L—精氨酸预处理对停跳与不停跳下大鼠急性冬眠心肌的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:冬眠心肌是指静息时心肌灌注量持续减少而导致左室功能受损的一种状态。冬眠心肌存在于多种临床缺血性心脏病中,但目前关于冬眠心肌的保护和治疗的研究不多。冬眠心肌治疗的根本手段是心肌血运重建术,寻求冬眠心肌有效的保护措施和方法,有重要的意义。L-精氨酸作为内源性一氧化氮(NO)的供体,对完全缺血心肌的保护作用已得到证实,但是对冬眠心肌的作用尚未得到研究。本实验通过外源性加入L-精氨酸(L-Arg)进行预处理,观察其对冬眠心肌的保护作用,同时比较L-精氨酸对停跳与不停跳两种状态下冬眠心肌的不同作用效果,并探讨其机制。
     方法:36只健康雄性Sprague-Dawley大鼠,采用Langendorff离体心脏灌注装置,建立急性冬眠心肌模型。平衡灌注30分钟末,随机分为6组,每组6只。CON组:正常流量(3ml/g.min)灌注90分钟;HBN组:低流量(0.5ml/g.min)灌注90分钟;HR组:低流量灌注90分钟,恢复正常流量灌注30分钟;HAR组:低流量灌注90分钟,恢复正常流量灌注30分钟,低流量灌注期间灌注液中含有预处理药物L-Arg(1mmol/L);HAIR组:低流量灌注90分钟,停搏液停跳60分钟,恢复正常流量灌注30分钟,低流量灌注期间灌注液中含有预处理药物L-Arg(1mmol/L);HIR组:低流量灌注90分钟,停搏液停跳60分钟,恢复正常流量灌注30分钟。观察HR、HAR、HAIR、HIR各组在冬眠期间及恢复正常流量后心功能(HR、LVSP、LVDP、LVEDP、±dp/dt)恢复率的变化,测定各组冠状静脉流出液中心肌酶(CK、CK-MB)的漏出量、乳酸(Lac)产量、自由基(MDA)和自由基清除剂(SOD)含量、内皮功能(NO、ET)、心肌含水量(MWC)、心肌组织腺苷酸(ATP、ADP、AMP、TAN)含量和超微结构的变化。
     结果:通过本实验的方法,首先在各组成功地建立了大鼠离体急性冬眠心肌模型:各组在低流量灌注期间,心功能较基础值明显降低;ATP含量下降,HBN组的ATP含量约下降到CON组的50%,HR、HAR、HAIR、HIR组的ATP含量也不同程度地降低;恢复正常流量后,心功能及心肌腺苷酸含量均有不同程度的恢复,
    
    L精氨酸顶处理对停跳与不停跳下大鼠急性冬眠心肌的保护作用3
    超微结构观察未见。0肌组织有不可逆性损害。。乙肌冬眠期间,MR组、!um组。O
    脏收缩功能恢复率(LVSP、士 dP/dt、和 LVDP)即显示优于m组与 HIR组(HO.05)。
    恢复流量后,HAR、HAIR组的心功能恢复率仍明显优于m与*R组(P<0.05),
    同时,Mm与mR组相比,其恢复程度较小(尸<0.0引。冬眠期间,皿、mR组
    的比、CK-MB漏出即比 HAIR、HAR组明显增多(P<0.05)。恢复流量后,HR、HAR
    组的。C肌酶漏出量较 HAIR和*R组的少(P<0.001),HAIR和 HIR组则无明显差
    别。冬眠 60分钟时,HR、HIR组的mA含量即较 HAR和 eIR组 的升高(P<0.05),
    而恢复流量后,HAIR和 HIR组的mA升高较HAR和 HR组明显(P<0.05),HAIR。
    HAR组SOD含量则明显高于HR、HIR组。冬眠期间 HAR和 HAIR组的n分泌较HR。
    mR组的少(尸<0.0引,而皿水平明显高于m、mR组。恢复流量后,mm和
    HIR组的盯含量明显高于MR和 HR组,但*R、HAIR两组的 NO比 HR、HIR两
    组的要高(尸<0.01)。冬眠早期各组的乳酸产量均显著升高,但HR、mR组比HA R、
    MIR两组升高的更多(尸<o.05)。MR组和邢工R组的心肌组织含水量低于册和
    HIR组(尸<0.0引,MR组和Mm组则无明显差别。心肌组织的超微结构显示m、
    HAR组未见有不可逆性损害,且HR、HAR两组的损害较HAIR、HIR组的为轻。
     结论:L-精氨酸对大鼠急性冬眠心肌具有确切的保护作用,且对不停跳状态
    下的冬眠心肌的保护作用更佳。可能与其增加内源性NO的合成而发挥其多种生
    物学效应的机制有关。
Objective The term hibernating myocardium was described as a special state of impaired myocardial and left ventricular function at rest due to reduced coronary blood flow. Hiberniting myocardium has been demonstrated to accur in many kinds of clinical syndromes. But there is few studies on protection and treatment of hibernating myocardium at present. A donor of endorgenous nitric oxide桳-Arginine has been confirmed having protective effects on ischemic myocardium. Whether it can provide protective effects on hibernating myocardium has not known yet, in this study, we are intented to examine whether L-Arginine has beneficial effects on hibernating myocardium in two different states of beating or cardioplegia arrest and to explore its mechanisms.
    Methods The isolated rat hearts were perfused on a Langendorff perfusion device .36 Sprague-Dawley rat hearts were randomly divided into six groups when balanced perfusion finished. Controlled group (CON n=6)received persistently normal-flow perfusion for 90 minutes; Hibernating group(HBN n=6)received persistently low-flow perfusion for 90 minutes;Hibernating梤eperfusion group(HR n=6) received persistent low-flow perfusion for 90 minutes and subsequent normal-flow perfusion for 30 minutes; L-Arginine preconditioning and beating heart group(HAR n=6) received low-flow perfusion with KHB containing L-Arginine (Immol/L) for 90 minutes and subsequent normal-flow perfusion without L-Arginine for SOminutes; L-Arginine preconditioning and cardioplegia arrest group(HAIR n=6)received low-flow perfusion with KHB containing L-Arginine(Immol/L) for 90 minutes, then cardioplegia arrest for 60 minutes and subsequent normal-flow perfusion without L-Arginine for 30
    
