电磁液冷缓速器多场耦合分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着公路的快速发展和公路质量的提高,使汽车运输在交通运输中所占的比例不断提高。近年来制动失效和制动不良所导致的事故仍在所有交通事故中占有很大比例。对此,国外已强制将缓速器作为汽车的标准配置,而国内目前只在大型客车上普及了电涡流缓速器的安装。由于目前电涡流缓速器和新一代的永磁缓速器均采用风冷散热,其散热效果差,制动力矩热衰退问题严重,结构相对复杂,且永磁缓速器制动力矩小、性价比低,难以满足大型货车对连续制动和大制动力矩的要求。因此研发具有长时间制动能力、制动力矩大、结构简单和成本低廉的新型汽车缓速器对打破国外对汽车缓速器的技术垄断,普及缓速器在重型汽车上的安装,从而提高重型车辆的行车安全,防止因制动失灵产生的交通事故等都具有重要意义。
     电涡流缓速器和永磁缓速器均通过电场和磁场产生制动力矩,因此统称为电磁缓速器。电磁缓速器的物理现象涉及电场、磁场、热场、流场和应力场等多物理场耦合,目前对电磁缓速器的研究集中于对传统风冷散热的缓速器中各单物理场的研究,很少考虑多场耦合的情况。对电磁缓速器优化设计的研究也相对较少。
     本论文针对电磁缓速器制动力矩热衰退严重、结构复杂和性价比低等问题,提出了多种新型缓速器。然后进行了大量的多物理场及其耦合分析研究、优化设计研究和试验。论文主要章节和内容包括:
     第一章综述了汽车缓速器的功能、相关法规、分类和研究意义等。比较了电涡流缓速器和永磁缓速器的特点。详细阐述了两类缓速器的研究现状。最后针对目前存在的问题提出了论文的研究内容和方法。
     第二章提出了新型双凸极电涡流液冷缓速器制动力矩的多场耦合分析方法。首先提出了其基本结构和工作原理。然后提出了一种计算电涡流缓速器制动力矩的方法。其次建立了缓速器的静磁场分析模型及定子流场-热场耦合分析模型。并说明了将流场-热场-磁场分析和制动力矩计算相耦合的分析过程。最后描述了缓速器的实验方法和过程,并比较了实验结果与计算结果。为新型缓速器的制动力矩计算提供了一种方法,为缓速器的设计和优化提供了理论基础。
     第三章基于响应面方法优化了新型永磁液冷缓速器的结构。首先提出了新型缓速器的基本结构和工作原理。随后建立了缓速器的瞬态磁场分析模型并计算其制动力矩。然后分别以制造成本(永久磁铁用量)约束下的制动力矩最大为优化目标和制动力矩约束下的制造成本(永久磁铁用量)最少为优化目标,采用响应面方法建立了两个近似优化模型,优化了缓速器的结构参数。为缓速器的优化设计提供了一种有效的新途径。
     第四章全面分析了永磁液冷缓速器的多物理场特性,并计算了新型转子冷却式永磁液冷缓速器的残余力矩。首先分别建立了永磁液冷缓速器的热场、磁场和应力场等多物理场分析模型,包括:建立了定子热场分析模型,运用传热学理论合理的计算了定子水道的平均表面传热系数等边界条件。在此基础上分析了缓速器在实验条件和车载工作条件下定子的温度分布。然后建立了缓速器永久磁铁热场分析模型,在定子热场分析的基础上,合理的计算了模型的热边界条件,并计算了永久磁铁在实验条件和车载工作条件下的温度分布。接着建立了缓速器的静磁场分析模型。同时建立了缓速器定子的静力分析模型,并根据缓速器的实际工作情况,合理地计算了模型的受力边界条件,分析了定子的应力分布和变形情况。此外,运用传热学理讨论了水道几何尺寸对定子水道散热效率的影响。最后提出了新型转子冷却式永磁液冷缓速器的基本结构和工作原理。并计算了其转子在液冷腔内旋转时所受的阻力大小。为缓速器的设计和优化提供了理论基础。
     第五章研究了永磁液冷缓速器的流场-热场耦合特性。首先以前人文献中的实验为基础,在单面加热的弯曲管道传热性能的数值模拟中,比较了三种低雷诺数湍流模型SST、SST-CC和BSL SMC模型的特性,探索了这三种模型应用于缓速器稳态流场-热场耦合分析的可行性。然后以缓速器稳态流场-热场耦合分析为基础,了解了冷却液流量、水道入口水温、水道高度和定子热传导区高度对缓速器定子和永久磁铁温度的影响。为定子水道的强化传热研究奠定了基础。
     第六章分析了新型盘式永磁缓速器和新型盘式永磁液冷测功机的多物理场特性,并优化了盘式永磁缓速器的结构。在介绍了两种缓速器的基本结构和工作原理后,首先建立了盘式永磁缓速器励磁装置的瞬态热场模型,根据盘式永磁缓速器台架实验得到的温度数据,对励磁装置进行了瞬态热场分析,分析中考虑了气隙的热传导和热辐射。然后建立了缓速器的静磁场分析模型,并使用虚功法计算了转子对定子的吸力。在此基础上,采用一阶优化方法优化了缓速器的5个结构参数。最后建立了盘式永磁液冷测功机定子的稳态热场分析模型,使用传热学理论计算了测功机定子中设置的水道的平均表面传热系数。获得了定子的热场分布,并比较了计算结果与实验结果。
     最后为论文的结论及对未来研究内容的展望。
The rapid development of roads and improvement of the quality of roads makethe percentage of vehicle transport increase in transportation. In recent years, the ac-cidents caused by braking failure and braking inefficiency are still accounted for asignificant proportion of all accidents. For that, the retarders are forced to be thestandard equipment for vehicles in abroad, whereas the eddy current retarders arepopularized only in motorbuses in China. Because the heat generated by the eddycurrent retarder (ECR) and new generation permanent magnet retarder (PMR) istransferred by air forced convection, the poor efficiency of heat transfer leads to thesevere fading of braking torque. Moreover, their structures are complicated. Besides,the braking torque of PMR is small, and its cost performance is low. All aspects aboveresult in the lack of satisfaction of the ECR and PMR for the needs of continuousbraking and large braking torque of heavy vehicles. Thus, research and developmentof new types of retarders for heavy vehicles are very important, and their characteris-tics are the ability of braking in continuous working conditions, large braking torque,simple structure and low product costs. It is significant to break the monopoly of re-tarders from abroad, popularize the installing of retarders in heavy vehicles, improvethe safety of heavy vehicles and prevent the travel accidents caused by braking fail-ures.
