羊膜移植对兔角膜新生血管模型基质金属蛋白酶及其抑制物表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 利用碱烧伤制备兔角膜新生血管模型,在新生血管形成的各时段检测角膜基质金属蛋白酶-2(MMP-2)及其组织型抑制物(TIMP-2)的表达,观察早期新鲜羊膜移植对MMP-2、TIMP-2表达的影响和抑制新生血管的效果。探讨早期新鲜羊膜移植抑制角膜新生血管可能的机理。
     方法 40只新西兰白兔,以1mol/L的氢氧化钠碱烧伤双眼制备角膜新生血管模型,伤后右眼立即行羊膜移植术,右眼为羊膜移植组即A组(n=40),左眼作为烧伤对照组即B组(n=40),另有6只兔作为正常对照即C组(n=12)。术后密切观察并记录角膜新生血管形成和生长状况,测量新生血管长度,计算新生血管面积。术后第1、3、7、14、28天处死动物,取下角膜,分别行HE染色、MMP-2和TIMP-2多克隆抗体免疫组化染色、逆转录聚合酶链反应(RT-PCR)半定量检测MMP-2和TIMP-2的表达。
     结果 所有碱烧伤的角膜均有新生血管出现,正常对照组无新生血管出现。羊膜移植组新生血管的长度和面积均明显小于烧伤对照组(P<0.05),MMP-2和TIMP-2在正常角膜中微弱表达,烧伤后第1天MMP-2和TIMP-2表达即开始增强,第3天达高峰,第7天仍然较高,之后开始下降,羊膜移植组与烧伤对照组比较,各时段MMP-2表达减弱,而TIMP-2的表达增强,差异有显著性(P<0.05)。
     结论 在角膜新生血管形成期间,MMP-2和TIMP-2表达均增强,早期新鲜羊膜移植能抑制角膜新生血管生长,其机制可能是通过调节MMP-2与TIMP-2间的平衡来完成。
Objective To investigate the anti-angiogenesis effects and possible mechanism of amniotic membrane transplantation(AMT) on corneal neovascularization(CNV). We examined the expression of matrix metalloproteinase-2(MMP-2) and its inhibitor (TIMP-2) during the course of alkali burn-induced corneal in a rabbit model with or without AMT.
    Methods Corneal neovascularization model of 40 New Zealand rabbits were established by means of alkali burn. Amniotic membrane transplantation were performed on right eyes immediately after burn(group A), The left eyes were uncovered with amniotic membrane(group B). Another 6 rabbits were in control group(group C). The occurrence and development of CNV were observed attentively. The length and the area of CNV were measured and calculated. The rabbits were killed on the 1st, 3rd, 7th, 14th, 28th day, the corneas were removed for histopathologic study, immuneo-histochemistry study and RT-PCR study.
    Results CNV can be observed on all of the corneas suffered from alkali bum, while cannot be seen on control group. The length and the area of CNV in group A was significantly smaller compared with that in group B (P<0.05). The expression of MMP-2 and TIMP-2 in untreated corneas were weak or absent. Increased expression was found immediately on the 1st day, the highest expression was found on the 3 rd day, strong expression could also be observed on the 7th day. The expression was decreased after that time. The expression of MMP-2 in group A were lower than that in group B during the course, while the expression of TIMP-2 in group A were higher than that in group B(P<0.05). Conclusion During the course of CNV formation, the expression of MMP-2 and
    
    
    TIMP-2 were increased. Fresh amniotic membrane transplantation could significantly inhibit CNV, which mechanism was supposed to be through the regulation of MMP-2 and TIMP-2.
引文
1. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977;14:53-65.
    2. Kalebic T, Garbisa S, Glaser B et al. Basement membrane collagen: degradation by migrating endothelial cells. Science 1983 ;221:281-283.
    3. Kumar R, Yoneda J, Bucana CD, et al. Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int J Oncol 1998; 12:749-757
    4. D'Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994;212:46-65.
    5. Beck L, D'Amore PA. Vascular development: cellular and molecular regulation.FASEB J 1997; 11:365-373.
    6. Hobson B, Denekamp J. Endothelial proliferation in tumors and normal tissues:continuous labelling studies. Br J Cancer 1984;49:405-413.
    7. Shin SH, Kim JC,Chang SI, et al. Recombinant kingle 1-3 of plasminogen inhibits rabbit comeal angiogenesis induced by angiogenin. Cornea 2000; 19:212-217.
    8. Lin HC, ChangJH, Jain S, et al. Endostatin localization in the cornea. Invest Ophthalmol Vis Sci 2000;41 :S832.
    9. Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci 2000;41:2514-2522.
    10. Shapiro MS, Friend J,Thoft RA. Corneal re-epithelialization from the conjunctiva.Invest Ophthalmol Vis Sci 1981 ;21:135-142.
    11. Tsai RJ, Tsng SC. Human allograft limbal transplantation for corneal surface reconstruction. Cornea 1994; 13:389-400.
    12. Kumar R, Yoneda J, Bucana CD, et al. Regulation of distinct steps of angiogenesis
    
