几类不确定非线性系统的稳定性与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性与非线性广泛存在于实际工程系统中。因此,研究不确定非线性系统的控制问题具有重要的理论和实际意义。本文的工作和研究成果主要体现如下:
     1、针对一类具有模型不确定性的非线性系统,提出基于扰动观测器的线性控制策略。该控制策略基本思想为:模型不确定性对系统的影响必定会反映到系统状态轨迹当中,通过构造新颖的线性扰动观测器在线从系统状态信息中分离出模型不确定性的相关信息,进而设计结构简单的线性补偿器对模型不确定性进行实时补偿。该控制策略的结构与算法简单,具有较好的工程意义。理论上也给出闭环系统稳定的充分条件
     2、针对一类单输入单输出(Single-input-single-output, SISO)不确定非仿射非线性系统,在状态不完全可测的情况下,提出基于扰动观测器的输出反馈控制策略。该控制策略基本思想为:针对系统的非仿射特性,通过等价变换来简化被控对象模型;基于此,利用可测的状态信息构造新颖的动态线性扰动观测器在线获取模型不确定性的相关信息,进而设计结构简单的线性控制器。相比于已有文献,该控制策略的结构与算法简单,所需条件宽松,具有较好的工程意义。
     3、针对一类多输入多输出(Multi-input-multi-output, MIMO)不确定非仿射非线性系统,提出一种基于扰动观测器的控制策略。该控制策略基本思想为:引入一个新的关于多变量的隐函数定理,并利用该定理来证明多变量系统存在理想的控制器;基于此,通过等价变换简化被控对象模型,构造新颖的扰动观测器在线获取模型不确定性的相关信息,进而设计全状态反馈控制器;当系统状态不完全可测时,构造状态观测器对系统不可测的状态进行估计,进而设计输出反馈控制器。该控制策略不仅可以导出简单的控制结构与算法,而且避免了解耦问题,具有较好的工程意义。理论上也给出闭环系统稳定的充分条件。
     4、对不确定非线性系统提出一种新颖的自适应神经网络控制策略。该控制策略首先针对一类控制系数为未知函数的SISO仿射非线性系统进行展开,其基本思想为:针对自适应控制对模型不确定性进行估计时可能出现的控制奇异问题,提出通过等价变换将系统模型的仿射项分为二项:一项控制系数为常数,另一项控制系数为未知函数;基于此,构造自适应神经网络控制器对模型不确定性进行补偿,同时使得仿射项中控制系数为未知函数的一项在Lyapuno(?)函数的导数中保持半负定,从而避免了控制奇异问题。接着,将该控制策略推广到具有块三角的MIMO非仿射非线性系统当中,并且能够有效地避免了MIMO非仿射非线性系统的控制奇异问题与解耦问题。
In practice, physical systems under study possess inherent characteristics of uncertainties and nonlinearities. Therefore, it is important theoretical and practical significant to study on the stability and control of uncertain nonlinear systems. The main contributions of this dissertation are as follows:
     1. For a class of nonlinear systems with model uncertainties, linear control strategies are proposed based on novel disturbance observers. The basic idea of the proposed strategies is that, since the effects of the model uncertainties must be reflected in the trajectories of the system states once the uncertainties affect the controlled systems, novel linear disturbance observers are constructed to separate the relative information of the model uncertainties from the the state trajectories, and then linear compensators are designed by using the obtained information to compensate the model uncertainties in real-time. The proposed strategies are of great significance in engineering due to their simple control structure and algorithm.
     2. For a class of single-input-single-output (SISO) uncertain non-affine nonlinear systems, output feedback control strategies are presented based on novel disturbance observers. The basic idea of the proposed strategies is that, to deal with the non-affine appearance of the control input, equivalent transformation is firstly used to transform the controlled system into an affine form; and then novel linear disturbance observers are built to obtain the estimates of the model uncertainties, and linear compensators are presented by using the obtained estimates to compensate the model uncertainties in real-time. Compared with the literature, the proposed strategies are of great significance in engineering due to their simple control structure and algorithm and their relaxed conditions.