     The ECR and PMR generate braking torque by electronic field and magneticfield, so they are collectively called the “electromagnetic retarder”(EMR). There arecoupled fields including the electronic field, magnetic field, thermal field, flow fieldand stress field in the EMR, whereas most researches focus on sigle physical field andlittle on coupled fields. Besides, the researches on optimization of the retarder are lessrelatively.
     To solve the problems of severe fading of braking torque, complicated structureand low cost performance and so on, many new types of retarders were proposed inthis dissertation. Then a lot of analyses of multi-physical fields and their coupledfields, optimizations and experiments were reported in the dissertation. The mainchapters and contents of the dissertation are:
     The opening chapter summarized the functions of the retarder for vehicle, relatedlaws and regulations, classification and importance of this research, etc. The charac-teristics of ECR and PMR were compared. The present situations of these two retard-ers were described. Finally, to solve current problems, the contents and methodologiesof the dissertation were proposed.
     In chatper2, a coupled field analysis method was presented to obtain the brakingtorque of the new type liquid-cooled eddy current retarder with doubly salient polesstructure. Firstly, the basic structure and working principle of the new retarder wereproposed. Then a method to calculate the braking torque was presented. Thirdly, thestatic magnetic analysis model and flow-thermal coupled field analysis model werebuilt. After that, a coupled method of the flow-thermal-magnetic field analysis andbraking torque calculation was presented. Finally, the experiment method and proce-dure were introduced, and the comparision of the braking torque obtained by analysesand tests were carried out. Thus, a way was provided to compute the braking torque ofthe new retarder for further design and optimization.
     Chapter3was devoted to the optimization of the new type liquid-cooled perma-nent magnetic retarder (PMR-LC) based on the response surface methodology (RSM).At the beginning, the basic structure and working principle of the new retarder werepresented. Next, the transient magnetic analysis model of the retarder was establishedand the braking torque was calculated. Then, respectively, to maximize the brakingtorque (subjected to the product costs) and minimize the product costs (subjected to acertain braking torque demand), two approximating optimization models were builtby the RSM. Finally, the braking torque was increased and the product cost was de-creased under a certain braking torque demand. So, an effective way to optimize thestructure of retarder was proposed.
     Chapter4gave a thorough understanding of the characteristics of the mul-ti-physical fields in the PMR-LC, and the residual braking torque of a new type of re-tarder named rotor-liquid-cooled permanent magnet retarder (PMR-RLC) was calcu-lated. First of all, the thermal field, the magnetic field and the stress field analysismodels of the PMR-LC were built respectively. Firstly, the thermal field analysismodel of stator was established. The heat transfer theory was used to reasonably cal-culate the mean surface coefficient of heat transfer of the cooling duct and otherboundary conditions. The temperature distributions of the stator under the experiment conditions and working conditions in vehicle were analyzed. Secondly, the thermalfield analysis model of permanent magnet was built. Based on the results of thermalanalysis of the stator, the thermal boundary conditions were calculated reasonably,and the temperature distribution of permanent magnet under the experiment condi-tions and working conditions in vehicles were analyzed. Then, the static magneticfield analysis model of the retarder was established. Fourthly, the static structureanalysis model of the stator was built, and the boundary conditions of forces werecalculated based on the real working conditions. The stress field and displacementwere analyzed. Besides, the influence of geometry parameters of cooling duct on theefficiency of thermal transfer was discussed based on the heat transfer theory. Finally,the basic structure and working principle of the PMR-RLC were proposed. The re-sistance of the rotor in the cavity that is full of liquid was calculated. All analysesprovided the theoretical basis for further design and optimization of the new retarders.
