钛合金盘件等温成形工艺优化与过程控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机上的涡轮盘、承力盘和涡轮叶片等重要零部件都采用钛合金或高温合金等航空难变形材料锻造而成,由于设计方法和生产方式的不足,材料锻后组织和性能不稳定、成品率低,因而造成人力和物力的极大浪费。
     本文针对航空难变形材料的成形特点,以TC4钛合金为研究对象,以盘形件等温模锻后的组织和性能为控制目标,采用有限元数值模拟和虚拟试验相结合的办法,分析研究了航空难变形材料的等温成形过程,并在此基础上确立了以组织稳定性为目标的锻造热力参数控制模式与人工智能控制技术。主要成果和新见解如下:
     1.在一种基于并联关系模型的TC4合金新型本构关系模型的基础上,采用数理统计学的原理,科学地分析并回归出了该合金盘形件等温模锻时的再结晶微观组织分布与变形工艺参数间的关系模型,从而为TC4合金等温模锻过程的优化提供了基础;
     2.采用结合正交试验与有限元数值模拟技术的虚拟正交试验,以终锻件组织均匀性为目标,分析研究了TC4合金盘形件等温成形过程,获得了不同于传统锻造规范的优选工艺参数,为锻造工艺参数的制订与终锻件质量的改善提供了参考;
     3.在虚拟正交优化试验结果的基础上,结合建立的回归模型,采用优化算法——单纯形法,对TC4合金盘形件等温成形锻造工艺参数进行进一步的优化处理,模拟结果表明优化效果显著,为TC4合金盘形件等温成形锻造工艺参数的优化过程提供了一条从虚拟正交试验—回归模型—优化设计的新的思路。
     4.采用热力学模拟—微观模拟—计算机数值模拟综合集成技术,运用线性规划理论中的灵敏度分析方法,以终锻件组织稳定性为目标,对TC4合金盘形件等温成形锻造工艺的控制进行了分析与研究,采用三层控制策略的思路,总结出了一套在PID控制与灵敏度分析理论基础上的设计与控制一体化模式,从而为实现锻压过程的现代化适时控制提供了参考,在实际生产中具有非常明显的理论意义和工程应用前景。
Some important parts of aero-engine, such as turbine disk, force bearing disk, turbine blades and so on, are made of aerial materials difficult to deformation, like titanium alloy or high-temperature alloy. However, due to the shortage of design methods and methods of production, as-forged microstructure and property of forgings are instability but also the rate of finished products is low, so that it is very waste of human forces and materials.
    Based on the system study of deformation characters of Ti-6Al-4V alloy and virtual orthogonal experiments, taking the as-forged microstructure and property of isothermal disk-forging as objective function, the die isothermal forming process and the integrated technology of design and control of Ti-6Al-4V alloy in isothermal forming process have been analyzed with thermodynamic coupled FEM numerical simulation. The main research findings and new outlooks are as follows:
    (1) Based on a new constitutive equation of parallel model and mathematic theory of statistics, the relationship of as-forged recrystal microstructure distribution and technological parameters of forging was developed, providing a scientific basis for the optimum design of isothermal forming process of Ti-6A1-4V alloy.
    (2) Taking the as-forged microstructure uniformity as optimum objective function, the die isothermal forming process of Ti-6Al-4V alloy has been analyzed with the virtual orthogonal experiment that combined with FEM numerical simulation and orthogonal experiment, then its technological parameters was optimizing that is different with traditional ones, therefore, it provided a sound basis for the implemention of technological parameters and improvement of as-forged quality in forming process.
    (3) Based on the virtual orthogonal experiment results, technological parameters of Ti-6Al-4V alloy was further optimizing with regressive model and simplex method, a kind of optimizing algorithm, optimizing results have indicated that optimizing effect was obvious, then a new optimizing viewpoint that including virtual experiments, regression model and optimum design for technological parameters of Ti-6Al-4V alloy in isothermal forming process.
    (4) Based on an integrated method combined with thermodynamic simulation, microstructure simulation and computer numerical simulation and sensitivity analysis of linear program, taking the as-forged microstructure stability as control objective, the control of isothermal forming process of Ti-6Al-4V alloy was studied and with a three-layer control strategy, an new integrated technology of design and control based on PID control mode or sensitivity theory was proposed, thus,
    
    
    modernization updating control of forming process was realized, which has very obvious theoretical meaning and engineering application value in actual production.
