranium surface [J]. Journal of Alloys And Compounds,1998,266:180-185.
    78 Condon J B. Calculated vs. experimental hydrogen reactions rates with uranium [J]. The Journal of Physical Chemistry,1975,79 (4):392-397.
    79 Gardner H, Riches J. The effect of uranium hydride distribution and recrystallization on the tensile properties of uranium [M]. Hanford Atomic Products Operation,1964.
    80 Musket R, Robinson-Weis G, Patterson R. Modification of the hydriding of uranium using ion implantation [J]. Ion Implantation and Ion Beam Processing of Materials, 1983:753-758.
    81 Adamson M P, Orman S, Picton G. The effects of hydrogen on the tensile properties of uranium when tested in different environments [J]. Journal of Nuclear Materials,1969, 33 (2):215-224.
    82 Paek S, Ahn D H, Kim K R, Chung H. Characteristics of reaction between hydrogen isotopes and depleted uranium [J]. Journal of Industrial And Engineering Chemistry, 2002,8:12-16.
    83 Balooch M, Siekhaus W J. Reaction of hydrogen with uranium catalyzed by platinum clusters [J]. Journal of Nuclear Materials,1998,255:263-268.
    84 DeMint A, Leckey J. Effect of silicon impurities and heat treatment on uranium hydriding rates [J]. Journal of Nuclear Materials,2000,281:208-212.
    85 N Shamir D S, A Rubin, T Livneh and S Zalkind. Carbon enhanced hydrogen attack on an oxidized U-0.1wt.% Cr surface [J]. IOP ConfSeries:Materials Science and Engineering,2010,9:012037.
    86 李瑞文.未公开发表试验数据[J].2010.
    87 Balasubramanian K, Siekhaus W t J, McLean W, computational modeling of uranium corrosion and the role of impurities(Fe, Cr, Al, C and Si),UCRL-CONF-216838 [R]: Larence Livermore National Laboratory, Las Vegas, NV, United States,2005.
    88 Oman S, Picton G, Ruckman J. Uranium oxides formed in air and water in the temperature range 200-375℃ [J]. Oxidation of Metals,1969,1 (2):199-207.
    89 Wheeler V. The diffusion and solubility of hydrogen in uranium dioxide single crystals [J]. Journal of Nuclear Materials,1971,40 (2):189-194.
    90 Harker R M, Chohollo A H. Surface analytical study of uranium exposed to low pressures of hydrogen at~80℃ [C]. MRS Online Proceedings Library,2012.
    91 Bloch J, Brami D, Kremner A, Mintz M. Effects of gas phase impurities on the topochemical-kinetic behaviour of uranium hydride development [J]. Journal of the Less Common Metals,1988,139 (2):371-383.
    92 Raymond S, Bouchet J, Lander G H, Tacon M L, Garbarino G, Hoesch M, Rueff J-P, Krisch M, Lashley J C, Schulze R K, Albers R C. Understanding the Complex Phase Diagram of Uranium:The Role of Electron-Phonon Coupling [J]. Physical Review Letters,2011,107:136401.
    93 Moore K T, Gerrit V L. Nature of the 5f states in actinide metals [J]. Reviews Of Modern Physics,2009,81 (1):235.
    94 Stojic N, Davenpot J W. surface magnetic moment in alpha-uranium by density-functional theory [J]. Phy. Rev. B,2003,68:094407.
    95 Balasubramanian K, Siekhaus W J, Me Lean Ⅱ W. Potential energy surfaces for the uranium hydriding reaction [J]. Journal of Chemical Physics,2003.119:5889-5901.
    96 Huda M N, Ray A K. A density functional study of atomic hydrogen adsorption on plutonium layers [J]. Physica B,2004,352:5-17.
    97 Kurihara M, Hirata M, Sekine R, Onoe J, Nakamatsu H. Theoretical study on the alloying behavior of gamma-uranium metal:gamma-uranium alloy with 3d transition metals [J]. Journal of Nuclear Materials.2004,326:75-79.