     Chapter5mainly analyzed the features of the coupled field of the flow field andthermal field in the PMR-LC. Firstly, based on the experiments in a literature, thecharacteristics of three low Reynolds turbulent models named SST, SST-CC and BSLSMC were compared in the numerical simulations of heat transfer of a curved ductheated at outer curved surface. The feasibility of the application of three models in thecoupled analysis of flow-thermal field in the retarder was explored. Then, based onthe analyses of flow-thermal field in the retarder, the influence of rate of flow, thetemperature of liquid at the inlet, the height of duct and the height of conduction zonein the stator on the temperature of the stator and permanent magnet were understood.The research provided the theoretical basis for further design and optimization of heattransfer enhancement of the cooling duct in new retarders.
     In the final chapter, the performances of multi-physical fields of a new disk typeof permanent magnet retarder (PMR-D) and a new disk type of liquid-cooled perma-nent brake dynamometer (PBD-DLC) were analyzed, and the structure of PMR-D wasoptimized. After the basic structure and working principle of the retarder and dyna-mometer were presented, the transient thermal model of the magnetic equipment inthe retarder was built firstly. According to the thermal data in the tests of the retarder,transient thermal analyses were carried out with the boundary conditions of thermalconduction and thermal radiation. Then, the static magnetic field analysis model ofthe retarder was established,and the suction between the rotor and stator was calcu- lated by virtual work method. Based on the static magnetic field analysis, five param-eters of the retarder were optimized by the first order method. Finally, the static ther-mal analysis model of the brake dynamometer was built. The heat transfer theory wasused to reasonably calculate the mean surface coefficient of heat transfer of the cool-ing duct. The thermal field distribution was obtaioned and compared with the datafrom the experiments.
     The final part of the dissertation was the conclusion and the expectation of fur-ther researches in the future.
引文
[1]张炳荣.国内汽车缓速器行业标准现状及发展[J].时代汽车.2007(11):101-103.
    [2]王伟.跑35万公里就能省出缓速器钱——八方达公司认为使用缓速器很划算[J].商用汽车新闻.2006(20):9.
    [3]李延骁,于明进,邱绪云.国内汽车缓速器应用现状与预测[J].山东交通学院学报.2009,17(3):10-12.
    [4]林重博.液力缓速器和电涡流缓速器[J].汽车研究与开发.2001(6):37-41.
    [5]王金甫.用于机动车的电涡流缓速器及其构建方法[P]. ZL03139829.4.2005-01-19.
    [6]叶爱凤,谭建军,李红,等.电涡流缓速器[P]. ZL200410061382.5.2005-06-29.
    [7]陈传松,王德贵.电涡流缓速器[P]. ZL200710302408.4.2008-05-28.
    [8]陈传松,王德贵.节能型电涡流缓速器[P]. ZL200710302409.9.2008-06-25.
    [9]刘成晔,贝绍轶.车用电涡流缓速器[P]. ZL200810155714.4.2009-03-25.
    [10]黄国宁,吕水莲,张炜,等.一种电涡流缓速器[P]. ZL200810186067.3.2009-07-08.
    [11]黄美龙,罗友玉,吴贤士.一种电涡流缓速器[P]. ZL201010001105.0.2010-06-30.
    [12]马小安.电涡流缓速器[P]. ZL201110233041.1.2011-12-28.
    [13]李德胜,杜肖,叶乐志,等.一种凸极构造的液冷式电涡流缓速器[P].ZL201210061975.6.2012-07-25.
    [14] MARECHAL Y, MEUNIER G. Computation of2D and3D eddy currents in moving con-ductors of electromagnetic retarders[J]. IEEE Transactions on Magnetics.1990,26(5):2382-2384.
    [15] ALBERTZ D, DAPPEN S, HENNEBERGER G. Calculation of the3D non-linear eddycurrent field in moving conductors and its application to braking systems[J]. IEEE Transac-tions on Magnetics.1996,32(3):768-771.
    [16] LEE K, PARK K. Analysis of an eddy-current brake considering finite radius and inducedmagnetic flux[J]. Journal of Applied Physics.2002,92(9):5532-5538.
    [17] ANWAR S. A parametric model of an eddy current electric machine for automotive brakingapplications[J]. IEEE Transactions on Control Systems Technology.2004,12(3):422-427.
    [18] ANWAR S, STEVENSON R C. Torque characteristics analysis for optimal design of acopper-layered eddy current brake system[J]. International Journal of Automotive Technol-ogy.2011,12(4):497-502.
    [19] GONZALEZ M I. Experiments with eddy currents: The eddy current brake[J]. EuropeanJournal of Physics.2004,25(4):463-468.
    [20] TATIS K V, KLADAS A G, TEGOPOULOS J A. Geometry optimization of solid rotoreddy current brake by using sensitivity analysis and3D finite elements[C].3rd Japa-nese/Mediterranean Workshop on Applied Electronmagnetic Engineering for Magnetic andSuperconducting Materials/3rd Superconducting Flywheel Workshop, Athens, Greece,2005.PO Box564,1001Lausanne, Switzerland, Elsevier Science SA:363-367.
    [21] DANILA A, SISAK F, MORARU S, et al. Computer aided design by FEM method for ed-dy-current brakes[C]. IEEE International Electric Machines and Drives Conference, Antalya,Turkey,2007.345E47TH ST, New York, NY10017USA, IEEE:347-352.