    by different angiogenic molecules. Int J Oncol 1998; 12:749-757.
    13. Dana MR, Streilein JW. Loss and restoration of immune privilege in eyes with corneal neovascularization. Invest Ophthalmol Vis Sci. 1996 Nov; 37(12):2485-94.
    14. Boneham GC, Collin HB. Steroid inhibition of limbal blood and lymphatic vascular cell growth. Curr Eye Res 1995 Jan;14(1):1-10.
    15. Dana MR, Zhu SN, Yamada J. Topical modulation of interleukin-1 activity in corneal neovascularization. Cornea 1998 Jul; 17(4):403-9.
    16. Conners MS, Urbano F, Vafeas C, et al. Alkali bum-induced synthesis of inflammatory eicosanoids in rabbit corneal epithelium. Invest Ophthalmol Vis Sci 1997 Sep;38(10):1963-71.
    17. Sonoda K, Sakamoto T, Yoshikawa H, et al. Inhibition of corneal inflammation by the topical use of Ras farnesyltransferase inhibitors: selective inhibition of macrophage localization. Invest Ophthalmol Vis Sci 1998 Nov;39(12):2245-51.
    18. Becket MD, Kruse FE, Joussen AM, et al. In vivo fluorescence microscopy of corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 1998 May;236(5):390-8.
    19. Benelli U, Ross JR, Nardi M, et al. Corneal neovascularization induced by xenografts or chemical cautery. Inhibition by cyclosporin A. Invest Ophthalmol Vis Sci 1997 Feb;38(2):274-82.
    20. Yaylali V, Ohta T, Kaufman SC, et al. In vivo confocal imaging of corneal neovascularization. Comea 1998; 17:646-653.
    21. Burger PC, Chandler DB, Klintworth GK. Corneal neovascularization as studied by scanning electron microscopy of vascular casts. Lab Invest. 1983;48:169-180.
    22. Stemlicht, M., Coussens, L.M., Vu, T.H., and Werb, Z. 2000. Biology and regulation of the matrix metalloproteinases. In Cancer drug discovery and development: Matrix metalloproteinase inhibitors in cancer therapy (ed. N.J. Clendeninn and K. Appelt),pp. 1-37. Humana Press Inc., Totowa, N.J.
    
    
    23. Woessnor JF, JR.Matrix metalloproteinases and their inhibitor in connective tissue remodeling[J]. FASEB J, 1991,5:2145-2154
    24. Massova I, Kotra LP, Fridman R, et al. Matrix metalloproteinases: structures,evolution and diversification. FASEB J 1998;12:1075-1095.
    25. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases:evolution, structure and function. Biochim.Biophys.Acta 2000; 1477(1-2), 267-283.
    26. Gomis-Ruth F-X, Maskos K, Betz M, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin- 1 by TIMP-1. Nature 1997;389:77-81.
    27. Sang QX. Complex role of matrix metalloproteinases in angiogenesis. Cell Res 1998;8:171-177.
    28. Strongin AY, Collier I, Bannikov G, et al. Mechanism of cell surface activation of 72kDa type Ⅳ collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 1995 Mar 10;270(10):5331-8.
    29. Matrisian LM. The matrix-degrading metalloproteinases. Bio Assays 1992;14:455-63.
    30. Moses MA, Marikovsky M, Harper JW, et al. Temporal study of the activity of matrix metalloproteinases and their endogenous inhibitors during wound healing. J Cell Biochem 1996;60:379-386.
    31. Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol 1998;10:602-608.
    32. Kvanta A, Sarman S, Fagerholm P, et al. Expression of matrix metalloproteinase-2(MMP-2) and vascular endothelial growth factor (VEGF) in inflammation-associated corneal neovascularization. Exp Eye Res 2000;70:419-428.
    33. Chan VT, Zhang DN, Nagaravapu U. et al. Membrane-type matrix matalloproteinases in human dermal microvascular endothelial cells: expression and morphogenetic correlation. J Invest Dermatol. 1998 111 (6) 1153-1159.
    34. Fisher C, Gilbertson-Beadling S, Powers EA et al. Interstitial collagenase is required
    