     3. For a class of multi-input-multi-output (MIMO) uncertain non-affine nonlinear systems, feedback control strategies are presented based on novel disturbance observers. The basic idea of the proposed strategies is that, a new multivaluable implicit function theorem is firstly proposed to prove that there exists an ideal controller for the considered multivaluable systems; secondly equivalent transformation is used to transform the controlled system into an affine form, and novel disturbance observers are presented to estimate the model uncertainties, and subsequently full-state feedback controller is developed based on the estimations:when only system outputs are available for feedback, then the state observer is designed to estimate the unmeasurable state, and output feedback controller is presented to compensate the model uncertainties in real-time. The proposed strategies are of great significance in engineering since they possess simple control structure and algorithm and avoid the decoupling problem.
     4. Novel adaptive neural control strategies are presented for uncertain nonlinear systems. The proposed control strategies are firstly used to sovled a class of SISO affine nonlinear systems with the control coefficients being unknown functions. Control singularity problem possibly exists in the adaptive control when the unknown control coefficients are approximated. To tackle such a problem, the basic idea of the proposed control strategies is that, the control coefficients is firstly divided by equivalent transformation into two iterms:the one iterm that the control coefficients are constants and the other iterm that the control coefficients are unknow functions:based on such a new form, adaptive neural controllers are designed to compensate the model uncertainties, and meanwhile guarantee the iterm that the control coefficients are unknow functions to be non-positive in the derivatives of Lyapunov function candidates, and subsequently avoid the control singularity problem. And then the proposed control strategies are applied to a more general class of MIMO uncertain nonlinear systems in block-triangular form, where all subsystems within these MIMO nonlinear systems are of completely nonaffine purefeedback form and allowed to have different orders. The control strategies can avoid the decoupling problem, the possible control singularity problem and the circular control construction problem.
引文
[1]徐湘元.自适应控制理论与应用[M].北京:电子工业出版社,2007.
    [2]刘小河.非线性系统分析与控制引论[M].北京:清华大学出版社,2008.
    [3]胡云安,晋玉强,李海燕.非线性系统的鲁棒自适应反演控制[M].北京:电子工业出版社,2010.
    [4]Bhasin S. Kamalapurkar R, Johnson M. A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems[J]. Automatica,2013,49(1):82-92.
    [5]Dirksz D A, Scherpen J M A. Structure preserving adaptive control of port-hamiltonian systems[J]. IEEE Transactions on Automatic Control,2012,57(11):2879-2885.
    [6]Giorgio B, Elisabetta P. Sliding mode output-feedback stabilization of uncertain nonlinear nonaffine systems[J]. Automatica,2012,48(11):3106-3113.
    [7]Luca G. Antoine C. Antonio B. Exploiting packet size in uncertain nonlinear networked control systems[J]. Automatica,2012.48(11):2801-2811.
    [8]梅生伟.申铁龙.刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2008.
    [9]吴敏,桂卫华,何勇.现代鲁棒控制(第二版)[M].长沙:中南大学出版社.2006.
    [10]洪奕光,程代展.非线性系统的分析与控制[M].北京:科学出版社,2005.
    [11]贺昱曜,闫茂德.非线性控制理论及应用[M].西安:西安科技大学出版社,2007.
    [12]葛宝明,林飞,李国国.先进控制理论及其应用[M].北京:机械工业出版社,2007.
    [13]Isidori A. Marconi L, Praly L. Robust design of nonlinear internal models without adaptation[J]. Automatica,2012.48(10):2409-2419.
    [14]Zhou J, Wen C, Li T. Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity[J]. IEEE Transactions on Automatic Control,2012,57(10):2627-2633.
    [15]Quevedo D E, Nesic D. Robust stability of packetized predictive control of nonlinear systems with disturbances and Markovian packet losses[J]. Automatica,2012,48(8):1803-1811.
    [16]Chen W, Anderson B D O. A combined multiple model adaptive control scheme and its application to nonlinear systems with nonlinear parameterization[J].IEEE Transactions on Automatic Control,2012.57(7):1778-1782.
    [17]Zhou K. Doyle J C. Glover K. Robust and optimal control[M]. Prentice Hall,1995.
    [18]Vander Schaft A J著,孙元章等译.非线性控制中L增益和无源化方法[M].北京:清华大学出版社,2002.
    [19]冯纯伯,张侃健.非线性系统的鲁棒控制[M].北京:科学出版社,2004.