    [22] BAUM E, EBERHARDT S. Eddy current brake with two pole pairs[J]. COMPEL: The In-ternational Journal for Computation and Mathematics in Electrical and Electronic Engi-neering.2009,28(1):67-76.
    [23] SRIVASTAVA R K, KUMAR S. An alternative approach for calculation of braking forceof an eddy-current brake[J]. IEEE Transactions on Magnetics.2009,45(1):150-154.
    [24] SHARIF S, SHARIF K. Influence of skin effect on torque of cylindrical eddy currentbrake[C].2nd International Conference on Power Engineering, Energy and Electrical Drives,Lisbon, Portugal,2009.345E47TH ST, New York, NY10017USA, IEEE:535-539.
    [25]马建,陈荫三,余强,等.汽车电涡流缓行器供耗电特性研究[J].长安大学学报(自然科学版).2002,22(3):64-66.
    [26]鲍正祥,赵正敏,俞叶林.基于PWM的电涡流缓速器控制系统[J].淮阴师范学院学报(自然科学版).2003,2(3):196-199.
    [27]衣丰艳,何仁,刘成晔,等.车用电涡流缓速器三维有限元分析[J].交通运输工程学报.2004,4(2):53-56.
    [28]衣丰艳,何仁,刘成晔.车用电涡流缓速器弯道制动的研究[J].汽车科技.2004(5):20-23.
    [29]何仁,衣丰艳,何建清.电涡流缓速器制动力矩的计算方法[J].汽车工程.2004,26(2):197-200.
    [30]何仁,何建清.装用电涡流缓速器的汽车制动性能分析[J].江苏大学学报(自然科学版).2004,25(1):29-32.
    [31]何仁,盛金东,李强.车用电涡流缓速器试验方法的探讨[J].汽车技术.2005(3):26-29.
    [32]何仁,刘成晔,衣丰艳.车用电涡流缓速器转子盘温度场计算方法[J].江苏大学学报(自然科学版).2005,26(2):117-120.
    [33]何仁,刘成晔.车用电涡流缓速器转子盘非稳态温度场数值分析[J].汽车工程.2006,28(2):181-185.
    [34]何仁,汤沛.车用转筒式电涡流缓速器设计和试验研究[J].汽车技术.2006(11):28-31.
    [35]杨效军,何仁,沈海军.转筒式电涡流缓速器制动力矩计算方法[J].机械科学与技术.2010,29(10):1389-1392.
    [36]何仁,衣丰艳.电涡流缓速器性能特性评价方法[J].中国公路学报.2006,19(5):114-118.
    [37]何仁,汤沛.转筒式电涡流缓速器的转筒三维瞬态温度场分析[J].机械设计.2007,24(5):37-39.
    [38]何仁,汤沛.转筒式电涡流缓速器电磁场三维有限元分析[J].机械设计与制造.2007(4):146-148.
    [39]霍士武,汪勇,张丽.几个影响电涡流缓速器输出扭矩的参数对比研究[J].苏州大学学报(工科版).2004,24(5):131-132.
    [40]许沧粟,刘少林,占少民.电涡流缓速器测试台架的研究[J].机床与液压.2005(1):119-121.
    [41]孙为民,张跃明,吴兵波.复杂载荷下电涡流缓速器转子盘的有限元分析[J].机械工程师.2005(7):134-135.
    [42]孙为民,张跃明,陶保建.用ANSYS实现电涡流缓速器转子盘的温度分析[J].机械设计与制造.2006(1):115-116.
    [43]王生发,顾新建,钱亚东,等.基于混合模型的电涡流缓速器制动力矩特性分析[J].浙江大学学报(工学版).2006,40(11):1980-1984.
    [44]朱伟兴,唐骏,何仁.自适应阶梯模糊控制在电涡流缓速器中的应用[J].江苏大学学报(自然科学版).2006,27(2):126-129.
    [45]王立萍. CAN总线技术在电涡流缓速器控制系统中的应用[J].仪表技术与传感器.2008(8):47-48.
    [46]刘成晔,何仁,衣丰艳.车用电涡流缓速器转子盘流场有限元分析[J].汽车工程.2005,27(4):452-454.
    [47]刘成晔,何仁.基于CFD电涡流缓速器转子盘叶片结构参数影响分析[J].系统仿真学报.2008,20(21):5993-5998.
    [48]刘成晔,何仁,袁传义,等.电涡流缓速器转子盘强制散热分析和试验[J].汽车工程.2009,31(4):349-352.
    [49]刘成晔,沈建明,何仁,等.电涡流缓速器转子盘风道散热结构参数影响分析[J].兵工学报.2011,32(2):236-241.
    [50]田杰,顾庆昌,娄银庭,等.装用电涡流缓速器汽车的运动学仿真研究[J].中国机械工程.2008,19(23):2884-2886.
    [51] LIU C Y, JIANG K J, ZHANG Y. Design and use of an eddy current retarder in an automo-bile[J]. International Journal of Automotive Technology.2011,12(4):611-616.
