超大跨径混合梁斜拉桥宽箱梁高性能混凝土防裂技术与耐久性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对超大跨径混合梁斜拉桥预应力宽箱梁易产生开裂这一突出问题,开展宽箱梁高性能混凝土组成设计、裂缝防治、耐久性和温控防裂施工技术研究。通过研究矿物掺合料、聚丙烯纤维、减缩剂和水化热降低剂对混凝土工作性、力学性能、抗裂性能、耐久性能的影响及其作用机理,模拟计算宽箱梁混凝土在不同施工工况条件下的温度场及温度应力场分布情况,为超大跨径混合梁斜拉桥提供了抗裂、耐久的宽箱梁高性能混凝土配合比及有利于箱梁温控防裂的施工技术方案。
     首先,对宽箱梁混凝土的组成设计进行了研究,从混凝土工作性、力学性能、抗裂性和耐久性为一体的设计要求出发,制备了胶凝材料用量低(490kg·m~(-3))、矿物掺合料掺量高(20%~25%)的宽箱梁高性能混凝土,并研究了聚丙烯纤维、减缩剂、水化热降低剂等抗裂组分对该高性能混凝土工作性与力学性能的影响。
     其后,利用温度-应力试验机、大板法,并辅以水化热、绝热温升、干缩率和徐变度的测试,研究了箱梁混凝土的开裂敏感性和体积稳定性,提出了以温度-应力试验为主的预应力宽箱梁混凝土抗裂性能的评价体系。研究结果表明,箱梁混凝土中掺入矿物掺合料,降低了混凝土绝热温升、干缩率、徐变度和开裂敏感性,有利于混凝土抗裂性能的提高;进一步掺入聚丙烯纤维、减缩剂、水化热降低剂等抗裂组分,发现聚丙烯纤维降低混凝土干缩率和徐变,减缩剂降低干缩率,水化热降低剂降低水化热,进一步有利于混凝土抗裂性能的提高;测试宽箱梁混凝土的各项耐久性指标发现,矿物掺合料的掺入,混凝土抗冻性能和抗氯离子渗透性能提高,碱含量降低,抗碳化性能虽略有下降,但基于混凝土抗碳化性能的耐久性寿命预测超过500年。
     利用化学结合水、XRD、SEM、MIP等测试方法,对浆体的微观结构与组成进行研究,探讨了粉煤灰对混凝土徐变、干缩、耐久性的作用机理,以及水化热降低剂降热作用机理。研究结果显示:粉煤灰混凝土的徐变性能受到体系水化产物数量、微集料效应和粉煤灰界面结合情况三大因素的共同作用,界面结合力越强,微集料效应发挥程度越高,以及体系的化学结合水量越小,则混凝土徐变度减小越明显。水化热降低剂由于其本身结构中含有的羟基,容易吸附于水泥表面并包裹在未水化的水泥周围,以减少水的进入,减缓水泥水化速度,延长水化时间,从而降低水泥水化热最高值。
     最后,模拟计算不同施工方案条件下宽箱梁混凝土温度场和温度应力场,分析了浇筑温度、整幅浇筑或分幅浇筑、布置冷却水管或不布置冷却水管等因素对混凝土抗裂安全系数的影响,提出了分幅浇筑且布置冷却水管的防裂技术方案以及控制混凝土内部最高温度和内外温差的防裂措施。
Four aspects of high performance concrete for wide box girder were investigated to solve the problem of crack in wide box girder of super-long span hybrid girder cable-stayed bridge, including the mix designing, crack prevention, durability and construction for temperature control and crack prevention. The effect of mineral admixtures, polypropylene fiber, shrinkage reducing agent and hydration heat reducing agent on the workability, mechanical properties, crack resistance and durability and their mechanisms were studied, and the simulation calculations of the temperature fields and stress fields for the prestressed concrete wide box girder were also carried out. Based on all above the results, the proportions of high performance concrete with good crack resistance and good durability were supplied, and the construction for temperature control and crack prevention was also supplied.
     Firstly, the composition of high performance concrete for wide box girder was investigated. The high performance concrete was prepared to meet the requirement of workability, mechanical properties, crack resistance and durability. What's more, the influence of polypropylene fiber, shrinkage reducing agent and hydration heat reducing agent on the workability and mechanical properties of high performance concrete were investigated.
