桤木人工林生态系统结构及功能过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了5年、8年、14年生桤木人工林生态系统的生物产量、碳贮量、养分积累与分布及水文学过程等生态功能,揭示桤木人工林生态系统的结构与功能过程,为研究森林生态系统对全球气候变化响应和反馈提供基础数据,为制定区域森林生态系统经营模式提供科学依据。研究结果如下:
     5年生、8年生和14年生桤木人工林乔木层生物量分别为51.23 t·hm2、73.05 t·hm2和95.31 t·hm2,地上生物量分别占林分总生物量的85.69%、82.36%和88.18%。树干、树枝的生物量随年龄的增大所占比例有所增加。各组分生物量的大小排序:树干>树冠>树根。林分的净生产力随年龄的增加而增加,分别为13.02、13.09和15.03t-hm-2·a-1。
     5年生桤木人工林根系总根长度变化趋势呈现出:细根>大根>粗根。根系比根长(SRL)变化为细根SRL>粗根SRL>大根SRL。桤木人上林大根RLD根长密度(RLD)沿沿水平方向上,大根呈递减趋势,粗根、细根RLD随着距树干距离的增大先减少再增加再减少的变化趋势;沿垂直方向上,大根和粗跟RLD在0-30cm内逐渐增加,随后开始逐步减小;细根随上层的加深而逐步减小。桤木根系分布良好的相范围为固相率38.5-54.5%,液相率21-36.5%,气相率12.5-35.5%,在此之外的根系牛长都呈现不良状态。
     桤木人工林生态系统生物量随年龄的增加而增加,5、8、14年生桤木生态系统生物量分别为54.65、76.50、103.23t-hm-2,活地被物生物量分别占系统总生物量的3.18%、1.71%和3.75%,林下死地被物层生物量分别占系统总牛物量的3.07%、2.91%和3.91%。
     桤木各器官的碳密度算术平均值随年龄的增长而增加,5年生、8年生和14年生的分别为0.4788、0.4857和0.4958 gC·g’,变异系数在0.25%-9.58%之间,不同器官C密度由高至低排序大致为:树干>树枝>树叶>树根>树皮,林下植被各组分和死地被物的碳密度随着林龄的变化规律不明显,土壤层(0-60 cm)平均碳密度也随着林龄的增长逐渐增加,且在垂直分布上随着土层深度的增加而逐渐下降。林木不同器官的碳贮量与其生物量成正比例关系,随着林龄增长,乔木层碳贮量的优势逐渐增强,从5年生的25.88 t·hm-2增加到14年牛的49.63 t-hm-2。桤木人工林生态系统碳库主要由植被层、死地被物层和土壤层组成,按其碳库大小顺序排列为:上壤层>植被层>死地被物层。5年生、8年生和14年生桤木林生态系统中的碳贮量分别为95.89、122.12和130.75 t·hm-2,土壤碳贮量占整个生态系统碳贮量的59.42%以上。随着林龄增长,地上部分与地下部分碳贮量之比有逐渐下降的趋势。5年生、8年生和14年生桤木年净固定碳量分别6.51、6.26和7.82 t·hm2·a1。湖南省现有桤木林植被层碳贮量为2.8034×106t,为其潜在C库的47.51%。
     桤木叶片中营养元素的含量相对较高,枝条中各营养元素的含量变化与叶基本一致;干材中N、P、K、Ca元索含量均在春季达到最低值;树皮中营养元素季节变化规律不明显。N的含量以叶片中最高,而Ca的含量则以树皮中最高,这与各器官的生理功能不同而密切相关。林下植被和枯落物与乔木层相比,养分含量相对较高;桤木叶中N、P、K浓度明显高于枯落物,而Ca则相反。
     5年、8年和14年生桤木林乔木层、活地被物层大量元素含量的排序均为:N>Ca>K>Mg>P。随着年龄的增加N的含量增加;而K的含量则随着年龄的增加而降低。林下活地被物层大量元素的含量排序依次为:8年生>14年生>5年生。死地被物大量元素养分含量的排序为:N>Ca>Mg>K>P。
     桤木林生态系统中土壤各层养分含量顺序均为:K>Mg>N>P>Ca,养分积累量为166046.23 kg·hm-2;乔木层养分积累量为754.77 kg·hm-2,各组分养分积累量排列顺序为:树叶>树枝>树干>树根>树皮;林下植被层的养分积累量为154.83 kg·hm-2,枯落物层的养分积累量为99.21 kg·hm-2,二者的养分积累量为254.04 kg·hm-2,占整个生态系统的0.15%。生态系统养分总积累量达167809.80 kg·hm-2,绝大部分由土壤层贡献所得。桤木每生产1t干物质,需要营养元素12.516 kg。
     四川桤木和台湾桤木林穿透雨量、林冠截留量和树干径流量与大气降雨量有显著关系,分别呈直线关系、指数函数关系和二次函数关系。四川桤木木人工林的穿透雨量、林冠截留量、树干径流量分别占大气降雨量的78.21%、16.51%、5.28%;台湾桤木人工林的穿透雨量、林冠截留量、树干径流量分别占大气降雨量的80.77%、15.03%、4.20%。
     四川桤木和台湾桤木人工林穿透水中养分元素含量排列顺序分别为:Ca>K>Mg>NH4+-N>NO3--N>Mn>Fe>Cu;Ca>K>NH4+-N>Mg>NO3--N>Fe>Mn>Cu。其中NH4+-N含量穿透水较林外降水降低了60%以上,且在穿透水和树干径流中含量呈现为先减后增,而K、Fe、Cu均呈增大趋势。四川桤木林降水过程以K元素增幅最大,从2.010mg·L-1增加至10.461mg·L-1。
     5年生四川桤木和台湾桤木的林冠截留率分别为:16.51%和15.03%,茎流率分别为5.28%和4.20%。四川桤木人工林有效持水量较高,为17.0t·hm-2,台湾桤木林为16.2t·hm-2。
     灌木草本层的持水速度与浸水时间呈指数函数关系变化,浸水时间越长,持水速度越小,在浸水3h后基本处于饱和状态。枯落物有效持水量排序为四川桤木人工林(1.70mm)>台湾桤木人工林(1.62mm)>宜林地(0.13mm)。
     桤木林地枯落物总量和未分解层枯落物储量随季节变化逐渐增加,半分解层枯落物随季节的变化基本呈现增加趋势。枯落物总量和未分解层储量均是四川桤木林>台湾桤木林,半分解层枯落物和枯落物层含水率均是台湾桤木林>四川桤木林,而未分解层枯落物含水率是四川桤木林最大。各层次枯落物含水率与土壤水分呈正相关关系。