    [20]Ge S S. Hang C C. Lee T H. Zhang T. Stable adaptive neural network control[M]. Norwell. MA: Kluwer Academic.2002.
    [21]Krstic M. Kanellakopoulos I. Kokotovic P V. Nonlienar and adaptive control design[M]. New York:Wiley.1995.
    [22]Astrom K J, Wittenmark B. Adaptive control[M]. Boston:Addison-Wesley Longman Pulishing Company.1989.
    [23]Goh C K. Teoh E J. Tan K C. Hybrid multiobjective evolutionary design for artificial neural networks[J]. IEEE Transactions on Neural Networks,2008,29(9):1531-1548.
    [24]Islam M. Sattar A, Amin F, Yao X. Murase K. A new constructive algorithm for architectural and functional adaptation of artificial neural networks[J]. IEEE Transactions on Systems. Man. and Cybernetics-Part B:Cybernetics,2009,39(6):1590-1605.
    [25]Yang B J, Calise A J. Adaptive control of a class of nonaffine systems using neural networks[J]. IEEE Transactions on Neural Networks,2007,18(4):1149-1159.
    [26]Li G. Khajepour A. Robust control of a hydraulically driven flexible arm using backstepping technique[J]. Journal of Sound and Vibration,2005,280(3):759-775.
    [27]方应纯,卢桂章.非线性系统理论[M].北京:清华大学出版社,2009.
    [28]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2005.
    [29]Slotine J J E. Li W. Applied nonlinear control[M]. Pearson Higher Education & Professional Group.1991.
    [30]苏宏业,褚健,鲁仁全,嵇小辅.不确定时滞系统的鲁棒控制理论[M].北京:科学出版社,2007.
    [31]Black H S. Stabilized feedback amplifiers[P]. U. S., Patent No.2.102,671.1927.
    [32]Isidori A. Nonlinear control systems:an introduction[M]. New York:Springer-Verlag,1992.
    [33]David A, Edoardo M. Lyapunov-based switching supervisory control of nonlinear uncertain systems[J]. IEEE Transactions on Automatic Control,2002,47(3):500-505.
    [34]Islam M. Sattar A, Amin F. Yao X. Murase K. A new constructive algorithm for architectural and functional adaptation of artificial neural networks[J]. IEEE Transactions on Systems. Man. and Cybernetics, Part B:Cybernetics,2009,39(6):1590-1605.
    [35]Lin W, Shen T. Robust passivity and feedback design for mininum-phase nonlinear systems with structral uncertainty[J]. Automatica,1999,35(1):35-48.
    [36]周绍生,费树岷,冯纯伯.不确定严格反馈非线性系统的鲁棒控制[J].信息与控制,2000,29(3):193-197.
    [37]Zhou K M. Essentials of robust control[M]. Prentice-hall Inc.,1998.
    [38]Zames G. Feedback and optimal sensitivity:model reference transformations, multiplicative seminorms,and approximate inverses[J]. IEEE Transactions on Automatic Control.1981,26(2): 301-320.
    [39]Doyle J. Analysis of feedback systems with structured uncertainties[J]. IEE Proc,1982,129(6): 242-250.
    [40]Doyle J C, Wall J E. Stein G. Performance and robustness analysis for structured uncertainty[C]. Proceedings of the International Conference on Decision and Control,1982:629-636.
    [41]Glover K, Doyle J C. State-space formulas of all stabilizing controllers that satisfy an H∞ norm bound and relations to rist sensitivity [J]. System & Control Letter,1988,11:167-172.
    [42]Zhou K, Khargonekar P P. An algebraic Riccati equation approach to H∞ optimization[J]. System and Control Letter,1988,11:85-91.
    [43]Doyle J C, Glover K, Khargonekar P P, et al. State-space solutions to standard H2 and H∞ control problems[J]. IEEE Transactions on Automatic Control,1989,34(8):831-847.
    [44]Iwasaki T, Skelton R E. All controllers for the general H∞ control problem:LMI existence conditions and stae space formulas. Automatica,1994.30:1307-1317.
    [45]Packard A. Doyle J C. The complex structured singular value[J]. Automatica.1993,29(1): 71-79.
    [46]Isidori A.H∞ control measurement feedback for affine nonlinear systems[J]. International Journal of Robust and Nonlinear Control,1994.4(4):553-574.