     Secondly, the cracking sensitivity and volumetric stability of HPC for box girder were investigated by means of board device, temperature-stress test machine (TSTM), and testing hydration heat, adiabatic temperature rise, drying shrinkage ratio and creep. And the indexes to assess the cracking sensitivity of concrete for wide box girder were established based mainly on the TSTM. The results indicated that adding mineral admixtures decreased the adiabatic temperature rise, drying shrinkage ratio and creep, which improved the crack resistance of concrete. What's more, the research results demonstrated that the concrete exhibited less drying shrinkage and creep with polypropylene fiber, less drying shrinkage with shrinkage reducing agent, and less hydration heat with hydration heat reducing agent. The adding of polypropylene fiber, shrinkage reducing agent and hydration heat reducing agent was beneficial to improve crack resistance. The durability test results indicated adding mineral admixtures improved the frost resistance and chloride penetration resistance, but decreased the carbonation resistance. The predicated service life of HPC for boxer girder was more than five hundred years based on the carbonation resistance.
     The XRD, SEM and MIP methods were applied to determine the microstructure and composition of the cement-based materials with mineral admixtures, and the mechanisms were preliminarily analyzed, including the fly ash improving durability but decreasing drying shrinkage and creep, hydration heat reducing agent reducing hydration heat. The analysis revealed that the creep characteristics of fly ash cement were decided by the amount of hydration products, 'micro-aggregate effect' and combination of interface around fly ash. The concrete exhibited less specific creep in the stance of less amount of non-evaporable water, 'more micro-aggregate', and more combination of interface. The analysis also revealed the hydroxyl of hydration heat reducing agent was absorbent around the unhydrated cement particle, which prevent the cement particle touching from the water. So the process of hydration was delayed, and the peek value of hydration heat was decreased.
     Finally, the simulation calculations of the temperature fields and stress fields for the prestressed concrete wide box girder were carried out under different construction plans. Some factors which affected the coefficient of safety for crack prevention of concrete were investigated, including different casting temperatures, choices of whole amplitude construction or half amplitude construction, and arranges of cooling pipes or not. According to the simulation calculation results, the half amplitude construction with arrangement of cooling pipes was choose to prevent the crack. And some measures to control the maximum temperature and the difference between the inside and outside temperature in boxer girder were put out.
引文
[1]周履.桥梁耐久性发展的历史与现状[J].桥梁建设.2000(4):58-61.
    [2]吴海军,彭作军等.砼桥梁耐久性设计原则与构造措施讨论[J].重庆交通学院学报.2006(2):8-11.
    [3]金祖权.西部地区严酷环境下混凝土的耐久性与寿命预测[D].博士学位论文.南京:东南大学,2006.
    [4]余红发.盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D].博士学位论文.南京:东南大学,2004.
    [5]刘秉京.桥梁混凝土耐久性设计[J].公路.2001(2):70-74.
    [6]王均利.影响桥梁结构耐久性的主要因素及应对措施[J].中外公路.2004(12):61-63.
    [7]吴海军,陈艾荣.桥梁结构耐久性设计方法研究[J].中国公路学报.2004(7):57-67.
    [8]“超大跨径混合粱斜拉桥边跨PC宽箱梁及钢混结合段砼耐久性能试验研究”招标文件.鄂东长江大桥建设有限公司.2006.
    [9]American Concrete Institute Committee 201.Guide to durable concrete(ACI 201.2R-01)[R].ACI.Farmington Hills,US.
    [10]Mehta PK.Monteiro PJM.Concrete microstructure,properties and materials[M].3rd edn.McGraw-Hill.New York.US.
    [11]Bohni H.Corrosion in reinforced concrete structures[M].Woodhead Publishing.Cambridge.UK.
    [12]Pigeon M,Pleau R.Durability of concrete in cold climates[M].E & FN Spon Press.London.UK.
    [13]RILEM TC 191-2006.Guide to diagnosis and appraisal of AAR damage to concrete in structures[M].RILEM Publications.Cachan.France.
    [14]European Committee for Standardization(2000)Concrete-Part 1:Specification,performance,production and conformity(European standard EN206-1).CEN.Brussels.Belgium.
    [15]European Committee for Standardization(2002)Concrete-Part 21:General rules and rules for buildings(European standard EN1992-1-1).CEN-Brussels.Belgium.