    [52] LONG Z, LI Y, YANG Z, et al. Experiment and research on performance characteristic ofeddy-current retarder[C]. International Conference on Artificial Intelligence and Computa-tional Intelligence, Sanya, China,2010.445Hoes Lane-P.O.Box1331, Piscataway, NJ08855-1331, United States, IEEE Computer Society:510-513.
    [53] LIU C, JIANG K, ZHANG Y. Study on temperature rise performance of eddy current re-tarder in automobile[C]. International Conference on Future Information Technology andManagement Engineering, Changzhou, China,2010.445Hoes Lane-P. O. Box1331, Pis-cataway, NJ08855-1331, United States, IEEE Computer Society:550-553.
    [54] STANLEY W. Magnetic Brake[P]. US590777.1897-09-28.
    [55] BAERMANN M. Permanent magnet eddy current brake or clutch[P]. US3488535.1970-01-06.
    [56]赵小波,周俊,姬长英,等.车用永磁式缓速器研究现状与展望[J].拖拉机与农用运输车.2007,34(5):6-8.
    [57] KUBOMIYA T, KUWAHARA T, ARAKI K. Permanent magnet type retarder in commer-cial vehicles[J]. SAE Paper922455.1992.
    [58] KUWAHARA T. Eddy current type brake system[P]. US5023499.1991-01-11.
    [59] KUWAHARA T. Eddy current braking system[P]. US5143183.1992-09-01.
    [60] KUWAHARA T. Eddy current type retarder for vehicle[P]. US5145038.1992-09-08.
    [61]何仁,牛润新,胡青训.一种分级控制永磁式缓速器[P]. ZL200510037966.3.2005-09-07.
    [62]李德胜,李翔.车用永磁涡流缓速器[P]. ZL200610057992.7.2006-08-02.
    [63]于明进,杨秀红,徐刚,等.一种永磁式发动机电涡流缓速器[P]. ZL200620162105.8.2008-01-16.
    [64]周俊,黄亦其,姬长英.制动力矩无级调节永磁式缓速器[P]. ZL200710019389.4.2007-08-01.
    [65]孙祥,王江淮.气动离合器控制式永磁缓速器[P]. ZL200710021909.5.2008-10-29.
    [66]竺韵德,王刚,王卫.涡电流永磁缓速器[P].2008-02-06.
    [67]马元京,李德胜,叶乐志,等.变速箱前置式液冷永磁缓速器[P]. ZL200810132271.7.2010-01-27.
    [68]李德胜,叶乐志,马元京,等.一种可分级式液冷永磁缓速器[P]. ZL200810222626.1.2009-02-04.
    [69]李德胜,马元京,叶乐志,等.永久磁铁滑动式永磁液冷缓速器[P]. ZL200910237634.8.2010-06-02.
    [70] KUWAHARA T, SHINTANI K, SAKAMOTO H, et al. Development of permanent magnettype compact ECB retarder[J]. Sumitomo Metals.1991,43(5):24-30.
    [71] SAKAMOTO H, KUWAHARA T, ARAKI K, et al. Design of permanent magnet typecompact ECB retarder[J]. SAE Paper973228.1997.
    [72] GIERAS J F. Influence of disc material on the performance characteristics of a single-sidededdy current brake with permanent magnets[C]. Proceedings of the International Conferenceon Electrical Machines, Lausanne, Switzerland,1984. Zurich, Switzerland, Swiss FederalInst. Technol:292-295.
    [73] GIERAS J F. Performance calculation for permanent magnet eddy-current brake with a solidsteel disc[C]. Symposium on Electromechanics and Industrial Electronics Applied to Man-ufacturing Processes, S. Felice Circeo Latina, Italy,1985. Italy, Ansaldo Trasporti:257-263.
    [74] NEHL T W, LEQUESNE B, GANGLA V, et al. Nonlinear two-dimensional finite elementmodeling of permanent magnet eddy current couplings and brakes[J]. IEEE Transactions onMagnetics.1994,30(5):3000-3003.
    [75] MURAMATSU K, TAKAHASHI N, HASHIO T, et al.3-D eddy current analysis in mov-ing conductor of permanent magnet type retarders using moving coordinate system[J]. IEEETransactions on Energy Conversion.1999,14(4):1312-1317.
    [76] TAKAHASHI N, NATSUMEDA M, MURAMATSU K, et al. Optimization of permanentmagnet type of retarder using3-D finite element method and direct search method[J]. IEEETransactions on Magnetics.1998,34(5):2996-2999.
    [77] ENOKIZONO M, TODAKA T, TAKAHASHI H. Electromagnetic retarder design usingfinite element analysis[J]. International Journal of Applied Electromagnetics and Mechanics.2001,14(1-4SPEC.):43-46.
    [78] NOGUCHI Y, MIYAHARA M, IMANISHI K, et al. Creep-fatigue life prediction for per-manent magnet type eddy current retarder[J]. Journal of the Society of Materials Science.2004,53(7):795-800.
    [79] GAY S E, EHSANI M. Optimized design of an integrated eddy-current and friction brakefor automotive applications[C]. IEEE Vehicle Power and Propulsion Conference, Chicago,IL, United states,2005.445Hoes Lane-P. O. Box1331, Piscataway, NJ08855-1331,United States, IEEE:189-193.