    for angiogenesis in vitro. Dev Biol 1994; 162:499-510.
    35. Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998;93:411-422.
    36. Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA 2000;97:4052-4057.
    37. Hiraoka N, Allen E, Apel IJ, et al. Matrix metalloproteinases regulate neovascularisation by acting as pericellular fibrinolysins. Cell 1998;95:365-377.
    38. Moses MA. The regulation of neovascularisation by matrix metalloproteinases and their inhibitors. Stem Cells 1997;15:180-189.
    39. Murphy AN, Unsworth EJ, Stetler-Stevenson WG, et al. Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol 1993 ;157:351-358.
    40. Brooks PC, Silletti S, von Schalscha TL, et al. Disruption of angiogenesis by PEX, a non-catalytic metalloproteinase fragment with integrin binding activity. Cell 1998;92:391-400.
    41. Streuli C. Extracellular matrix remodeling and cellular differentiation. Curt Opin Cell Biol 1999; 11:634-640.
    42. Taraboletti G; Garofalo A, Belotti D, et al. Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J Natl Cancer Inst. 1995 Feb 15;87(4):293-8.
    43. Mohan R, Sivak J, Ashton P, et al. Curcuminoids Inhibit the Angiogenic Response Stimulated by Fibroblast Growth Factor-2, Including Expression of Matrix Metalloproteinase Gelatinase B. J Biol Chem 2000 275 (14) 10405-10412.
    44. Zhang H, Li C, Baciu PC. Expression of integrins and MMPs during alkaline burn induced corneal angiogenesis. Invest Ophthalmol Vis Sci. 2002 Apr;43(4):955-62.
    
    
    45. Shapiro SD, Campbell EJ, Kobayashi DK, et al. Immnne Modulationof matalloproteinases production in human macrophage. J Clin Invest 1990;86:1204-1210.
    46. Kim JC, Tseng SCG. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 1995;14:473.
    47. Augusto Azuara-Blanco, C T Pillai, Harminder S Dua. Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol 1999;83:399-402.
    48. Kobayashi N, Kabuyama Y, Sasaki S, et al. Suppression of Corneal Neovascularization by Culture Supernatant of Human Amniotic Cells. Cornea 2002;21:62-67.
    49. Hao Y, Ma DH, Hwang DG, et al. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 2000 May;19(3):348-52.
    50. Kim JS, Kim JC, Na BK,et al. Amniotic membrane patching promotes healing and inhibits protainase activity on wound healing following acute corneal alkali burn.Exp Eye Res 2000;70:329-337.
    51. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315-28.
    52. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277-85.
    53. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999; 285: 245-8.
    54. Maione TE, Gray GS, Petro J, et al. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990; 247: 77-9.
    55. Mejia LF, Acosta C, Santamaria JP. Use of nonpreserved human amniotic membrane for the reconstruction of the ocular surface. Cornea 2000 May; 19(3):288-91.
    
    
    56. Kubo M, Sonoda Y, Muramatsu R,et al. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 2001 Jun;42(7): 1539-46.
    57. Cursiefen C, Hofmann-Rummelt C, Kuchle M, et al. Pericyte recruitment in human corneal angiogenesis: an ultrastructural study with clinicopathological correlation.Br J Ophthalmol 2003 Jan;87(1):101-6.
    58. Ma DH, Chen JK, Kim WS,et al. Expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinase 1 and 2 in inflammation-induced comeal neovascularization. Ophthalmic Res 2001 Nov-Dec;33(6):353-62.
    59. Wojtowicz-Praga S, Low J, Marshall J et al. Phase I trial of a novel matrix metalloproteinase inhibitor batimastat (BB-94) in patients with advanced cancer.Invest New Drugs 1996; 14:193-202.
    60. Steward WR Marimastat (BB2516): current status of development. Cancer Chomother Pharmacol 1999;43(suppl):S56-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700