    
    
    minutes; hibernating and Cardioplegia arrest group(HIR n=6)received low-flow perfusion for 90 minutes, then cardioplegia arrest for 60 minutes and subsequent normal-flow perfusion for 30 minutes ;The effects of L-Arginine on hibernating myocardium were assesed by measurement of hemodynamic parameters expressed as a percentage of baseline value, Myocardial enzemys leakout, Lactate release, MDA and SOD content, Endothelial function(NO and ET content), Myocardial water content, Myocardial nucleotides content (ATP, ADP, AMP, TAN) and ultrastructural alterations during hibernating or reperfusion.
    Results First of all, In the way which we designed, We successfully set up the model of short-term hibernating myocardium in isolated perfused rat hearts. During low-flow perfusion, heart contractile function in either group was injuried and identically lower than baseline ones. ATP content decreased by 50% in HBN group compared with CON group, and ATP content also reduced respectively in HR, HAR, HAIR and HIR groups. During hibernation, heart contractile function(LVSP , 眃p/dt , LVDP) in HAR, HAIR groups was much better than in HR and HIR(P < 0. 05). The recovery value of contractile function in HAR, HAIR groups was much more than in HR and HIR groups (P < 0. 05) during reperfusion. Myocardial enzemys leakout, lactate release, MDA and ET contents were more in HR and HIR groups than in HAR, HAIR groups(P < 0.05)during hibernation .while they were fewer in HR and HAR groups than in HAIR and HIR groups(P <0. 001)during perfusion. The production of NO kept more in HAR, HAIR groups than in HR and HIR groups persistently. The water cotent in HAR , HAIR groups is higher than in HR and HIR groups. Cardiomyocytes were not found irreversible ultrastructural alterations in HR and HAR groups,But ultrastructural alterations indicated that injury of myocytes in HAIR and HIR groups were more severe than in other groups.
    Conclusions L-Arginine preconditioning provides exactlly
    