    [80] GAY S E, EHSANI M. Analysis and experimental testing of a permanent magnet ed-dy-current brake[C]. IEEE Vehicle Power and Propulsion Conference, Chicago, IL, UnitedStates,2005.445Hoes Lane-P. O. Box1331, Piscataway, NJ08855-1331, United States,IEEE:756-765.
    [81] GAY S E, EHSANI M. Parametric analysis of eddy-current brake performance by3-D fi-nite-element analysis[J]. IEEE Transactions on Magnetics.2006,42(2):319-328.
    [82]何仁,赵万忠,牛润新.车用永磁式缓速器制动力矩的计算方法[J].交通运输工程学报.2006,6(4):62-65.
    [83]牛润新,何仁.永磁式缓速器的稳健性设计[J].江苏大学学报:自然科学版.2006,27(6):493-496.
    [84]赵万忠,何仁,刘成晔.基于虚拟边界法的永磁式缓速器转子鼓温度场计算方法[J].拖拉机与农用运输车.2006,33(4):46-48.
    [85]赵万忠,何仁,胡青训.车用永磁式缓速器转子鼓瞬态温度场计算方法[J].轻型汽车技术.2006(5):15-19.
    [86]赵万忠,何仁,刘成晔.永磁式缓速器转子鼓的瞬态温度场分析[J].农业工程学报.2006,22(5):90-94.
    [87]何仁,赵万忠,胡青训.车用永磁式缓速器转子鼓温度应力场计算[J].江苏大学学报:自然科学版.2006,27(3):220-224.
    [88]何仁,牛润新.基于Galerkin法的车用永磁式缓速器热-磁耦合场分析[J].机械科学与技术(西安).2007,26(7):871-874.
    [89]何仁,牛润新.车用永磁式缓速器设计中漏磁影响因素分析[J].农业机械学报.2007,38(8):44-48.
    [90]何仁,牛润新.永磁式缓速器热-磁耦合建模与试验[J].农业机械学报.2007,38(11):12-16.
    [91]黄亦其,姬长英,周俊,等.车用永磁式缓速器电磁场分析方法[J].河南科技大学学报:自然科学版.2007,28(6):28-31.
    [92]赵小波,姬长英,黄亦其,等.永磁式涡流缓速器涡流分析与制动力矩计算[J].机械设计.2008,25(11):62-65.
    [93]黄亦其,姬长英,周俊,等.基于遗传算法的车用永磁式缓速器设计优化方法[J].机械强度.2008,30(4):612-616.
    [94]赵小波,姬长英,周纬,等.装用永磁式涡流缓速器车辆制动性能研究[J].汽车技术.2009(06):37-39.
    [95]赵小波,姬长英,黄亦其,等.基于Rogowski永磁式涡流缓速器电磁场与制动力矩研究[J].农业机械学报.2009,40(1):35-39.
    [96]赵小波,姬长英,赵国柱.永磁式涡流缓速器制动性能影响因素敏感性分析[J].农业机械学报.2009,40(10):18-23.
    [97]黄亦其,姬长英,黄荣刚,等.车用永磁式缓速器电磁场数值模拟与试验[J].广西大学学报:自然科学版.2009,34(4):517-520.
    [98] YE L, LI D, LU Z, et al. Study on a novel permanent magnet retarder for vehicles[C].KONG J A, Progress in Electromagnetics Research Symposium, Hangzhou, Peoples RChina,2008.777Concord Avenue, STE207, Cambridge, MA02138USA, Electromagnet-ics ACAD:531-535.
    [99]叶乐志,李德胜.车用永磁缓速器永磁体高温失磁研究[J].机械科学与技术.2010,29(5):566-569.
    [100]何仁,赵万忠,胡青训.永磁式缓速器转子鼓瞬态温度场的计算方法[J].兵工学报.2007,28(1):52-56.
    [101] YE L, LI D, MA Y, et al. Design and performance of a water-cooled permanent magnet re-tarder for heavy vehicles[J]. IEEE Transactions on Energy Conversion.2011,26(3):953-958.
    [102] ALBERTZ D, DAPPEN S, HENNEBERGER G. Calculation of the3-D nonlinear eddycurrent field in moving conductors and its application to braking systems[J]. IEEE Transac-tions On Magnetics.1996,32(3):768-771.
    [103] ANSYS. ANSYS Maxwell help document [EB/OL].2012.
    [104] SHIRI A, SHOULAIE A. Design Optimization and Analysis of Single-Sided Linear Induc-tion Motor, Considering All Phenomena[J]. IEEE Transactions on Energy Conversion.2012,27(2):516-525.
    [105] HARIANTO C A, SUDHOFF S D. A Rotationally Asymmetric Reluctance Machine WithImproved Torque Density[J]. IEEE Transactions on Energy Conversion.2013,28(1):62-75.
    [106] ZHENG P, LIU R, THELIN P, et al. Research on the Cooling System of a4QT PrototypeMachine Used for HEV[J]. IEEE Transactions on Energy Conversion.2008,23(1):61-67.