引文
[1] K. Karhausen and R. Kopp. Model for Integrated Process and Microstructures Simulation in Hot Forming. Steel Research. 1992, 6(63):247~256
    [2] C.M. Sellars. Modeling Microstructural Development during Hot Rolling. Materials Science and Technology. 1990,(6): 1072~1081
    [3] H. Yada, Proc. Int. Symp. Accelerated Cooling of Rolled steel, Conf. Of Metallurgists, CIM, Winnipeg, MB, G. E. Ruddle and A. F. Crawley, Canada. 1987:105-120
    [4] C. Devadas, I. V. Samarasekera and E. B. Hawbolt. The Thermal and Metallurgical State of Steel Strip during Hot Rolling; Part Ⅲ. Microstructural Evolution, Metallurgical Transactions A 1991 (22A) :335~348
    [5] S.G. Xu and Q. X. Cao. Numerical Simulation of the Microstructure in the Ring Rolling of Hot Steel. Journal of Materials Processes of Technology. 1994(43):221~235
    [6] G. S. Shen, S. L. Semiatin and R. Shivpuri. Modeling Microstructural Development during the Forging of Waspaloy. Metallurgical and Materials Transactions A 1995(26A): 1795~1803
    [7] S. Badrinarayanan and N. Zabaras. A Sensitivity Analysis for the Design of Metal Forming Processes. Comput. Methods Appl. Mech. Eng. 1996(129): 319~348
    [8] L. Fourment and J. L. Chenot, Optimal Design for Non-steady-state Metal Forming Processes—Ⅰ. Shape Optimization Method. Int. J. Numer. Method Eng. 1996(39):33~50
    [9] L. Fourment and J. L. Chenot. Optimal Design for Non-steady-state Metal forming Processes—Ⅱ. Application of Shape Optimization in Forging. Int. J. Numer. Method Eng. 1996 (39):51~65
    [10] G. Zhao, E. Wright and R. V. Grandhi. Preform Die Shape Design in Metal Forming Using an Optimization Method. Int. J. Numer. Methods Engng. 1997(40):1213~1230
    [11] E. Wright and R. V. Grandhi. Integrated Process and Shape Design in Metal Forming with Finite Element Sensitivity Analysis. Design Optimization International Journal for Product and Process Improvement. 1999(1): 55~78
    [12] M. S. Joun and S. M. Hwang. Die Shape Optimal Design in Three-dimensional Shape Metal Extrusion by the Finite Element Method. Int. J. Numer. Method Engng. 1998(41): 311~335
    [13] Z. Y. Gao, E. Wright, R. V. Grandhi. Thermo-mechanical Sensitivity Analysis for Preform Design in Metal Forming, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysia and Optimization, St. Louis, MO, AIAA-98-4840, 1998:1019~1029
    [14] J. C. MalasⅢ, W. G. Frazier, S. Venugopal, E. A. Medina, S. Medeiros, R. Srinivasan, R. D. Irwin, W. M. Mullins and A. Chaudhary. Optimization of Microstructure Development during Hot Working Using Control Theory.
    
    Metallurgical and Materials Transactions A. 1997(28A): 1921~1390
    [15] 霍文灿主编.热加工技术简明手册—锻造分册.哈工大工业出版社,1997
    [16] Hall I. A., Pierce C. M., Ruchle, Spragne R. A. Mater. Sci. and Eng. 1972,8(4):197~210
    [17] 《锻压技术手册》编委会.锻压技术手册(上、下).国防工业出版社,1988
    [18] 王芝英,邵仁兴.钛合金等温锻造进展.锻造技术,1997,1
    [19] 王旭.国外钛合金超塑性成形应用现状及发展趋势.航天工艺,1989,4
    [20] 郭鸿镇主编.合金钢与有色合金锻造.西北工业大学出版社,1999
    [21] 聂蕾.TC4合金的热模锻过程设计与质量控制.硕士学位论文.西北工业大学,2002
    [22] J. J. Park, N. Rebelo, S. Kobayashi. A New Approach to Preform Design in Metal Forming with Finite Element Method. Int. J. Mach. Tool Des. Res., 1983,23: 71~79
    [23] M. Pietrzyk. Finite~element Simulation of Large Plastic Deformation. J. Mater. Process. Technol. 2000,106:223~229
    [24] 胡忠.材料加工过程计算机模拟的现状与未来.塑性工程学报.1998,5(2):1~8
    [25] J. Majta, J.G. Lenard, M. Pietrzyk. Mater. A Study of the Effect of the Thermomechanical History on Mechanical Properties of a High Niobium Steel. Mater. Sci. Eng., 1996, A208:249~259