    [16]American Concrete Institute Committee 318(2005)Building code requirements for structural concrete and commentary(ACI318-05,ACI318R-05).ACI.Farmington Hills.US.
    [17]Canadian Standard Association(2004)Concrete materials and methods of concrete construction(A23.1-04).CSA.Ontario.Canada.
    [18]日本土木学会.ュンクリト标准示方书—耐久性照查型.[施工编].平成11年版.
    [19]Federation International du Beton(2006)Model Code for Service Life Design,fib Bulletin 34.fib.Lanne.Switzerland.
    [20]Val,D.V.Effect of Different Limit States on Life—Cycle Cost of RC Structures in Corrosive Environment[J].Journal of Infrastructure System.A SCE.11(4):231-240.
    [21]刘秉京.混凝土技术[M].北京:人民交通出版社.2004.
    [22]P.K.Mehta,R.W.Burrows.Building Durable Structures in the 21st Century[J].Concrete International.2001(3).
    [23]周履.关于混凝土耐久性的新观点[J].国外桥梁.1998(4):62-67.
    [24]P.K.Mehta.Concrete technology at the crossroads—problems and opportunities,Concrete Technology,Past,Present and Future,Mohan Malhotra Symp,ed.P.K Mehta,ACI Special Publ.SP-144,1994:1-301.
    [25]王剑.关于混凝土耐久性:现在我们能制造高质量混凝土[J].四川建筑科学研究.2002(2):61-63.
    [26]吴中伟.水泥混凝土工作者面临的挑战和机会[J].混凝土与水泥制品.1996(1):1-5.
    [27]黄土元.混凝土耐久性设计要点[J].混凝土.1995(3):5-8.
    [28]金伟良.混凝土结构耐久性[M].北京:科学出版社.2002.
    [29]牛荻涛.混凝土结构耐久性与寿命预测[J].北京:科学出版社2002.
    [30]李金玉.冻融环境下混凝土结构的耐久性设计与施工[M].北京:中国建筑工业出版社.2004.
    [31]中国土木工程学会技术标准CCES01-2004.混凝土结构耐久性设计与施工指南[M].北京:建筑工业出版社.2005.
    [32]中华人民共和国行业标准铁建设[2005]157号.铁路混凝土结构耐久性设计暂行规定[M].北京:中国铁道出版社.2005.
    [33]中华人民共和国行业推荐标准(JTG/T07-01-2006).公路混凝土结构防腐蚀技术规范[J].北京:中国铁道出版社.2006.
    [34]杭州湾跨海大桥专用施工技术规范[M].杭州湾大桥工程指挥部.2005.
    [35]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社.1999.
    [36]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社.2004.
    [37]廉慧珍.对”高性能混凝十”推广应用十年来的反思[J].混凝土.2005(7):10-13.
    [38]ACI Committee 116.Cement and Concrete Technology.ACI 116R-00.ACI Committee 116Report.Farmington Hills.Michigan.2000.
    [39]梅明荣,葛世平,陈军.混凝土结构收缩应力问题研究[J].河海大学学报.2002(1):73-78.
    [40]Salah A.,David A.L.Early Age Stress and Creep-shrinkge Interaction of Restrained Concrete,FAA Center of Excellence for Airport Technology COE Report No.14,March,2001.
    [41]李悦,谈慕华,张雄.混凝土的自收缩及其研究进展[J].建筑材料学报.2000(3):252-257.
    [42]Burrows,R.W.,The Visible and Invisible Cracking of Concrete,ACI Monograph,No.11,ACI,Farmington Hills,MI,1998.
    [43]Brewer,H.W.and Burrows,R.W.,Coarse Ground Cement Makes More DurableConcrete,ACI Journal,Proceedings V.47,No.25,1951.
    [44]Pickett,G.,The effect of change in moisture content of the creep of concrete under a sustained load,ACI Journal,Proc.,1942,13(4).
    [45]Lea,F.M.,and Desch,C.H.,The Chemistry of cement and concrete.Revised edition.St.Martin's Press,Inc.,New York,354.
    [46]巴恒静,高小建约束条件下高性能混凝土的早期开裂[J].混凝土.2002(5):3-6.