    [107] KRAL C, HAUMER A, HAIGIS M, et al. Comparison of a CFD Analysis and a ThermalEquivalent Circuit Model of a TEFC Induction Machine With Measurements[J]. IEEETransactions on Energy Conversion.2009,24(4):809-818.
    [108] NATEGH S, WALLMARK O, LEKSELL M, et al. Thermal Analysis of a PMaSRM UsingPartial FEA and Lumped Parameter Modeling[J]. IEEE Transactions on Energy Conversion.2012,27(2):477-488.
    [109]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [110] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynam-ics:The finite volume method[M].2nd ed. New York: Pearson/Prentice Hall,2007.
    [111]黄克智,恭明德,陆明万.张量分析[M].北京:清华大学出版社,2003.
    [112] LAUNDER B E, SPALDING D B. Numerical computation of turbulent flows[J]. ComputerMethods in Applied Mechanics and Engineering.1974,3(2):269-289.
    [113] ANSYS. ANSYS CFX help document [EB/OL].2006.
    [114] LIU C, HE R. Numerical analysis and experiment of unsteady thermal field of rotor plate foreddy current retarder[J]. Chinese Journal of Mechanical Engineering (English Edition).2008,21(4):71-75.
    [115] HUANG Y, CAI G, JIANG Y, et al. Method of genetic algorithm optimization design ofpermanent magnet retarder[J]. Applied Mechanics and Materials.2012,215-216:362-367.
    [116]隋允康,宇慧平.响应面方法的改进及其对工程优化的应用[M].北京:科学出版社,2011.
    [117] HANRAHAN G, LU K. Application of factorial and response surface methodology in mod-ern experimental design and optimization[J]. Critical Reviews in Analytical Chemistry.2006,36(3-4):141-151.
    [118] MYERS R H, MONTGOMERY D C, VINING G G, et al. Response surface methodology:A retrospective and literature survey[J]. Journal of Quality Technology.2004,36(1):53-77.
    [119] BOX G E P, WILSON K B. On the experimental attainment of optimum conditions (withdiscussion)[J]. Journal of Royal Statistical Society.1951, B13:1-45.
    [120] BOX G E P, HUNTER J S. Multifactor experimental design for exploring response sur-face[J]. Annals of Mathematical Statistics.1957,28:195-241.
    [121] BOX G E P, DRAPER N R. A basis for the selection of a response surface design[J]. Jour-nal of American Statistical Association.1959,54:622-654.
    [122] HILL W J, HUNTER W G. A review of response surface methodology: A literature sur-vey[J]. Technometrics.1966,8(4):571-590.
    [123] MEAD R, PIKE D J. A review of response surface methodology from a biametrics view-point[J].1975,31(12):803-851.
    [124] MYERS R H, KHURI A I, CARTER W H. Response-surface methodology-1966-1988[J].Technometrics.1989,31(2):137-157.
    [125] MYERS R H, MONTGOMERY D C. Response surface methodology[M].2nd ed. NewYork: Wiley and Sons,2002.
    [126] KHURI A I, CORNELL J A. Response surfaces[M].2nd ed. New York: Marcel Dekker,INC.,1996.
    [127] ANSYS. ANSYS help document[DB/CD].2010.
    [128] SCHITTKOWSKI K. NLPQL: A FORTRAN-subroutine solving constrained nonlinearprogramming problems[J]. Annals of Operations Research.1985,5:485-500.
    [129] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algo-rithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation.2002,6(2):182-197.
    [130]张英.工程流体力学[M].北京:中国水利水电出版社,2002.
    [131]高学平.流体力学[M].天津:天津大学出版社,2002:107.
    [132] INCROPERA F P, DEWITT D P, BERGMAN T L, et al. Fundamentals of heat and masstransfer[M].6th ed. NJ: John Wiley&Sons,2007.
    [133]陈礼.流体力学与热工基础[M].北京:清华大学出版社,2002.
    [134]普朗特L.流体力学概论[Z].郭永怀,陆士嘉.北京:科学出版社,1974.
    [135]陈允文,张捷迁,章光华.真实流体力学[M].北京:清华大学出版社,1986.
    [136] JOHNSON R W. Numerical simulation of local Nusselt number for turbulent flow in asquare duct with a180°bend[J]. Numerical Heat Transfer.1988,13(2):205-228.
    [137] STURGIS J C, MUDAWAR I. Single-phase heat transfer enhancement in a curved, rectan-gular channel subjected to concave heating[J]. International Journal of Heat and MassTransfer.1998,42(7):1255-1272.
    [138] JOHNSON R W, LAUNDER B E. Local Nusselt number and temperature field in turbulentflow through a heated square-sectioned U-bend[J]. International Journal of Heat and FluidFlow.1985,6(3):171-180.
    [139] CHANG S M, HUMPHREY J A C, MODAVI A. Turbulent flow in a strongly curvedU-bend and downstream tangent of square cross-secions[J]. Physicochemical hydrodynam-ics.1983,4(3):243-269.
    [140] IACOVIDES H, LAUNDER B E. Computational fluid dynamics applied to internalgas-turbine blade cooling: a review[J]. International Journal of Heat and Fluid Flow.1995,16(6):454-470.
