铝合金的搅拌摩擦焊接工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌摩擦焊接(FSW)是由英国剑桥焊接研究(TWI)所于1991年发明的一种
    固相连接方法,由于其在汽车及航空工业中较为重要的地位,FSW现已经成为一
    项很重要的焊接技术。在这种焊接过程中,一个旋转的摩擦头在两个对接的板材表
    面之间移动并最终可对板材进行连接。
    本课题通过对试验用不同厚度的材料,如不同厚度的铝合金LY12、 L2及LF2
    进行焊接后的每个接头进行成型特点、微观组织及接头力学性能等的研究,总结出
    摩擦搅拌焊接过程中焊接规范参数,主要包括摩擦头旋转速度、焊接速度及焊接摩
    擦加热功率等对焊接接头质量的影响规律。通过上述研究,不仅可以得出对应不同
    焊接材料的一组理想的焊接规范参数而且也可以得到上述各种规范对焊接接头质
    量影响的大致规律:(1) 转速对接头的影响:接头强度随着转速的增加,先增加后
    减小,板厚越大,强度增加越不明显;焊核区平均硬度随转速增加而下降;而焊核
    区晶粒尺寸随着转速的增加先下降后上升。(2) 焊速的影响:接头强度随着焊速的
    增加而减小;焊核区平均硬度随焊速的增加而上升;随焊速变化,焊核区晶粒尺寸
    变大。(3) 摩擦加热功率的影响:接头强度随着摩擦加热功率的增加而先增加后减
    小;而焊核区硬度和焊核区晶粒尺寸均随着摩擦加热功率的增加而先减小后增加。
    本课题实验结果不仅对FSW焊接试验提供数据基础,而且也可为今后的摩擦搅
    拌焊接工艺研究提供了参考。
Friction Stir Welding (FSW) is a solid state welding method developed by TWI in the 1990s,and as well as an important new welding technique with potentially significant application in automotive and aerospace industry. In this welding process, a rotating welding tool is driven into the material at the interface of, for example, two adjoining plates, and then translated along the interface.
    The object of this research was to investigate the characteristics of joining, microstructures and mechanical properties of FSW joints welded for experimental aluminum alloys, such as LY12, L2, and LF2 with different thickness and the influence of welding parameters including most importantly the tool's rotational speed, welding velocity, and welding energy on the quality of joint according to the solid-state joining principle during FSW welding. Finally, the optimal welding parameters for different materials under experimental condition were completed on the basis of correlative studies. Furthermore, roles of the influences of welding parameters on welding joints were established: (1) influence of rotational speed on joint: strength of joint will increase firstly, then decrease; the average value of hardness in weld nugget could fall; microstructure could be fine and then bigger with the increase of rotational speed.(2) influence of welding velocity: strength of joint will decrease while the value of hardne
    ss in weld nugget and microstructural dimension will enhance with the increase of welding velocity.(3)influence of welding energy: variation of joint strength was in accordance with the role of with rotational speed whereas the value of hardness in weld nugget and microstructural dimension are contrary to the result above.
    The results of investigations not only provide data for FSW welding experiment, but also can support the further study of techniques of FSW method.
引文
1. M. Peel, A. Steuwer, M.. Preuss and P. J. Withers, Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminum AA5083,Acta Materialia [J], 2003(51) :4791-4801
    2. M. Ericsson, R. Sandstrom, Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG, Acta Materialia [J],2003 (25) :1379-1387
    3. M. A. Stutton, B. Yang, A. P. Reynolds, and R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum, Materials Science and Engineering[J], 2002(A323) :160-166
    4. Indrajit Charit, Rajiv S. Mishra and Murray W. Mahoney, Multi-sheet structures in 7475 aluminum by friction stir welding in conccrt with post-weld superplastic forming, Scripta Materialia[J], 2002(4) :631-636
    5. Hanadi G..Salem, Anthony P. Reynolds and Jed S. Lyons, Microstructure and retention of superplasticity of friction stir welded superplastic 2095 sheet, Scripta Materialia[J], 2002(46) :337-342