    98 Huda M N, Ray A K. An ab initio study of H2 interaction with the Pu (100) surface [J]. Physica B,2005,366:95-109.
    99 Huda M N, Ray A K.A Density functional study of O2 adsorption on (100) surface of gamma-uranium [J]. Int Quantum Chem,2005,102:98.
    100 Balasubramanian K, Siekhaus W t J, McLean W, computational modeling of uranium corrosion and the role of impurities(Fe, Cr, Al, C and Si), UCRL-CONF-216838 [R]: Larence Livermore National Laboratory, Las Vegas, NV, United States,2005.
    101 Balasubramanian K, Felter T E, Anklam T, Trelenberg T W, McLean W. Atomistic level relativistic quantum modelling of plutonium hydrogen reaction [J]. Journal of Alloys And Compounds,2007,444-445:447-452.
    102 Dholabhai P P, Ray A K.A density functional study of carbon monoxide adsorption on (100) surface of gamma-uranium [J]. J Alloys and Compounds,2007,444-445 (11): 356-362.
    103 Raymond A F, Ray A K. Ab initio full-potential fully relativistic study of atomic carbon, nitrogen, and oxygen chemisorption on the (111) surface of delta-Pu [J]. Phy Rev B, 2007,75:195112.
    104 J.L. Nie H Y X, Fei Gao, X.T. Zu. Electronic and magnetic properties of Al adsorption on alpha-uranium (001) surface:Ab initio calculations [J]. Journal of Alloys and Compounds,2008:
    105 Pozzo M, Alfe D, Amieiro A, French S, Pratt A. Hydrogen dissociation and diffusion on Ni-and Ti-doped Mg(0001) surfaces [J]. The Journal of chemical physics,2008,128: 094703.
    106 Taylor C D, Periodic trends governing the interactions between impurity atoms [H-Ar] and alpha-U,LA-UR-08-5983 [R]:Los Alamos National Laboratory, New Mexico, US., 2008.
    107 Fynn R A, Ray A K.A first principles study of the absorption and dissociation of CO2 on the delta-Pu(111) [J]. European Physical Journal B,2009,70:171-184.
    108 Taylor C D, Lookman T, Scott Lillard R. Ab initio calculations of the uranium-hydrogen system:Thermodynamics, hydrogen saturation of a-U and phase-transformation to UH3 [J]. Acta Materialia,2010,58:1045-1055.
    109李赣,罗文华,陈虎翅.CO在alpha-U(001)表面的吸附[J].Acta Phys — Chim Sin(物理化学学报),2010,26(5):1378-1384.
    110 Li Y, Yang Y, Sun B, Wei Y, Zhang P. Dissociation of hydrogen molecules on the clean and hydrogen-preadsorbed Be (0001) surface [J]. Physics Letters A,2011,375 (24): 2430-2436.
    111 Yang Y, Zhang P, Shi P, Wang X. s-d Electronic Interaction Induced H2 Dissociation on the y-U(100) Surface and Influences of Niobium Doping [J]. Journal of Physical Chemistry C,2011,115 (47):23381-23386.
    112 Ao B, Wang X, Shi P, Chen P, Ye X, Lai X, Gao T. First-principles LDA+U calculations investigating the lattice contraction of face-centered cubic Pu hydrides [J]. Journal of Nuclear Materials,2012,424:183-189.
    113 Ao B, Wang X, Shi P, Chen P, Ye X, Lai X, Ai J, Gao T. Lattice contraction of cerium hydrides from first-principles LDA+U calculations [J]. International Journal of Hydrogen Energy,2012,37 (6):5108-5113.
    114 Waber J T. Corrosion Behavior of Uranium [J]. US Atomic Energy Commission,1958: 45.
    115 Bloch J. The initial kinetics of uranium hydride formation studied by a hot-stage microscope technique [J]. Journal of the Less-common Metal,1984,103:163-171.
    116 Talaganis B, Castro F, Baruj A, Meyer G. Novel device for simultaneous volumetric and x-ray diffraction measurements on metal-hydrogen systems [J]. Review of Scientific Instruments,2009,80 (7):073901-073906.