    [26] E. Kang and K. Haghighi. Intelligent Finite Element Mesh Generation. Engineering with Computers. 1995,11:70~82
    [27] D. N. Dyck, D. A. Lowther, S. McFee. Determining an Approximate Finite Element Mesh Density Using Neural Network Techniques. IEEE Trans. on Mag., 1992,28(2): 1767~1770
    [28] J. S. Chen, C. Pan, etc. Reproducing Kernel Particle Methods for Large Deformation Analysis of Nonlinear Structures. Comput. Mesh. Appl. Mech. Eng., 1996, 139:195~227
    [29] J. S. Chen, C. Pan, C. T. Wu. Large Deformation Analysis of Rubber Based on Reproducing Kernel Particle Method. Comput. Meth., 1997,19:211~227
    [30] 郭书祥.自适应有限元网格及其应用.力学进展,1997,27(4):479~488
    [31] Tworzydlo W W, Oden J T. Knowledge~based Methods and Smart Algorithms in Computational Mechanics. Engineering Fracture Mechanics, 1995,50(5,6):759~800
    [32] Y. ~M. Guo, Kenji Nakanishi. Axisymmetric Forging Analyses by the Rigid~plastic Finite~boundary Element Method. J. Mater. Process. Technol., 1999, 86:208~215
    [33] 虞春,周雄辉,张永清.基于特征的有限元网格划分研究.机械科学与技术,1991,18(2):210~212
    [34] Vance Unruh and David C. Anderson. Feature~based Modeling for Automatic Mesh Generation. Engineering with Computers, 1992,8:1~12
    [35] 郭会光,张巧丽,陈慧琴.大锻件热成形的现代集成研究方法.大型铸锻件,2003(2):3~5
    [36] Hu Z M, Brooks J W, Dean T A. Experiment and Theoretical Analysis of
    
    Deformation and Microstructural Evolution in the Hot-die Forging of Titanium Alloy Aerofoil Sections. J. Mater. Process. Technol.,1999,88:251~265
    [37] Lee Rong-Shean, Huan Chang Lin. Process Design Based on the Deformation Mechanism for the Non-isothermal Forging of Ti-6Al-4V Alloy. Journal of Material Processing Technoligy, 1998, 79(2): 224~235
    [38] 刘东.难变形材料锻造过程的有限元变形—传热—组织演化耦合分析.西北工业大学博士学位论文,1998年11月
    [39] 孙月蓬.关于数学建模的几点思考.北京邮电大学学报(社会科学版),2001,3(1):44~46
    [40] 海焕智.数学模型构造剖析.宝鸡文理学院学报(自然科学版),2001,21(4):276~277
    [41] 罗仁平,彭颖红等.锻造过程的优化目标建模.机械科学与技术,1999,18(6):963~965
    [42] 张立斌.TC11压气机盘超塑性等温锻造工艺.北京航天工艺,1996,4:38~41
    [43] [苏]C.3.菲格林等著.金属等溫变形工艺.薛永春译.刘建宇校.国防工业出版社,1992,10
    [44] S.L. Semiation and G. P. Lahoti. The Occurrence of Shear Bands in Isothermal, Hot Forging, Met. Trans. A, 13A, 1982
    [45] B.K,亚历山大等著.钛合金半成品.宁兴龙等译.宝鸡有色加工厂
    [46] 刘雪梅.组织演变模型及其在钛合金高温变形中的应用.西北工业大学硕士学位论文,1999年3月
    [47] 俞汉清,陈金德编.金属塑性成形原理.机械工业出版社,1999
    [48] 朱燕堂主编.应用概率统计方法.西北工业大学出版社,1985
    [49] 贾建军,彭颖红.金属塑性加工工艺参数优化设计方法论述.模具技术,1998年第4期
    [50] 辛益军主编.方差分析与实验设计.中国财政经济出版社,2001.12
    [51] 崔令江.正交优化法及其实际应用.重型汽车,1994(4),21~26
    [52] 袁亚湘,孙文瑜.最优化理论与方法.科学出版社,1997
    [53] 陈立周主编.机械优化设计方法.冶金工业出版社,1995
    [54] 罗仁平,彭颖红,张永清.金属成形过程优化设计的关键问题.Die and Mould Technology.1999,3:84~88
    [55] T.Ohata, Y. Nakamura, T.Katayuma, E. Nakumachi, K. Nakano. Development of Optimum Process Design System by Numerical Simulation. J. of Materials Processing Technology, 1997,60:543~548
    [56] 孙国正.优化设计及应用.人民交通出版社,2000,7~8
    [57] 党亚民,陈俊勇,晁定波.大地测量非线性随机反演算法.测绘通报,1999,3:15~20
    [58] 赵国群,王广春等.材料塑性成形过程最优化设计—Ⅱ灵敏度分析方法在模具设计中的应用.塑性工程学报,1999,6(3):1~6
    [59] 刘勇,康立山,陈毓屏.非数值并行算法——遗传算法.科学出版社,1993
    [60] 袁亚湘.非线性规划数值方法.上海科学出版社,1993
    [61] 胡运权主编.运筹学教程.清华大学出版社,2003年5月
    
    
    [62] Guo Huiguang etal. Controlling Hot Forming and Cooling for the Rotaining Rings of Mn18Cr18N Steel. Proc of the 4th I C T P. Beijing china: 1993
    [63] 张巧丽.护环热成形工艺质量预报和控制的研究[学位论文].太原重型机械学院,1996
    [64] 李士勇.模糊控制、神经控制和智能控制论.哈尔滨工业大学出版社,1998年9月
    [65] 邓成梁主编.运筹学的原理和方法(第2版).华中理工大学出版社,1998年3月
    [66] 茆诗松,丁元等编著.回归分析及其试验设计.华东师范大学出版社,1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700