    [47]Ball J, Helton M L. Optimal control for nonlinear plants connection with differential games[C]. Proceeding 28th conference Decision and Control. Tampa:PL 1989:956962-956966.
    [48]Lin W,She T. Robust passivity and feedback design for minimum phase nonlinear systems with structural uncertainty[J].Automatica,1999,35(1):35-48.
    [49]Francis B A. Lecture notes in control and information science:a course in H∞ control theory[M]. New York:Springer-Verlag,1987,88.
    [50]Boyd S, et al. Linear matrix inequalities in system and control[M]. PA:AIAM.1994.
    [51]Song B. Hedrick J K, Yip P P. Robust stabilization and ultimate boundedness of dynamic surface control systems via convex optimization[J]. International Journal of Cntrol.2002.75 (12): 870-881.
    [52]Swaroop D, Hedrick J K. Yip P P. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control.2000,45(10):1893-1899
    [53]Rosenthal J, Willems J C. Open problems in the area of pole placement, in open problems in mathematical systems and control theory[M]. New York:Springer-Verlag,1998:181-191.
    [54]Fu M. Pole placement via static output feedback is NP-hard[J]. IEEE Transactions on Automatic Control,2004,49(5):855-857.
    [55]Bara G I. Boutayeb M. Static output feedback stabilization with H1 performance for linear discrete-time systems[J]. IEEE Transactions on Automatic Control,2005,50(2):250-254.
    [56]Goh K C,Safanov M G, Papavassilopoulos G P. A global optimization approach for the BMI problem[C]. Proceedings 33rd International Conference on Decision and Control,Lake Buena Vista. USA,1994:2009-2014.
    [57]Song P. Qi G P, Li K J. The flight control system based on multivariable PID neural network for small-scale unmanned helicopter[C]. International Conference on Information Technology and Computer Science,2009:538-541.
    [58]Hou X, Li P, Fang Z, et al. An application of fuzzy PID algorithm on unmanned helicopter attitude control[C]. Proc.of the 6th World Congress on Intelligent Control and Automation. 2006:9129-9133.
    [59]Sanchez E N. Becerra H M, Velez C M. Combining fuzzy and PID control for an unmanned helicopter[C]. Annual meeting of the North American Fuzzy Information Processing Society. 2005:235-240.
    [60]Avriel M. Nonlinear programming:analysis and methods[M]. Dover Publishing.2003.
    [61]Sastry S, Bodson M. Adaptive control:stability, convergence and robustness[M]. New York: Prentice-Hall Int. Inc.1989.
    [62]Popov V M. Hyperstbility of control systems[M]. New York:Springer-Verlag,1973.
    [63]loannou P A, Sun J. Robust adaptive control[M]. Prentice-Hall, Inc. Upper Saddle River, NJ, USA,1995.
    [64]Lewis F L, Jagannathan S,Yesildirak A. Neural network control of robot manipulators and nonlinear systems[M]. London, U.K.:Taylor & Francis,1999.
    [65]Spooner J, Maggiore M, Ordonez R, Passino K. Stable adaptive control and estimation for nonlinear systems:neural and fuzzy approximator techniques[M]. New York:Wiley,2002.
    [66]Volyanskyy K Y, Calise A J. Yang B-J, Lavretsky E. An error minimization method in adaptive control[C]. In Proc. AIAA Guid. Navigat. Control Conf., Keystone. CO.2006:1-9.
    [67]Volyanskyy K Y, Calise A J, Yang B-J. A novel Q-modification term for adaptive control," in Proceedings of the American Control Conference. Minneapolis. MN.2006:4072-4076.
    [68]Volyanskyy K Y, Haddad W M. Calise A J. A new neuroadaptive control architecture for nonlinear uncertain dynamical systems:beyond σ-and e-modifications[J]. IEEE Transactions on Neural Networks.2009.20(11):1707-1723.
    [69]Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedback linearizable systems[J]. IEEE Transactions on Automatic Control,1999,36 (11): 1241-1253.
    [70]Krstic M, Kanellakoponlos I, Kokotovie P V. Adaptive nonlinear control without overparamcterization, System & Control Letters,1992,19:177-185.