    117 Ao B, Wang X, Zhang Y, Wei Y. X-ray diffraction analysis of uranium tritide after aging for 420 days [J]. Journal of Nuclear Materials,2009,384 (3):311-314.
    118 Younes C M, Allen G C, Embong Z. Auger electron spectroscopic study of the surface oxidation of uranium-niobium alloy U-6 wt.% Nb in a UHV environment containing primarily H2, H2O and CO [J]. Surface Science,2007,601 (15):3207-3214.
    119 Hawley M E, Hill M A, Wang Y, Schulze R K. Uranium Hydride Formation Study as Observed by Scanning Surface Potential Imaging[A], in proceedings of the MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS[C],. Cambridge Univ Press,2007.
    120 Petherbridge J R, Scott T B, Glascott J, Younes C, Allen G C, Findlay I. Characterisation of the surface over-layer of welded uranium by FIB, SIMS and Auger electron spectroscopy [J]. Journal of Alloys And Compounds,2009,476:543-549.
    121 Mintz M H, Shamir N. The use of direct recoil spectrometry (DRS) for the study of water vapor interactions on polycrystalline metallic surfaces—the H2O/U and HaO/Ti systems [J]. Applied Surface Science,2005,252:633-640.
    122 Smyrl N, Stowe A, Powell G, Raman Spectroscopy of UH3 from the Hydrogen Corrosion of Uranium:Oak Ridge Y-12 Plant (Y-12), Oak Ridge, TN (United States), 2011.
    123 Piltch M S, Gray P C, Manley M, Surface Enhance Raman Scattering Investigation of Uranium Hydride and Uranium Oxide,7-10-07 [R]:Reviewed for classification by David Teter, MST-6, ADC.
    124叶小球.钛、锆、钪的室温吸氘特性及其与钯氘化物间的氘传输行为研究[D].博士学位论文;中国工程物理研究院,2012.
    125陆雷.铀铌合金表面氧化行为的电子能量损失谱研究[D].硕士学位论文;中国工程物理研究院北京研究生部,2003.
    126 Sandstrom D, Some mechanical and physical properties of heat-treated alloys of uranium with small additions of Ti or Mo,LA-4781 [R]:Los Alamos Scientific Lab., N.Mex.,1971.
    127 Javorsky C, U--0.83 wt% Ti alloy:cooling rates of gamma-quenched alloy, resulting microstructure and response to aging, LA-13772-MS [R]:Los Alamos National Laboratory,1974.
    128 Eckelmeyer K, Effects of heat treatment on the microstructure and mechanical properties of U-0.75 wt% Ti,SAND75-0599 [R]:Sandia Labs., Albuquerque, N. Mex.(USA),1976.
    129 Lehmann J, Hills R. Proposed Nomenclature for Phases in Uranium Alloys [J]. J Nuclear Materials,1960,2:261-268.
    130 Eckelmeyer K, Zanner F. The Effect of Aging on the Mechanical Behaviors of U-0.75 wt.% Ti and U-2.0 wt.% Mo [J]. Journal of Nuclear Materials,1976,62 (1):37-49.
    131 Magnani N. The effects of environment, orientation and strength level on the stress corrosion behavior of U-0.75 wt% Ti [J]. Journal of Nuclear Materials,1974,54 (1): 108-116.
    132 Speer J, Edmonds D. Aging of α'a martensite in U-0.77 Ti [J]. Acta Materialia,1999, 47 (7):2197-2205.
    133 Bloch J, Mintz M H. Kinetics and mechanisms of metal hydrides formation-a review [J]. Journal of Alloys and Compounds,1997,253-254:529-541.
    134 Bloch J, Mintz M H. The effect of thermal annealing on the hydriding kinetics of uranium [J]. Journal of the Less Common Metals,1990,166 (2):241-251.
    135 Benamar G, Schweke D, Shamir N, Zalkind S, Livneh T, Danon A, Kimmel G, Mintz M H. Heat pretreatment-induced activation of gadolinium surfaces towards the initial precipitation of hydrides [J]. Journal of Alloys and Compounds,2010,498:26-29.