    
    protective effects on short-term hibernating myocardium, and especially on those in state of beating, The probable mechanism is L-Arginine induces increased generation of endogenous NO and takes its multibiological effects.
引文
1. Chaterjee K, Swan HJC, Pparley WW,et al. Influence of direct myocardial revas-cularazition on left ventricular asynergy and function in patients with coronary heart disease with and without previous myocardial infarction. Circulation,1973,47:276-86.
    2. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for stable angina. Circulation , 1985,72(suppl v):v123-35.
    3. Ross J. Myocardial perfusion-contraction macthing. Implications for coronary heart disease and hibernation. Circulation, 1991,83:1076-83.
    4. Jams D,Lous G.Chad H, et al.An experimental model of chronic myocardial hibernation. Ann Torac Surg, 1991, 83:1076-83.
    5. Kavin P, Barbra B, Robert A. Reperfusion of hibernating myocardium,contractile function, high-energy phophate content, and myocyte injury after 3 hours of sublethal ischemia and 3 hours reperfusion. Am Heart J, 1992, 123:575-.
    6. Andrew M,Keller, Paul J Cannon. Effect of gradaded reduction of coronary pressure and flow on myocardial metabolism and performance:A model of Hibernating myocardium. JACC,1991 June, 77(7) :1661-70.
    7. Pagano O,Fath-Ordoubadi F, Beatt KJ, et al.Eeffects of coronary revasculari-zation on myocardial blood flow and coronary vasodilator reserve in Hibernating myocardium. Heart, 2000, 85:208-212.
    8. Camici PG, Rimoldi 0. Myocardial hibernation vs repetitive stunning in patients.Cardiol Rev, 1999, 7:39-43.
    9. Vanoverschelde J-LJ, Wijins W, Depre C, et al. Machanisms of chronic regional post ischemc dysfunction in humans:new insights from the study of nonifarcted collateral-dependent myocardium. Circulation, 1993, 87:1513-23.
    10. Schulz R.Heusch G. Hibernating myocardium. Heart, 2000, 84:587-594.
    11. Marshall RC, Tillish J, Phelps ME , et al. Identification and differitiation of resting myocardial ischemia and infarction in man with postron computed
    
    tomography:18F labeled fluro oxyglucose and N-13-ammonia(J).Circulation, 1993,67:766-778.
    12. Siegfried MR, Erhardt J, Kider T, et al. Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide in myocardial ischemia reper-fusion. J Pharmacol Exp Therapent. 1992, 260(2) :668-675.
    13. Moncada S, Palner RMJ, Higgs GA. nitric oxide physiology, pathology and Pharmacology. Pharmacol Rev, 1991, 43(2) :109-142.
    14. Pagano D,Townend JN, Littler WA, et al.Coronary artery bypass surgery as treatment for ischemic heart failure:the predictive value for viability assessment with quantitative Positron Eimisson Tomography for symptomatic and functional outcome. J Thorac Cardiovasc Surg, 1998, 115(4) :791-799.
    15. 钟慈声,林安阳,一氧化氮的生物医学。上海,上海医学出版社,1997。
    16. Vibhu R, Kshettry, Thomas F, et al.Does multivessal off-pump coronary artery bypass reduce postoperative morbility? Ann Thorac Surg, 2000,69:1725-31.
    17. Schwarz ER, Schaper J, Vom Dahi J,et al.Myocyte degeneration and cell death in hibernating human myocardium. J Am Coll Cardiol, 1996, 27:1577-85.
    18. 姜腾勇,孟宇红,吴学思等。老年冠心病患者冬眠心肌的形态学观察。中华老年医 学杂志,2001,20 (1) : 51-52.
    19. Maes A,Flemeng W, Nayts J,et al. Histological alterations in chronicolly hypoperfused myocardium . Correlation with PET findings. Circulation, 1994, 90 (2) : 735-45.
    20. Borgers M, Ausma J. Structural aspects of the chronic hibernating myocardium in man. Basic Res Cardiol 1995,90:44-6.
    21. Jeroren J, Bax. sensitivity, specificity, and predictive accurucies of various noinvasive techniques for detecting hibernating myocardium. Heart,2001,26 (2) :147-.
    22. Hacker TA, Renstrom B,Nellis SH,et al.The role of glucose metabolism in a pig heart model of short-term hibernation. Mol Cell Biochem, 1998, Mar, 180 (1-2) : 75--.
    23. Frank C, Brosis III,Nguyen BS, et al. Increased glucose transporter abundance
    