     0-75cm土层范围内土壤水分随土层的加深其含量逐渐增大,土壤平均含水量排序为:四川桤木林(19.86%)>台湾桤木林(17.59%)>宜林地(17.18%)。30-75cm层土壤,各分层次含水量都是四川桤木林>台湾桤木林>宜林地。土壤含水量变异系数随土层加深逐渐减小。
     桤木林地30cm以下土壤含水量与降雨量相关性不显著;日平均气温对四川桤木林和台湾桤木林各层土壤含水量无显著(p>0.05)影响;日平均相对湿度对四川桤木林各层次土壤含水量影响不显著,对台湾桤木林0-75cm层有显著性正相关影响。
In this paper, the stand biomass, carbon storage, accumulation and distribution of nutrient, hydrological processes and ecological function were investigated in the forest ecosystem of Alnus cremaslogyne at stand age 5,8 and 14 respectively, to study the structure and functional process of Alnus cremastogyne forest ecosystem. So as to reveal the response and feedback to global climate change of forest ecosystem, and to provide data bases and reference for formulating management mode of regional forest ecosystem in the world. The results showed as followings:
     The stratum biomass of Alnus cremaslogyne plantation with trees of 5-year-old, 8-year-old and 14-year-old were 51.23 t·hm-2,73.05 t·hm-2, and 95.31 t·hm-2 separately. The above ground biomass accounted for 85.69%,82.36% and 88.18% of the total biomass separately. The proportion of trunk, branches and leaves increased with the tree age increase. The biomass of each component was ranked as:trunk>crown>roots. The spatial distribution of root biomass changes was:big roots>middle root>small roots> fine roots. The net productivity of stand increased with tree age increase, the average annual net productivity were 13.02,13.09 and 15.03 t·hm-2·a-1 respectively。
     The total length of different specific roots of 5 year-old Alnus cremastogyne plantation planted in Miluo ordered as:fine root>large root>coarse root. The specific root length (SRL) to total root length was ranked as fine root SRL>coarse root SRL> large root SRL. Root length density (RLD) showed decrease trends along the vertical direction of the roots; along the horizontal direction, RLD of big root decreased with the increase of distance away from the trunk. Good distribution range of Alnus cremastogyne root in three-phase were solid fraction38.5-54.5%, liquid fraction21~36.5%, gas 12.5~35.5%, and roots would not grow well enough outside those ranges.
     The biomass of a whole plantation ecosystem of Alnus cremastogyne increased with the stand age, biomass of 5,8,14-year-old alder ecosystems were 54.65,76.50,103.23 t·hm-2 respectively, the living ground cover in the ecosystem accounted for 3.18%,1.71% and 3.75% respectively, dead ground cover accounted for 3.07%,2.91% and 3.91% of the entire ecosystem biomass respectively.