    6. J,-Q.Su, T.W. Nelson,R.Mishra and M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminum, Acta Materialia [J], 2003(51) :713-729
    7. R. A. Prado, L. E. Murr, D. J. Shindo and J. C. MoClure, FRICTION-SIR WELDING:A STUDY OF TOOL WEAR VARIATION IN ALUMINUM ALLOY 6061+20%Al2O3, Symposium sponsored by the Shaping and Forming Committee of the Materials Processing & Manufacturing Division of TMS. [C] TMS. Indianapolis. America. 2001:77-81
    8. 王祖唐,关廷栋,肖景容等,金属塑性成形理论[M],北京,机械工业出版社, 1989:34-36
    9. 余汉清,陈金德,金属塑性成型原理[M],北京,机械工业出版社,2002:22-23
    10. 胡德林,金属学及热处理[M],西安,西北工业大学出版社,1995:200-206
    11. 王希靖,铝合金搅拌摩擦焊接技术,有色金属学报[J],2003,(3) :78-81
    12. 王希靖.陈书锦等..搅拌摩擦焊机控制器的研制.兰州理工大学学报[J], 2003. 12. 1-2
    13. 王希靖.搅拌摩擦焊技术在铝合金加工中地应用.2001年中国机械工程学会年会 论文集[C].机械工业出版社,2001. 11:85-88
    14. 邢丽,柯黎明等,铝合金LD10的搅拌摩擦焊组织及性能分析,焊接学报[J], 2002,(6) :55-58
    15. 栾国红,North T H等,铝合金搅拌摩擦焊接头行为分析,焊接学报[J],2002, (6) :62-66
    16. 轻金属材料加工手册编写组,轻金属加工手册(上),冶金工业出版社 [M],1979,12:379-384
    17. 陈书锦,搅拌摩擦焊机的研制及热源模型初探,甘肃工业大学硕士学位论文, 18-19
    
    
    18. M. Guerra, J. C. McClure, L. E. Murr, A. C. Nunes, METAL FLOW DURING FRICTION STIR WELDING, Friction Stir Welding and Processing[C],2001; 25-31
    19. Mr. Rollin E. CollinsII, The Use of Friction Welding Technology In Maritime Application, Aluminum 2001-Processing of the TMS.2001Aluminum Autonomotive and Joining Sessions[C], 2001: 189-195
    20. J. Zheng, R. S. Mishra, P. B. Berbon and M. W. Mhaoney, MICROSTRUCTURE AND MECHANICAL BEHAVIOR OF FRICTION STIR PROCESSED Al-Ti-Cu ALLOY, Friction Stir Welding and Processing[C],2001: 235-241
    21. [美]约翰 J.伯克,沃克·威斯,超细晶粒金属,国防工业出版社[M],1982, 12
    22. 轻金属材料加工手册编写组,轻金属加工手册(上),冶金工业出版社 [M],1979,12:78
    23. A. P. Reynolds, Wei Tang.T. Gnaupel-Herold and H. Prask, Structure, properties, and residual stress of 304Lstainless steol friction stir welds, Scripta Materialia, 2003(48) :1289-1294
    24. Murray Mahoney, Rajiv S. Mishra, Tracy Nelson, Jonathan Flintoff, Rinat Islamgaliev,and Yuri Hovansky, HIGH STRAIN RATE,THICK SECTION SUPERPLASTICITY CREATED VIA FRICTION STIR PROCESSING, Friction Stir Welding and Processing[C],2001
    25. R. Braun, C. Daile Donne, G. Staniek, Laser beam welding and friction stir welding and friction stirweldingof 6013-T6aluminum alloy sheet, Mat.-wiss. u.Werkstofftech, 2000(3) :1017-1026
    26. Y.S.Sato,Y.Kurihara,S.H.C.Park,H.Kokawa and N.Tsuji, Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding, Scripta Materialia, 2004(50) :57-60
    27. Yutaka S. SATO, Mitsunori Urata, Hiroyuki Kokawa, Keisuke Ikeda, Retention of fine grained microstructure of equal channel angular pressed aluminum alloy 1050 by friction stir welding,, Scripta Materialia,2001(45) :109-114
    28. G. Bussu, P. E. Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints,International Journal of Fatigue, 2003(25) :77-88
    29. Kh. A. A. Hassan, A. F. Norman, D. A. Price, P. B: Prangnell, Stability of nugget xone grain structure in high strength Al-alloy friction stir welds during solution treatment, Acta Materialia, 2003(51) :1923-1936
    30. W. B. Lee, Y. M. Yeon, S. B. Jung, The improvement of mechanical properties of friction-stir-welded A365 AI alloy, Materials Science an Engineering,2003(A355) :154-159
    31. Yutaka S. Sato, Mitsunori Urata, Hiroyuki Kokawa, Keisuke Ikeda, Recovery retardation in equal channel angular presses Al-Zr alloy during friction stir welding,Scripta Materialia, 2002(47) :869-873

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700