    in myocardial ischemia. Am J Cardiol,1997,80(3A):77A-84A.
    24. Renstrom b, Nillis SH, Liedtke JA. metabolic oxidation of glucose during early myocardial reperfusion. Circ Res, 1999, 65:1094-101.
    25. Kroll K, Kinzie DJ, Gustafson LA. Open-system kinetics of myocardial phospho-energetics during coronary under function. Am J Physiol, 1997, Jun, 272(6pt2) : H2536-76.
    26. 王奇,李功宋,李佳春。心衰后胶原网架结构变化与左旋精氨酸保护作用的实验研 究。中华胸心血管外科杂志,1998, 14 (2) : 111-114.
    27. Floge U,Decking UKM, Godecke A, et al.Contribution of NO to ischemic-reperfusion injury in the saline-perfused heart:a study in endothelial NO synthase knockout mice. J Mol Cell Cardiol,1999, 31:82.
    28. Chen C, Chen L, Fallon JT, et al. Functional and structural alterations with 24-hour myocardial hibernation and recovery after reperfusion. A pig model of myocardial hibernation. Circulation, 1996,94:507-16.
    29. 邱原刚,张钧华,唐朝枢等。大鼠离体心脏急性冬眠心肌模型的建立。中国介入心 脏病学杂志. 1996, 4 (1) : 36-38.
    30. Jams D, Chad Hughes, ALan p, et al. An experimental model of chronic myocardial hibernation.Ann thorac Surg, 2000, 69:1351-7.
    31. Shinde UA, Mehta-AA, Goyal-RKA. Nitricoxide:a molecule of the millennium. Indial J Exp Biol. 2000 Mar, 38(3) :201-10.
    32. Wink DA, Hanbauer I, Krishna MC, et al. Nitric oxide protects against cellular damage and cytotocicity from reactive oxygen species. Proc Natl Acad Sic USA. 1993,90:13-17.
    33. Murad F. Regulation of cystosolic guanglyl cyclase by Nitric oxide:the NO-cGMP signal transdution system. Adv Pharmacol. 1994, 26:19-33.
    34. Maulik N, Engelman DT, Watanabe M, et al. Nitric oxide/Carbon monoxide, a mole-cular switch for myocardial preservation during ischemia. Circulation, 1996, 94(suppl II):II398-406.
    35. Maulik N, Engelman DT, Watanabe M, et al.Nitric oxide signaling in ischemi heart. Cardiovasc Res,1995, 10:1047-1053.
    
    
    36. Stone JR, Marietta MA. Soluble guanylate cyclase from bovine lung:activiation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferrie states. Biochemistry,1994, 33:5636-5648.
    37. Woolfson RG, Patel VC, Neilde GH.Inhibition of nitric oxide synthesis reduces infarct size by an adenosine-dependent mechanism. Circulation,1995 Mar 1,91 (5) : 1545-51.
    38. Matheis G, Sherman MP, Buckberg GD, et al.Role of L-Arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol, 1992 Feb, 262 (2pt2) : H616-20.
    39. Schulz R, Wambolt R. Inhibition of nitric oxide synthesis protects the isolated working rabbit heart from ischemic-reperfusion injury. Cardiovasc Res,1995 Sep, 30(3) :432-9.
    40. Depre C, Vanoverschelde JL, Goudemant JF, et al. Protection against ischemic injury by nonvasoactive concentrations of nitric oxide synthase Inhibitors in the perfused rabbit heart. Circulation, 1995 Oct 1,92(7) :1911-8.
    41. Kim SJ, Kim YK, Takaji G. Enhanced iNOS function in myocytes one day after brief ischemic episode. Am J Phisiol Heart Cic Phisyiol, 2002 Feb,282(2) :H423-8.
    42. Ebrahim Z, Yellon DM, Baxter GF. Bradykinin elicits "second window"myocardial protection in rat heart through an NO-dependent mechanism. Am J Phisiol Heart Cic Phisyiol,2001 Seb,281(3) : H1458-64.
    43. Liu H, Mcpherson BC, Zhu X. Role of nitric oxide and protein kinases C in Ach-induced cardioprotection. Am J Phisiol Heart Cic Phisyiol, 2001 Jul, 28 (1) : H191-7.
    44. Zhang JG, Galinase M. Role of L-Arginine/ nitric oxide pathway in ischaemica /reoxygenation injury of the human myocardium.Clin Sci (Lond),2000 Dec,99(6) : 497-504.
    45. Kudej RK, Zhang XP, Ghalch B,et al. Enhanced cAMP-induced nitric oxide dependent coronary dilation during myocardial stunning in conscious pigs. Am J Phisiol Heart Cic Phisyiol, 2000 Dec, 279 (6) : H2967-74.
    46. Lochner A, Marais E,Genade S, et al. Nitric oxide:a trigger for classic pre-
    