    [47]巴恒静,高小建.混凝土早期收缩开裂评价及相关问题研究[J].中国硅酸盐学会2003年学术年会水泥基材料论文集(下册).2003:58-62.
    [48]Salah A.A.,David A.L.Creep,Shrinkage,and Cracking of Restrained Concrete at Early Age[J].ACI Materials Journal,July-August,2001(4):323-331.
    [49]Penev,D.,Kawarnura M.A.Laboratory Device for Restrained Shrinkage Fracture of Soil-Cement Mixture[J].Materials and Structure.1992(25):115-120.
    [50]Bloom R.,Bentur A.Free and restrained shrinkage of normal and high-strength concrete [J].ACI Materials Journal.1995(2):211-215.
    [51]Surendra P.,Shah.A.Method to predict shrinkage cracking of concrete[J].ACI Materials Journal[J].1998(4):339-346.
    [52]H.索默编,冯乃谦等译.高性能混凝土的耐久性[M].北京:科学出版社.1998.
    [53]张雄,张小伟,李旭峰.混凝土结构裂缝防治技术[M].北京:化学工业出版社.2007.
    [54]中国土木工程学会技术标准.混凝土结构耐久性设计与施工指南[S].北京:中国建筑工业出版社.2005.
    [55]中华人民共和国国家标准.高强高性能混凝土用矿物外加剂[S].北京:中国标准出版社.2002.
    [56]中华人民共和国国家标准.用于水泥和混凝土中的粉煤灰[S].北京:中国标准出版社.2005.
    [57]中华人民共和国行业标准.公路桥涵施工技术规范[S].北京:人民交通出版社.2000.
    [58]中国工程建设标准化协会标准.高强混凝土结构设计与施工技术规程[S].北京:中国建筑工业出版社.1999.
    [59]中国人民共和国国家标准.建筑用碎石、卵石[S].北京:中国标准出版社.2001.
    [60]中国人民共和国国家标准.建筑用砂[S].北京:中国标准出版社.2001.
    [61]中国人民共和国国家标准.混凝土外加剂[S].北京:中国标准出版社.1997.
    [62]中国人民共和国国家标准.普通混凝土拌和物性能试验方法标准[S].北京:中国标准出版社.2002.
    [63]中华人民共和国行业标准.公路工程水泥及水泥混凝土试验规程[S].北京:人民交通出版社.2000.
    [64]陈建奎,王栋明.高性能混凝土(HPC)配合比设计新法——全计算法[J].硅酸盐学报.2000(2):194-198.
    [65]方瑞良.新颖的混凝土配合比设计方法[J].膨胀剂与膨胀混凝土.2006(1):16-22.
    [66]赵铁军,冯乃谦.高性能混凝土的配合比[J].混凝土.1994(2):5-10.
    [67]韩建国,阎培渝.系统化的高性能混凝土配合比设计方法[J].硅酸盐学报.2006(8):1026-1030.
    [68]DOMONE.P L J,SOUTSOS.M N.Approach to the proportioning of high-strength concrete mixes[J].Concrete.1994(10):26-31.
    [69]ALVES.M F,CREMONINI.R A,DALMOLIN.D C C.A comparison of mix proportioning methods for high-strength concrete[J].Cem Concr Compos.2004(6):613-621.
    [70]MEHTA.P K,AIETCIN.P C.Principles underlying production of high performance concrete[J].Cem Concr Aggregates.1990(2):70-78.
    [71]刘世同,王永安,陆采荣,等.五河口斜拉桥主梁高性能混凝土试验研究[J].公路.2006(5):15-19.
    [72]姜竹生,刘世同,陆采荣,等.五河口斜拉桥索塔高性能混凝土试验研究[J].现代交通技术.2006(4):22-25.
    [73]苏祖平.苏通长江大桥D1标商埠结构连续刚构C60泵送粉煤灰混凝土的试验研究[J].粉煤灰.2006(1):3-5.
    [74]蔡以智,王文学,薄祥照.杭州湾跨海大桥50m箱梁C50海工耐久混凝土配合比试验研究[J].混凝土.2006(6):86-90.
    [75]苏祖平,欧阳华林.杭州湾跨海大桥70m预应力箱梁用海工耐久混凝土的试验研究[J].公路.2006(9):107-110.