    [71]Pan Z, Basar T. Backstepping controller design for nonlinear stochastic systems and a risk-sensitive cost criterion[J]. SIAM Journal of control and optimization,1999,37:957-995.
    [72]Freeman R A, Praly L. Integrator backstepping for bounded controls and control rates[J]. IEEE Transactions on Automatic Control,1998.43(2):258-262.
    [73]Mazenc F, Iggidr A. Backstepping with bounded feedbacks[J].System & control letters.2004.51: 235-245.
    [74]Kaloust J, Qu Z. Continuous robust control design for nonlinear uncertain systems without a priori knowledge ofthe control direction[J]. IEEE Transactions on Automatic Control.1995, 40(2):276-282.
    [75]Kaloust J. Qu z. Robust control design for nonlinear systems with an unknown time-varying control direction[J]. IEEE Transactions on Automatic Control,1997,42(3):393-399.
    [76]Nussbaum R D. Some remarks on a conjecture in parameter adaptive control[J]. System & Control Letter,1983,3(5):243-246.
    [77]Mudgen D. Morse A. Adaptive stabilization of linear systems with unknown high frequency gains[J]. IEEE Transactions on Automatic Control,1985,30(6):549-554.
    [78]Martensson B. Remarks on adaptive stabilization of first-order nonlinear systems[J]. System & Control Letter,1990,14(1):1-7.
    [79]Ding Z. Adaptive control ofnonlinear systems with unknown virtual control coefficients[J]. Intornational Journal of Adaptive Control Signal Processing,2000,14(5):505-517.
    [80]Ye X,Jiang J. Adaptive nonlinear design without a priori knowledge on control directions[J]. IEEE Transactions on Automatic Control 1998,43(11):1617-1621.
    [81]Ye X. Ding Z. Robust tracking control of uncertain nonlinear systems with unkuown control directions[J]. System & Control Letters.2001,42(1):1-10.
    [82]Ye X. Asymptotic regulation of time-varying uncertain nonlinear systems with unknown control directions[J]. Automatica,1999,35(5):929-935.
    [83]Ye X. Adaptive nonlinear output-feedback control with unknown high-frequency gain sign[J]. IEEE Transactions on Automatic Control,2001,46(1):112-115.
    [84]Ge S S, Wang J. Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems[J]. IEEE Transactions on Neural Networks,2002,13(6):1409-1419.
    [85]卢志刚,吴士昌,于灵慧.非线性自适应逆控制及其应用[M].北京:国防工业出版社2004.
    [86]Widrow B. Walach E.刘树棠,韩崇昭译.自适应逆控制[M].西安:西安交通大学出版社,2000.
    [87]Tao G. Lozano R. Adaptive control systems[M]. Butterworth-Heinemann Newton. MA, USA, 1999.
    [88]张凌波.不确定非线性系统的自适应鲁棒控制[D].中南大学博士学位论文,2003.
    [89]Barmish B R. Corless M. Leitmann G. A new class of stability controllers for uncertain dynamic systems[J]. SIAM:Journal on Control and Optimization,1983.21:246-255.
    [90]Saberi A, Sannuti P. Observer-based control of uncertain systems with nonlinear uncertainties[J]. International Journal of Control.1992.52:1107-1130.
    [91]Yu R, Sezer M E. Decentralized stabilization of interconnected systems;structural conditions[J]. Information and Decision Technologies.1992,18:333-345.
    [92]Lin C, Wang Q, Lee T H. A less conservative robust stability test for linear uncertain time-delay systems[J]. IEEE Transactions on Automatic Control,2006,51(1):87-91.
    [93]Dimitry G, Gunter S. Structured uncertainty analysis of robust stability for multidimensional array systems[J]. IEEE Transactions on Automatic Control.2003,48(8):1557-1568.
    [94]Aranya C,Murat A. Time-scale separation redesigns for stabilization and performance recovery of uncertain nonlinear systems[J]. Automatica,2009,45:34-44.
    [95]Aranya C, Murat A. Robust stabilization and performance recovery of nonlinear systems with unmodeled dynamics[J]. IEEE Transactions on Automatic control.2009.54(6):1351-1356.
    [96]Khalil H K, Saberi A. Adaptive stabilization of a class of nonlinear systems using high-gain feedback[J]. IEEE Transactions on Automatic control.1987,33:1031-1035.