    136 Efron A, Lifshitz Y, Lewkowicz I, Mintz M. The kinetics and mechanism of titanium hydride formation [J]. Journal of the Less Common Metals,1989,153 (1):23-34.
    137 Levitin Y, Bloch J, Mintz M. Kinetic study of the hafnium-hydrogen reaction [J]. Journal of the Less Common Metals,1991,175 (2):219-234.
    138周萍,汪小琳,杨江荣,伏哓国,罗丽珠.铀真空热氧化膜的XPS研究[J].稀有金属材料与工程,2008,37(1):94-97.
    139 Allen G, Tucker P, Tyler J. Oxidation of uranium dioxide at 298 K studied by using x-ray photoelectron spectroscopy [J]. The Journal of Physical Chemistry,1982,86: 224-228.
    140 Senanayake S D, Idriss H. Water reactions over stoichiometric and reduced UO2(111) single crystal surfaces [J]. Surface Science,2004,563:135-144.
    141 Ilton E S, Boily J F, Bagus P S. Beam induced reduction of U(VI) during X-ray photoelectron spectroscopy:The utility of the U4f satellite structure for identifying uranium oxidation states in mixed valence uranium oxides [J]. Surface Science,2007, 601:908-916.
    142 Baer Y, Lang J. High-energy spectroscopic study of the occupied and unoccupied 5f and valence states in Th and U metals [J]. Physical Review B,1980,21:2060.
    143 Eckle M, Eloirdi R, Gouder T, Tosti M C, Wastin F, Rebizant J. Electronic structure of UCX films prepared by sputter co-deposition [J]. Journal of Nuclear Materials,2004,334: 1-8.
    144 Luo L, Yang J, Zhou P. Study on thermo-oxide layers of urnaium-niobium alloy [J]. Atomic Energy Science and Technology,2010,44:1047.
    145 Ilton E S, Boily J F, Bagus P S. Beam induced reduction of U (Ⅵ) during X-ray photoelectron spectroscopy:The utility of the U4f satellite structure for identifying uranium oxidation states in mixed valence uranium oxides [J]. Surface Science,2007, 601 (4):908-916.
    146 Orlov V, Sergeev V, Fomishkin M, Rostovtsev A, Kruglov A. Carbon diffusion in uranium during thermal reprocessing in vacuum [J]. Atomic Energy,2003,95 (2): 536-539.
    147 Lu G, Bernasek S L, Schwartz J. Oxidation of a polycrystalline titanium surface by oxygen and water [J]. Surface Science,2000,458:80-90.
    148 Bonino O, Dugne O, Merlet C, Gat E, Holliger P, Lahaye M. Study of surface modification of uranium and UFe2 by various surface analysis techniques [J]. Journal of Nuclear Materials,2001,294 (3):305-314.
    149 Gouder T, Colmenares C A, Naegele J R, Spirlet J C, Verbist J. A surface spectroscopy study of the oxidation properties of UNi2 and UNis [J]. Surface Science,1992,265 (1-3):175-186.
    150 Dinh L, Haschke J, Saw C, Allen P, McLean Ⅱ W. Pu2O3 and the plutonium hydriding process [J]. Journal of Nuclear Materials,2011,408 (2):171-175.
    151 Kittel C. Introduction to solid state physics [M]. John wiley & Sons. Inc,1976.
    152 Yanamoto T, Tanaka S, Yamawaki M. Hydrogen absorption-desorption properties of U2Ti [J]. Journal of Nuclear Materials,1990,170:140-146.
    153 Melitz W, Shen J, Kummel A C, Lee S. Kelvin probe force microscopy and its application [J]. Surface Science Reports,2011,66 (1):1-27.
    154 Okamoto H. H-Ti (Hydrogen-Titanium) [J]. Journal of Phase Equilibria and Diffusion, 2011,32 (2):174-175.
    155 Roeper D F, Chidambaram D, Clayton C R, Halada G P. Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt.% titanium alloy Part I. Surface morphology and electrochemistry [J]. Electrochimica Acta, 2005,50:3622-3633.
    156宋雪静.真空铝热法制备低氧高钛铁的研究[D].硕士学位论文;沈阳理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700