    [76]皇甫熹,徐强,俞海勇,等.高性能海工混凝土在东海大桥工程中的应用[J].世界桥梁.2004(增):28-31.
    [77]徐祖年,罗志华,张颖如,等.箱梁高性能粉煤灰混凝土配制与应用研究[J].公路交通科技.2003(2):74-76.
    [78]单俊鸿.高性能桥面铺装混凝土研究与应用[D].博士学位论文.武汉:武汉理工大学,2006.
    [79]黄学辉,郑健,马保国.外加剂对水泥净浆水化热的影响[J].武汉理工大学学报.2003(1):26-29.
    [80]钱春香,耿飞,李丽.减缩剂的作用及其机理[J].功能材料.2006(2):287-291.
    [81]FOLLIARD.K J,BERKE.N S.Properties of high performance concrete containing shrinkage reducing admixture[J].Cement and Concrete Research.1997(9):1357-1364.
    [82]BENTZ.D P,GEIKER.M R,HANSEN.K K.Shrinkage reducing admixtures and early-age desiccation in cement pastes and mortars[J].Cement and Concrete Research.2001(7):1075-1085.
    [83]陈美祝,周明凯,吴少鹏,等.减缩剂对水泥基材料早期水化及收缩变形性能的影响[J].武汉大学学报.2007(1):78-82.
    [84]王迎飞,黄雁飞.减缩剂对高性能砼收缩开裂性能影响的研究[J].硅酸盐通报.2006(6):189-193.
    [85]刘竞,邓德华,赵腾龙,等.减缩剂对水泥基材料减缩效果的研究[J].安徽建筑工业学院学报2007(6):67-72.
    [86]张志宾,徐玲玲.水泥基材料复配减缩剂的减缩作用[J].硅酸盐学报.2007(4):
    [87]任世漫.预拌混凝土泵送性能研究[J].重庆建筑大学学报.1999(1):10-13.
    [88]袁润章.胶凝材料学[M].武汉:武汉工业大学出版社.1996.
    [89]穆红英.关于外加剂/混合材料对硅酸盐水泥的水化热影响研究[D].硕士学位论文.大连:大连理工大学.2000.
    [90]胡曙光,张云升,丁庆军.用于高性能混凝土的胶结材浆体水化热研究[J].建筑材料学报.2000(9):202-206.
    [91]朱伯芳.大体积混凝土温度应力预温度控制[M].北京:中国电力出版社.1999.
    [92]张向军.高性能混凝土的体积稳定性研究[D].硕士学位论文.浙江:浙江工业大学.2007.
    [93]桂海清,葛炜,王周松,等.高强高性能混凝土的体积稳定性[J].材料科学与工程学报.2003(3):460-463.
    [94]王稷良.巴东长江大桥主粱C60高性能混凝土的研究[D].硕士学位论文.武汉:武汉理工大学.2005.
    [95]JARDINED J,WOLHUTER.C W.Some properties of high slag concrete[J].Civil Engineer in South Africa.1977(11):249-25.
    [96]CHERN.Jenn-Chuan,CHAN Yin Wen.Deformations of concretes made with blast furnace slag cement and ordinary portland cement[J].ACI Materials Journal.1989(4):372-382.
    [97]ALEXANDER.M G.Deformation Properties of blended cement containing blast furnace slag and condensed silica fume[J].Advances in Cement Research.1994(6):73-81.
    [98]LI Jianyong,YAO Yah.A study on creep and drying shrinkage of high performance concrete[J].Cement and Concrete Research.2001(8):1203-1206.
    [99]RIGAN.J.Influence of slag dosage in cement on properties of concrete made with river and crushed aggregates[J].Stavebnichy Casopic.1984(5):337-356.
    [100]吴彬,张璐明,张美玲,等.100MPa粉煤灰高性能混凝土的研究[J].混凝土.2002(3):7-9.
    [101]邹建喜,李显金,迟培云.粉煤灰混凝土的变形性能研究[J].混凝土.2003(6):38-42.
    [102]GHOSH.R S,TIMUSK.J.Creep of fly ash concrete[J].Jourual of the American Concrete Institute.1981(5):351-357.
    [103]赵庆新,孙伟,缪昌文,等.磨细矿渣和粉煤灰对高性能砼徐变性能的影响[J].武汉理工大学学报.2005(11):35-38.