    [97]俞新尧,陈宗基.线性时不变系统相对阶的若干性质及其确定[J].控制与决策,1994,9:217-222.
    [98]Polycarpou M M, loannou P A. A robust adaptive nonlinear control design[J]. Automatica,1996. 32(3):423-427.
    [99]孙增圻,张再兴,邓志东.智能控制理论与技术[M].清华大学出版社,1997.
    [100]Powell M J D. Radial basis functions for multivariable interpolations:a review[C]. IMA Conference on Algorithms for the Approximation of Functions and Data, RMCS, Shrivenham UK,1985:143-167.
    [101]Broomhead D S, Lowe D. Multivariable functional interpolation and adaptive networks[J]. Complex Systems,1988,2(2):321-355.
    [102]IRH JACKSON. An order of convergence for some radial basis functions[J]. IMA Journal of Numerical Analysis,1989,9:567-587.
    [103]Haykin S. Neural networks:a comprehensive foundation[M] (2nd Edition). New Jersey: Prentice-Hall.1999.
    [104]Kanellakopoulos 1. Kokotovic P V. Marino R. An extended direct scheme for robus nonlinear control[J]. Automatica,1991.27(2):247-255.
    [105]Khanesar M A. Kaynak O O. Teshnehlab M. Direct model reference Takagi-Sugeno fuzzy control of SISO nonlinear systems[J]. IEEE Transactions on Fuzzy Systems,2011,19(5): 914-924.
    [106]Wai R-J J, Kuo M-A. Lee J-D D. Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism[J]. IEEE Transactions on Systems, Man. and Cybernetics-Part B:Cybernetics.2008.38(2):439-454.
    [107]Leu Y-G. Wang W-Y-Y, Lee T-T T. Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems[J]. IEEE Transactions on Neural Networks,2005.16(4):853-861.
    [108]Pomares H, Rojas I, Gonzalez J, Damas M, Pino B D. Prieto A. Online global learning in direct fuzzy controllers[J]. IEEE Transactions on Fuzzy Systems.2004.12(2):218-229.
    [109]Hsueh Y-C. Su S-F F. Learning error feedback design of direct adaptive fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems.2012.20(3):536-545.
    [110]Rovithakis G A. Robust neural adaptive stabilization of unknown systems with measurement noise[J]. IEEE Transactions on Systems. Man. and Cybernetics-Part B:Cybernetics.1999.29: 453-459.
    [111]Kim N. Calise A J. Neural network based adaptive output feedback augmentation of existing controllers[J]. Aerospace Science and Technology,2008,12:248-255.
    [112]Calise A J, Yang B-J, Craig J I. Augmenting Adaptive Approach to Control of Flexible Systems[J]. Journal of Guidance, Control, and Dynamics,2004,27(3):387-396.
    [113]Hovakimyan N, Nardi F, Calise A J, Kim N. Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks[J]. IEEE Transactions on Neural Networks.2002,13(6):1420-1231.
    [114]Wong C-C C, Hunag B-C, Chen J-Y Y. Rule regulation of indirect adaptive fuzzy controller design[J]. IEE Proceedings Control Theory and Applications,1998,145(6):513-518.
    [115]Cho Y-W W, Park C-W W, Kim J H, Park M. Indirect model reference adaptive fuzzy control of dynamic fuzzy-state space model[J]. IEE Proceedings Control Theory and Applications.2001. 148(4):273-282.
    [116]Yu W-S S, Wu T-S S, Chao C-C. An observer-based indirect adaptive fuzzy control for rolling cart systems[J]. IEEE Transactions on Control Systems Technology,2011,19(5):1225-1235.
    [117]Park C-W W, Cho Y-W W. T-S model based indirect adaptive fuzzy control using online parameter estimation[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2004,34(6):2293-2302.
    [118]Huang Y. Zhou D, Chen X, Du L. H∞ tracking design for a class of decentralized nonlinear systems via fuzzy adaptive observer[J]. Journal of Systems Engineering and Electronics,2009, 20(4):790-799.
    [119]Boutalis Y S, Theodoridis D C, Christodoulou M A.A new neuro-FDS definition for indirect adaptive control of unknown nonlinear systems using a method of parameter hopping[J]. IEEE Transactions on Neural Networks,2009,20(4):609-625.
