基于高双折射光子晶体光纤环镜梳状滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
密集波分复用(DWDM)技术作为当下实现光纤扩容最主要的措施,引起了国内外学者的广泛关注,而可调谐光滤波器是DWDM技术中至关重要的器件之一。近年来,各种可调谐光滤波器的研究已成为一个热点。为此,本文对基于高双折射光子晶体光纤(Hi-Bi PCF)环镜梳状滤波器进行研究,由于该滤波器具有偏振无关、工作波长范围宽、性能稳定、操作灵活、信道间隔可调、有效降低偏振模色散(PMD)等优点,因此受到广泛的应用。
     本文采用全矢量有限元法,对光子晶体光纤(PCF)的高双折射特性进行了详细的理论分析和数值仿真,然后以Jones矩阵理论为基础,进一步研究了基于高双折射光子晶体光纤(Hi-Bi PCF)环镜梳状滤波器的输出光谱,为实际应用提供了理论依据。
     本文主要的研究如下:
     1)首先设计了一种有中心椭圆缺陷孔的矩形点阵光子晶体光纤(PCF),并采用全矢量有限元法对该光纤的模式双折射特性进行了理论分析及数值模拟。研究发现,该光纤在波长为1.55μm处,具有很高的模式双折射,其值为1.87×10~(-2),从而为保偏光纤提供了很好的理论模型。
     2)采用Jones矩阵理论,推导了基于高双折射光子晶体光纤(Hi-Bi PCF)环镜梳状滤波器的输出谱函数,并通过MATLAB软件仿真讨论了偏振控制器(PC)对滤波器输出光谱的影响。
     3)讨论了沿x轴正向、y轴负向侧向静压力对高双折射光子晶体光纤(Hi-Bi PCF)环镜梳状滤波器透射谱、光谱信道间隔和信道间隔随压力变化的灵敏度的影响,并比较了两种PCF滤波器信道间隔随压力变化的灵敏度。仿真结果显示,该光滤波器是一种偏振无关、工作波长范围宽、信道间隔可调谐、性能稳定、有效降低偏振模色散(PMD)的光器件,在光纤传感、光放大器及DWDM系统等方面具有广阔的应用空间。
As the main method to expand the capacity of the optical fiber,Dense Wavelength Division Multiplexing (DWDM) technology has attracted more and more attention of the scholars both at home and abroad. And tunable optical filter is one of critical components in DWDM technology. In recent years,the research of various tunable optical filters has become a hot spot. Therefore,in this thesis, a type of comb optical filter based on high birefringence photonic crystal fiber loop mirror is investigated. With the advantages such as polarization-independent, wide wavelength span, stable performance, flexible operation, tunable channel spacing, low polarization mode dispersion , and so on, the filter has been widely used.
     In this paper, using full-vector finite-element method, the high birefringence characteristics of the photonic crystal fiber (PCF) are theoretical analyzed in detail and numerical simulated. In addition,further researches on output spectrum of high birefringence photonic crystal fiber loop mirror comb filter are taken based on the theory of Jones matrix,which provide theoretical basis for the practical application.
     The main achievements are as follows:
     1) A new kind of rectangular lattice photonic crystal fiber with a central elliptical defect hole in the core region is designed. The modal birefringence characteristic is studied using full-vector finite-element method. By simulation, it can been seen that the high modal birefringence of the PCF is 1.87×10~(-2) at the wavelength of 1.55μm,which provides a good theoretical model for the polarization maintaining fiber.
     2) Using the theory of Jones matrix, the output spectral function of the comb filter based on high birefringence photonic crystal fiber loop mirror is derived,and the impact of polarization controller on the output spectrum of the filter is discussed by the MATLAB software simulation.
     3) The impact of lateral static pressure along the x-axis positive side、y-axis negative side on the transmission spectrum, spectral channel interval and channel spacing of high birefringence photonic crystal fiber loop mirror comb filter is discussed. And the sensitivity, which is different with channel spacing with various pressure of two kinds of PCF filters. By simulation, the optical filter is a kind of optical device with various advantages such as polarization-independent , wide wavelength span, tunable channel spacing, stable performance, low polarization mode dispersion, which could be widely used in the fields of fiber-optic sensing, optical amplifier, DWDM systems and so on.