    [104]桂海清.混凝土早期收缩与抗裂性能试验研究[D].硕土学位论文.浙江:浙江大学.2004.
    [105]林志海.混凝土早期开裂试验评价研究[D].硕士学位论文.北京:清华大学.2002.
    [106]Springenschmid R.Preface.In:Springenschmid R,eds.Thermal cracking in concrete at early ages.Munich:E&FN SPON.1995.ⅹⅰ-ⅹⅱ.
    [107]Springenschmid R.Preface.In:Springenschmid R,eds.Avoidance of thermal cracking in concrete at early ages.Munich:E&FN SPON.1998.
    [108]胡曙光,陈静,周志锋.约束可调式单轴温度-应力试验机控制系统[J].武汉理工大学.2007(1):55-57.
    [109]张国志.海工绿色高性能混凝土早期抗裂与抗氯盐侵蚀性能研究[D].博士学位论文.武汉:武汉大学.2006.
    [110]中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社.2004.
    [111]中华人民共和国行业标准.水工混凝土试验规程[S].北京:中国电力出版社.2001.
    [112]廉慧珍,陈恩仪.建筑材料物相研究基础[M].北京:清华大学出版社.1996.
    [113]BAZANT.Z P,WITTAMNN.F H.Creep and shrinkage in concrete structures[M].John Wiley&sons Ltd.1982.
    [114]P.K.Metha.混凝土的结构、性能与材料[M].上海:同济大学出版社.1991.
    [115]T.Numao and K.Fukuzawa.Influence of additives and admixtures on shrinkage,moisture migration and water loss hardened cement paste[C].High performance concrete:Material properties and design.Proceedings of the fourth Weimar workshop on high performance concrete.
    [116]M.N.Haque.Strength development and drying shrinkage of high-strength concrete[J].Cement and Concrete Research.1996(26):333-342.
    [117]张云生,孙伟,胡曙光.矿物掺合料对高性能混凝土内胶结材浆体收缩性能的影响[J].建筑技术开发.2001(11):24-26.
    [118]M.H.Zhang.Microstructure,crack propagation,and mechanical properties of cement paste containing high volume of fly ashes[J].Cement and Concrete Research.1995(25):1165-1178.
    [119]S.P.Pandey,R.L.Sharma.The influnence of minneral additives on the strength and porosity of OPC mortar[J].Cement and Concrete Research.2000(30):19-23.
    [120]Linhua Jiang,Yugang Guan.Pore structure and its effect on strength of high-volume fly ash pastes[J].Cement and Concrete Research.1999(29):631-633.
    [121]单国良.掺硅粉、粉煤灰、磨细矿渣海工高性能混凝土的耐久性研究[C].高强与高性能混凝土及其应用.中国建材工业出版社.2004:186-190.
    [122]覃维祖.混凝土的收缩、开裂及其评价与防治[J].混凝土.2001(7):3-7.
    [123]P.Lura.Autogenous deformation and internal curing of concrete[D].Ph.d thesis of university Delft
    [124]L.Lam,Y.L.Wong,C.S.Poon.Degree of hydration and gel/space ratio of high-volume fly ash/cement systems[J].Cement and Concrete Research.2000(30):747-756.
    [125]安明喆.高性能混凝土自收缩的抑制措施[J].混凝土.2001(5):41-46.
    [126]惠荣炎,黄国兴,易若冰.混凝土的徐变[M].北京:中国铁道出版社.1988.
    [127]John Newman,Ban Seng Choo.Advanced Concrete Technology[M].Oxford:Elsevier Ltd.2003.
    [128]高丹盈,林建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社.1994.
    [129]黄承逵.纤维混凝土结构[M].北京:机械工业出版社.2004.
    [130]KIM.J K.Thermal analysis of hydration heat in concrete structures with pipe-cooling system[J].Computers and Structures.2001(2):163-171.
    [131]龙述尧,陈军,李家宝.用加权有限差分-边界元耦合方法研究瞬态温度应力场问题[J].湖南大学学报.1995(3):109-114.
    [132]彭友松,强士中.公路混凝土箱梁三维温度应力计算方法[J].交通运输工程学报.2007(1):63-67.
    [133]陈衡治,谢旭,张治成,等.预应力混凝土箱梁桥的温度场和应力场[J].浙江大学学报.2005(12):1885-1890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700