    [120]Chen J, Huang T C. Applying neural networks to on-line updated PID controllers for nonlinear process control [J]. Journal of Process Control,2004,14(2):211-230.
    [121]Atsushi A. Venkat V. Internal model control framework using neural networks for the modeling and control of a bioreactor[J]. Engineering Applications of Artificial Intelligence,1995,8(6): 689-701.
    [122]Stephen P, Bijan S-R, Doug J, Mark G. Nonlinear model predictive control using neural networks[J]. IEEE Control Systems,2000,20(3):53-62.
    [123]Liu G P. Predictive control for nonlinear systems using neural networks[J]. International Journal of Control,1998,71(6):1119-1132.
    [124]Bryson A E JR, Ho Y C. Applied optimal control:optimization, estimation and control[M]. Waltham, Massachusetts, Blaisdell Publishing Company,1969.
    [125]Hakan K, Carsten W S. Robust performance analysis for structured linear time-varying perturbations with bounded rates-of-variation[J]. IEEE Transactions on Automatic Control,2007, 52(2):197-211.
    [126]Marino R,Tomei P. Nonlinear adaptive design:geometric, adaptive, and robust[M]. London, U.K.:Prentice-Hall.1995.
    [127]Isidori A. Nonlinear control system[M] (2nd ed). Berlin, Germany:Springer-Verlag,1989.
    [128]Xie L L, Guo L. How much uncertainty can be dealt with by feedback?[J]. IEEE Transactions on Automatic Control,2000,45(12):2203-2217.
    [129]Jury E I. Theory and applications of the z-transform methods[M]. New York:Wiley,1964.
    [130]郑宝东,梁丽杰,张春蕊.扩展Jury判据[J].中国科学:A辑,2009,10:1239-1260.
    [131]胡寿松.自动控制原理[M].北京:科学出版社,2006.
    [132]Hovakimyan N. Nardi F. Calise A J. A novel error observer-based adaptive output feedback approach for control of uncertain systems[J]. IEEE Transactions on Automatic Control.2002. 47(8):1310-1314.
    [133]Brasch J,Pearson J. Pole placement using dynamic compensators[J]. IEEE Transactions on Automatic Control,1970, AC-15:34-43.
    [134]Ge S S, Ren B. Lee T H. Hard disk drives control in mobile applications[J]. Jrl Syst Sci & Complexity,2007,20:215-224.
    [135]Kim K-S. Rew K-H, Kim S. Disturbance observer for estimating higher order disturbances in time series expansion[J]. IEEE Transactions on Automatic Control,2010.55(8):1905-1911.
    [136]Seiichiro K, Kouhei I, Kiyoshi O. Wideband force control by position-acceleration integrated disturbance observer[J]. IEEE Transactions on Industrial Electronics.2008.55(4):1699-1706.
    [137]Ge S S, Li G Y. Lee T H, Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems[J]. Automatica,2003,39:807-819.
    [138]Christopher E. Nai O L, Spurgeon S K. On discrete dynamic output feedback min-max controllers[J].Automatica,2005,41 (10):1783-1790.
    [139]Hsu C T, Chen S L. Nonlinear control of a 3-pole active magnetic bearing system[J], Automatica,2003,39:291-298.
    [140]Ge S S, Hang C C. Zhang T. Nonlinear adaptive control using neural networks and its application to CSTR systems[J]. Journal of Process Control,1999,9(4):313-323.
    [141]Shiriaev A S. Ludvigsen H, Egeland O. Fradkov A L. Swinging up of non-affine in control pendulum[C]. Proceedings of the American Control Conference, San Diego, California. USA. 1999:4039-4044.
    [142]Goh C J. Model reference control of nonlinear systems via implicit funcion emulation[J]. International Journal of Control,1994,60:91-115.
    [143]Goh C J. Lee T H. Direct adaptive control of nonlinear systems via implicit funcion emulation[J]. Control Theory and Advance Technology,1994,10(3):539-552.
    [144]Calise A J, Hovakimyan N. Idan M. Adaptive output feedback control of nonlinear systems using neural networks[J]. Automatica,2001,37:1201-1211.