    [141] IACOVIDES H, LAUNDER B E, LI H Y. Application of a reflection-free DSM to turbulentflow and heat transfer in a square-sectioned U-bend[J]. Experimental Thermal and FluidScience.1996,13(4):419-429.
    [142] SUGA K. Predicting turbulence and heat transfer in3-D curved ducts by near-wall secondmoment closures[J]. International Journal of Heat and Mass Transfer.2003,46(1):161-173.
    [143] SUGA K, NAGAOKA M, HORINOUCHI N. Application of a higher order GGDH heatflux model to three-dimensional turbulent U-bend duct heat transfer[J]. Journal of HeatTransfer.2003,125(1):200-203.
    [144] SHIN J K, CHOI Y D, AN J S. Numerical analysis of turbulent flow and heat transfer in asquare sectioned U-bend duct by elliptic-blending second moment closure[J]. Journal ofmechanical science and technology.2007,21(2):360-371.
    [145] FLETCHER D F, GEYER P E, HAYNES B S. Assessment of the SST and omega-basedReynolds stress models for the prediction of flow and heat transfer in a square-sectionu-bend[J]. Computational Thermal Science.2009,1(4):385-403.
    [146] LIGRANI P M, HEDLUND C R. Transition to turbulent flow in curved and straight chan-nels with heat transfer at high Dean numbers[J]. International Journal of Heat and MassTransfer.1998,41(12):1739-1748.
    [147] SMIRNOV P E, MENTER F R. Sensitization of the SST turbulence model to rotation andcurvature by applying the Spalart-Shur correction term[J]. Journal of Turbomachinery.2009,131(4):1-8.
    [148] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applica-tions[J]. AIAA Journal.1994,32(8):1598-1605.
    [149] MENTER F R. Review of the shear-stress transport turbulence model experience from anindustrial perspective[J]. International Journal of Computational Fluid Dynamics.2009,23(4):305-316.
    [150] ESCH T, MENTER F R. Heat transfer predictions based on two-equation turbulence modelswith advanced wall treatment[C]. HANJALI K, NAGANO Y, TUMMERS M J, Proceed-ings of the4th International Symposium on Turbulence, Heat&Mass Transfer, Antalya,Turkey,2003. Begell House:2-9.
    [151] JOHNSON D A, KING L S. A mathematically simple turbulence closure model for attachedand separated turbulent boundary layers[J]. AIAA Journal.1985,23(11):1684-1692.
    [152] STURGIS J C. Single-and two-phase heat transfer enhancement in a curved, rectangularchannel subjected to concave heating[D]. West Lafayette: Purdue University,1998.
    [153] ETEMAD S, SUNDEN B. Analysis of developing and fully developed turbulent flow andheat transfer in a square-sectioned U-bend duct[C]. ASME Heat Transfer Summer Confer-ence, San Francisco, CA, United States,2005. Three Park Avenue, New York, NY10016-5990USA, American Society of Mechanical Engineers:547-554.
    [154] BHATTI M S, SHAH R K. Turbulent and transition flow convective heat transfer inducts[M]. Handbook of Single-Phase Convective Heat Transfer, KAKAC S, SHAH R K,AUNG W, New York:Wiley,1987.
    [155] ROSAGUTI N R, FLETCHER D F, HAYNES B S. Laminar flow and heat transfer in a pe-riodic serpentine channel[J]. Chemical Engineering and Technology.2005,28(3):353-361.
    [156] KAKAC S, SHAH R K, AUNG W. Handbook of single-phase convective heat transfer[M].New York: Wiley-Interscience,1987.
    [157] SPARROW E M, GARCIA A, CHUCK W. Numerical and experimental turbulent heattransfer results for a one-sided heated rectangular duct[J]. Numerical Heat Transfer.1986,9(3):301-322.
    [158]叶乐志,李德胜,王跃宗,等.先进汽车缓速器理论与试验[M].北京:机械工业出版社,2012.
    [159]孙纪宁. ANSYS CFX对流传热数值模拟基础应用教程[M].北京:国防工业出版社,2010.
    [160] BALL K S, FAROUK B, DIXIT V C. An experimental study of heat transfer in a verticalannulus with a rotating inner cylinder[J]. International Journal of Heat and Mass Transfer.1989,32(8):1517-1527.
    [161] HATZIATHANASSIOU V, XYPTERAS J, ARCHONTOULAKIS G. Electrical-thermalcoupled calculation of an asynchronous machine[J]. Archiv fur Elektrotechnik.1994,77(2):117-122.
    [162]杨世铭.传热学基础[M].北京:高等教育出版社,2004.
    [163]博弈创作室. ANSYS9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006.
    [164]余伟炜,高炳军. ANSYS在机械与化工装备中的应用[M].北京:中国水利水电出版社,2007.
    [165]陈衡治,徐爱敏,叶昌勇,等.杭州湾大桥北航道桥结构优化研究[J].中国铁道科学.2004,25(03):77-80.
    [166]卞钢.船体结构强度有限元分析与优化[D].大连理工大学,2005.
    [167] MORE J J, WRIGHT S J. Optimization software guide[M]. Philadelphia: SIAM,1993:13.
    [168]王学文,杨兆建,段雷. ANSYS优化设计若干问题探讨[J].塑性工程学报.2007,14(06):181-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700