引文
[1]付松年,李振军. DWDM光纤通信系统的最新进展[J].通讯世界, 2003, (3): 28-32.
    [2] Biswanath Mukherjee. WDM Optical Communication Networks: Progress and Challenges [J]. IEEE Journal on selected areas in communications, 2000, 18(10): 1810-1824.
    [3]鄂大伟.基于WDM网络的光分组交换结构[J].计算机应用2001,21(3): 20- 22.
    [4]吴海西. WDM技术的原理及应用与发展[J].现代电信科技2000,10(10): 6- 10.
    [5] Mum T V. Receiver design for high-speed optical-fiber systems [J]. Lightwave Technology, 1984, 2: 243-267.
    [6] Bernini R, Cusano A. Generalized Mach- Zehnder interferometers for sensing applications [J]. Sensors and A ctuators B: Chemical, 2004, 100(1-2): 72-74.
    [7]廖青.可调谐光纤Fabry-Perot光滤波器的研究[D].北京:清华大学电子工程系, 1993, 5-10.
    [8]高霞.基于长周期光纤光栅的理论及应用研究[D].济南:硕士学位论文, 2009.
    [9] A.M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et. al. Long-period fiber gratings as band-rejection filters [J]. Lightwave Technology, 1996, 14(1): 58-65.
    [10] V. Bhatia, A. M. Vengsarkar. Optical fiber long-period grating sensors [J]. Optics Letters, 1996, 21(9): 692-694.
    [11]蓝信钜.激光技术[M].北京:科学出版社, 2000, 29-37.
    [12]章飞.高速可调光梳状滤波器及其控制系统的研究[D].杭州:硕士学位论文, 2010.
    [13] T M Monor, P J Bennetetal. Holey fiber with random cladding distribution [J]. Optics letters, 1996, 21(19):1547-1549.
    [14]李曙光,刘晓东,侯蓝田.光子晶体光纤的导波模式与色散特性[J].物理学报, 2003, 52(11): 2811-2817.
    [15] K. Yee. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. Antennas and Propagation. IEEE Transactions on [legacy, pre-1988], 1966, 14(3):302.
    [16]池灏.双折射光子晶体光纤传输特性分析[J].光学学报, 2004, 24(11):1552-1556.
    [17] Qiu Min, He Sailing. A nonorthogonal finite-difference time-domain method for computingthe band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions [J]. Appl. Phys., 2000, 87(12): 8268-8275.
    [18] Qiu Min, He Sailing. Numerical method for computing defects modes in two-dimensional photonic crystals with dielectric or metallic inclusions. Phys. Rev. [B]. 2000, 61(9): 12871-12876.
    [19] Boris T Kuhlmey, et.al. Multipole method for microstructured optical fibers II. Implementation and results [J]. Opt. Soc. Am. B, 2002, 19(10):2331-2340.
    [20] Shangping Guo, Sacharia Albin. Simple Plane Wave Implementation Method for Photonic Crystal Calculations [J]. Opt. Exp., 2003, 11(2):167-175.
    [21]娄淑琴,王智,任国斌,简水生.有中心缺陷孔的椭圆孔光子晶体光纤传输特性研究[J].光学学报, 2004, 24(9):1193-1198.
    [22]何静.光子晶体光纤的色散特性分析及高双折射结构设计[D].北京:硕士学位论文, 2007.
    [23]赵强,丁春峰等.椭圆孔微纤芯光子晶体光纤的数值模拟[J].激光与红外, 2011, 41(2): 206 -211.
    [24] Birks T.A., Mogilevtsev D., Knight J.C, et al. Dispersion compensation using single-material fibers [J]. IEEE Photonics Technology Letters, 1999, 11(6): 674-676.
    [25]李春雷,盛秋琴,开桂云,董孝义.光子晶体光纤的非线性特性研究[J].光电子技术, 2005, 25(2):85-89.