    conditioning? Am J Phisiol Heart Cic Phisyiol,2000 Dec,279 (6) : H2752-65.
    47. Yosshida K, Miznkami Y, Kitakaze M. Nitric oxide mediates protein kinases C isoform translocation in rat heart during postischemic reperfusion. Biochem Biophys Acta, 1999 Feb. 1453(2) :230-8.
    48. Moncada S. Nitric oxide in the vasculture:physiology and pathophysiology. Ann NY Acad Sci, 1997,811:60-67.
    49. Ohri, Egashira K, Takawa T, et al.Basal release of nitric oxide is decreased in the coronary circulation in patients with heart failure. Hypertention, 1997 Jul,30(lpt1) :50-6.
    50. Nakano A, Lius GS, Heusch G, et al. Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning.J Mol Cell Cardiol, 2000, 32:1159-1167.
    51. Floge U, Decking UKM, Godecke A, et al. Contribution of NO to ischemic reperfusion injury in the saline-perfused heart:a study in endothelial NO synthase knockout mice. J Mol Cell Cardiol,1999, 31:827-836.
    51. Takano H, Tang xl,Qiu Y, et al. Nitric oxide donors induce late precondition-ing against myocardial stunning and infarction in consious rabbit via an antioxidant-sesitive mechanism. Circ Res.1998, 83:73-84.
    52. Ping P, Tatano H, Zhang H, et al.Isoform-selective activation of protein kinases C by nitric oxide in the heart of consious rabbit:a signaling mechanism for both nitric-induced and ischemia-induced preconditioning. Circ Res. 1999, 84:587-604.
    53. Forstermann V, Pollock JS, Nakane M, et al. Nitric oxide synthases in the cardio-vasculal system. Trend Cardiovasc Med.1993, 3:104-106.
    54. Haas F, Christoph J, Haehnel , et al. Preoperative Positron Eimisson Tomogra-phic viability assessment and Preoperative and postoperative risk in patients with advanced ischemic heart disease. J AM Coll Cardiol, 1997, 30(7) :1693-1700.
    55. Ferrar R, Celoni C, Curelo S, et al.Myocardio damage during ischemia and reperfusion. Eur Heart J, 1993, 14(Suppl G);25-30.
    
    
    56. Halliwell B.oxygen radicals,nitric oxide, and human inflammatory joint disease. Ann Rheu Dis, 1995, 54:505-510.
    57. 姜桢,郭克芳,董苏斐。左旋精氨酸与氧自由基的相互作用。临床麻醉学杂志,2000, 16 (10) : 503-505.
    58. Kronen M,Allen BS,Halldorsson A,et al. Dose dependency of L-Arginine in neonatal myocardial protection:the nitric oxide paradox. J Thorac Cardiovasc Surg. 1999 Oct, 118:655-64. 59.
    59 王奇,李功宋,李佳春,心衰后胶原网架结构变化与左旋精氨酸保护作用的实验研 究,中华胸心血管外科杂志,1998,14 (2) :111-114.
    59. Lawrence IB, Daniel JU. Minimally invasive coronary bypass. A dissening opinion. Circulation, 1998,98:495-497.
    60. Albert R, stefano M, vincenzo C et al.The LAST operation is safe and effective: MIDCABG clinical and angiographic evaluation.Ann Thorac Surg, 2000, 70: 74-78.
    61. Theodore CK, Joseph R, Elbeery et al.Myocardial revascularization in the eldly using beating heart coronary artery bypass surgery. Ann Thorac Surg, 2000,69:1042-7.
    62. Calafiore AM, Angelini GD, Bergsland J et Al.Minimal invasive coronary artery bypasso Ann Thorac Surg, 1996, 62: 1545-8.
    63. Floge U, Decking UKM, Godecke A,et al.Contribution of NO to ischemic/reper-fusion injury in the saline-perfused heart:a study in endothelial NO synthase knockout mice. J Mol Cell Cardiol,1999, 31:827-836.
    64. Kojda G,Kottenberg K, Nix P,ET AL. Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventri-cular myocytes. Circ Res, 1996,78:91-101.
    65. Cohen G, Borger MA,Weisel RD, Rao V.Intraoperative myocardial protection: current trends and future perspectives. Ann Thorac Surg, 1999 Nov,68(5) :1995-2001.
    66. Nakamura R, Egashira K, Arimura K. Increased inactivation of nitric oxide is involved in impaired coronary flow reserve in heart failure. Am J Phisiol Heart
    
    Cir Phisiol, 2001 Dec,281(6) :H2619-25.
    67. Nonami Y.The role of nitric oxide in cardiac ischemia-reperfusion injury. Jpn Circ J,1997,61:119-132.
    68. Schwarz ER, Schoendube FA, Kostin S, et al. Prolonged myocardial hibernation excerbates cardiomyocyte degeneration and impairs recovery of function after revascularization. 1998 Apr,31(5) :1018-26.
    69. Fukuda H, Sawa Y, Kadoba K,et al. Supplement of nitric oxide attenuates neu-trophil-mediated reperfusion injury. Circulation 1995, 92(Suppl II):II413-II416.
    70. Engelman DT, Watanabe M, Engelman RM, et al. Constitutive nitric oxide release is impaired after ischemia and reperfusion.J Thorac Cardiovasc Surg, 1995, 110:1047-1053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700