    [145]Park J H, Kim S H. Direct adaptive output-feedback fuzzy controller for a nonaffine nonlinear systems[J]. IEE Proceedings Control Theory and Applications.2004.51(1):65-72.
    [146]Park J H. Huh S H. Kim S H, Seo S J, Park G T. Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks[J]. IEEE Transactions on Neural Networks,2005,16(2):414-422.
    [147]Ge S S. Wang C. Adpative NN control of uncertain nonlinear pure-feedback systems[J]. Automatica,2002,38:671-682.
    [148]Wang C, Hill D J. Ge S S. Chen G. An ISS-modular approach for adaptive neural control of pure-feedback systems[J]. Automatica,2006,42:723-731.
    [149]Young W H. On the multiplication of successions of Fourier constants[J]. Proceedings of the Royal Society of London.1912, Series A,87(596):331-339.
    [150]Atassi A N. Khali] H K. A Separation Principle for the Stabilization of a Class of Nonlinear Systems[J]. IEEE Transactions on Automatic Control,1999,44(9):1672-1687.
    [151]Ge S S, Hang C C, Zhang T. Adaptive neural network control of nonlinear systems by state and output feedback[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 1999,29(6):818-828.
    [152]Sastry S S, Isidori A. Adaptive control of linearizable systems[J]. IEEE Transactions on Automatic Control,1989,34(11):1123-1131.
    [153]Narendra K S, Mukhopadhyay S. Adaptive control of nonlinear multivariable system using neural networks[J]. Neural Networks,1994.7(5):737-752.
    [154]Chen F C, Khalil H K. Adaptive control of a class of nonlinear discrete-time systems using neural networks[J]. IEEE Transactions on Automatic Control,1995,40(5):791-801.
    [155]Ge S S. Robust adaptive NN feedback linearization control of nonlinea systems[J]. International Journal of Systems Science.1996,27(12):1327-1338.
    [156]Ge S S, Hang C C, Zhang T. Stable adaptive control for multivariable systems with a triangular control structure[J]. IEEE Transactions on Automatic Control,2000,45(6):1221-1225.
    [157]Ge S S. Wang C. Adaptive neural control of uncertain MIMO nonlinear systems[J]. IEEE Transactions on Neural Networks.2004.15(3):674-692.
    [158]Li Y, Yang C,Lee T H. Adaptive output feedback NN control of a class of discrete-time MIMO nonlinear systems with unknown control directions[J]. IEEE Transactions on Systems. Man. and Cybernetics-Part B:Cybernetics.2011.41(2):507-517.
    [159]Liu Y J. Chen C L, Wen G X. Tong S. Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems[J]. IEEE Transactions on Neural Networks, 2011.22(7):1162-1167.
    [160]Zhang W N, Ge S S. A global implicit function theorem without initial point and its applications to control of non-affine systems of high dimensions[J]. Journal of Mathematical Analysis and Aplications.2006.313(2):251-261.
    [161]Tee K P. Ge S S. Tay F E H. Adaptive neural network control for helicopters in vertical flight[J]. IEEE Transactions on Control Systems Technology,2008,16(4):753-762.
    [162]Huang S N. Tan K K. Lee T H. An improvement on stable adaptive control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control.2004,49(8):1398-1403.
    [163]Qu Z. Robust control of nonlinear uncertain systems[M]. New York:Wiley,1998.
    [164]Chen F C. Liu C C. Adaptively controlling nonlinear continuoustime systems using multilayer neural networks[J]. IEEE Transactions on Automatic Control,1994,39:1306-1310.
    [165]Polycarpou M M, Ioannou P A. Modeling, identification and stable adaptive control of continuous-time nonlinear dynamical system using neural networks[J]. Proceedings of the American Control Conference. Chicago,1992:36-40.
    [166]Wang L X. Adaptive fuzzy systems and control:design and analysis[J]. Englewood Cliffs, NJ: Prentice-Hall,1994.
    [167]Spooner J T, Passino K M. Stable adaptive control using fuzzy systems and neural networks[J]. IEEE Transactions on Fuzzy Systems,1996,4:339-359.
    [168]Sanner R M. Slotine J E. Gaussian networks for direct adaptive control [J]. IEEE Transactions on Neural Networks.1992.3:837-863.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700