    [26] Chun-Liu Zhao, Xiu feng Yang, Chao Lu, Wei Jin, M. S. Demokan. Temperature- insensitive Interferometer using a highly birefringent Photonic Crystal Fiber Loop Mirror [J]. IEEE Photonics Technology Letters, 2004, 16(11):2535–2537.
    [27] Lou S Q, Ren G B, Yan F P, et.al. Optical Properties of Near Elliptical Core Polarization Maintaining Photonic Crystal Fiber [J]. Processing of SPIE, 2004(23):840-848.
    [28] Steel M. J., Osgood R. M. Polarization and dispersive properties of elliptical hole photonic crystal fibers [J]. Lightware Technology, 2001, 19(4):495-503.
    [29]刘飞,高红艳,张亚妮.椭圆孔正方形点阵聚合物光子晶体光纤偏振特性[J].激光与红外, 2010, 40(10):1083 -1087.
    [30] Petr Hlubina, Tadeusz Martynkien, Waclaw Urbanczyk. Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry[J]. Optics Express, 2003, 11(22):2793-2798.
    [31] Soan Kim, Chul-Sik Kee, Chung Ghiu Lee. Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion [J]. Optics Express, 2009, 17(10): 7952-7957.
    [32] Agrawal G P. Nonlinear Fiber Optics [M]. second Edition, Academic, London, 1995, 7-8.
    [33]张晓娟,赵建林,崔莉.一种高双折射光子晶体光纤的模式特性分析[J].光学学报, 2008, 28(7):1379- 1383.
    [34]余先伦,姜友嫦,宋明成.压力作用对实芯光子晶体光纤特性影响分析[J].激光技术, 2008, 32(2):187-190.
    [35] YABLON A D. Optical and mechanical effects of frozen-in stress and strains in optical fibers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(2):300-311.
    [36] Liu S, Liu Y G, et.al. All-fiber flat-top comb filter based on high-birefringence photonic crystal fiber loop mirror [J].中国光学与应用光学, 2010, 3(1):64- 69.
    [37] R .Clark Jones. New Calculus for the Treatment of Optical Systems.Ⅷ. Electromagnetic Theory. Optical Society of America, 1956, 46(2):126-131.
    [38] Yan Han, Qun Li, et.al. Architecture of high-order all-fiber birefringent filters by the use of the Sagnac interferometer [J]. IEEE Photonics Technology letters, January 1999, 11(1): 90 -92.
    [39]霍燕燕.带有高双折射光纤的Sagnac环滤波器特性研究[D].南京:硕士学位论文, 2011.
    [40]祖鹏,向望华,白扬博,金永兴.超低温度系数的光子晶体光纤Sagnac压力传感器[J].强激光与粒子束, 2011, 23(7):1955-1958.
    [41]张春书,开桂云,王志等.侧向压力对微结构光纤双折射的影响[J].光学学报, 2006, 26(2): 171-175.
    [42]祖鹏,向望华,白扬博,金永兴.超低温度系数的光子晶体光纤Sagnac压力传感器[J].强激光与粒子束, 2011, 23(7):1955 -1958.
    [43]杨吉亮.密集波分复用技术及应用[J].邮电设计技术, 2000, (4):16-19.
    [44]过晓东,唐棣芳.新型可调谐光滤波器原理及应用[R].上海:第三届中国光通信技术与市场研讨会, 316-321.
    [45] D.Sadot, E.Boimovich. Tunable optical filters for dense WDM networks. IEEE Communications Magazine, 1998, 36(12):50-55.
    [46]何忠蛟,陈达如等.多波长光纤激光器的研究[J].光学仪器, 2003, 25(4):84-89.
    [47]章飞.高速可调光梳状滤波器及其控制系统的研究[D].杭州:硕士学位论文, 2010.
    [48]李成.瓦斯气体检测中全光纤梳状滤波器研究[D].哈尔滨:硕士学位论文, 2008.
    [49]傅海威,乔学光,贾振安等.应力增敏的光纤布拉格光栅压强传感器[J].中国激光, 2004, 31(4):473-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700