     The arithmetic average carbon density of different organs of alder was 0.4788 gC·g-1 for the 5-year-old plantation,0.4857 gC·g-1 for the 8-year-old stand and 0.4958 gC·g-1 for the 14 year-old plantation, which increased with the stand age, and the variation coefficient ranged form 0.25% to 9.58%. The carbon densities of different organs varied in the following order:stems> branches> leaves> roots> bark. The change of carbon densities in different groups of under-storey of plants or the duff layer was not evident as the forest age increased. The carbon density of soil layer between 0 and 60cm increased along with the stands age of Alnus cremastogyne and declined with the soil depth. The carbon storage in different oranges was positively related to the biomass of corresponding organs. Superiority of carbon storage in the trees gradually increased as the forest stands aged, carbon storage of the trees had grown up from 25.88 t-hm 2 for the 5-year-old to 49.63 t·hm-2 for the 14-year-old plantation. The carbon stock of Alnus cremastogyne plantation ecosystem was mainly consisted of three sections, that was the trees, the litter and the soil, and the order of whose carbon stock could be ranked as follow:the soil>the trees>the litter. Carbon stock of Alnus cremastogyne plantation was 95.89 t·hm-2 at 5-year-old,122.12 t·hm-2 at 8-year-old and 130.75 t·hm-2 at 14-year-old. Carbon storage in forestlands soil layer (0~60 cm) accounted for more than 59.42% of that in the whole ecosystem, the ratio of carbon storage of aboveground to that of underground deceased along with growing age of the Alnus cremastogyne forest. The annual carbon fixation of the 5-year-old, the 8-year-old and the 14-year-old Alnus cremastogyne plantation was respectively 6.51,6.26 and 7.82 t·hm 2·a 1. Extant carbon storage of Alnus cremastogyne plantation in Hunan province was up to 2.8034×106t, accounting for 47.51% of its potential carbon storage.
     Nutrient content of Alnus cremastogyne leaves was relatively high, same change of nutrient content was found in branch as that in leaf of Alnus cremastogyne. N, P, K, Ca element in the dry wood reached their lowest concentration in spring. Seasonal variation of nutrient in bark was not evident. The highest nutrient content in leaves was N, while that of Ca in the bark, which should be the consequence of different physiological functions of various organs.Floor vegetation had relatively higher nutrient content comparied with that in ground litter and tree layer. N, P, K concentration in Alnus cremastogyne leaves were significantly higher than that in the ground litter while Ca was contrary.
     The order of macro element concentration of the 5 years,8 years and 14 years old Alnus cremastogyne forest tree layer and living ground cover were:N>Ca>K>Mg>P. By the tree age increasing, concentration of N also increased; but concentration of K was decreased with age increase. The order of macro element concentration of living ground cover was 8-year-old>14-year-old>5-year-old. Order of macro element concentration of dead litter was:N>Ca>Mg>K>P.
     Nutrient concentration in soil layer of Alnus cremastogyne forest ecosystem ordered as:K>Mg>N>P>Ca, nutrient accumulation was166046.23 kg·hm-2; total elements accumulated were 754.77 kg·hm-2, the amount of nutrient accumulation of each component arranged in the following order:leaves> branch> trunk> root> bark. Nutrient accumulation of ground cover was 154.83 kg·hm-2, litter layer nutrient accumulated for 99.21 kg·hm-2, total amount was 254.04 kg·hm-2, accounted for the entire ecosystem of 0.15%. Alnus cremastogyne plantation accumulated an annual amounts of 167809.80 kg·hm-2 nutrient, most of it contributed by the soil layers.12.516 kg nutrient was needed to produce It dry matter for Alnus cremastogyne.
     Throughfall, canopy interception and trunk runoff of Sichuan alder and Taiwan alder had significant relationship with atmospheric rainfall; they were linear relationship, exponential relationship and quadratic relationship respectively. The redistribution of atmospheric precipitation input by throughfall, canopy interception and trunk runoff of Sichuan alder plantation accounting for 78.21%,16.51%,5.28% of atmospheric rainfall respectively; for Taiwan alder plantations the values were 80.77%,15.03%,4.20% respectively.
     Nutrient element concentrations of throughfall of Sichuan and Taiwan alder plantation ranked as:Ca>K>Mg>NH4+-N>NO3-N>Mn>Fe>Cu; Ca>K>NH4+-N>Mg >NO3-N>Fe>Mn>Cu, where NH4+-N concentration was reduced more than 60% in throughfall compared with that in the rainfall outside the forest, NH4+-N concentration in the throughfall and trunk runoff first decreased then increased. K, Fe, Cu of throughfall and trunk runoff increased in Sichuan and Taiwan alder forest. Elements K in Sichuan alder plantation has a maximal increase from 2.010mg·L-1 to 10.461 mg·L-1 during precipitation.
     Sichuan, and Taiwan alder's canopy interception rates were 16.51% and 15.03% respectively, stem flow rate was 5.28% and 4.20% respectively. Alder plantation of Sichuan had higher effective water-holding capacity of 17.0 t·hm-2, while that of Taiwan alder plantation was smaller, which was 16.2 t·hm-2.
     Soak time and water retention time of shrub and herb layer had exponential relationship, the longer time the water soak, the smaller holding rate, saturation after 3h soak. Effective water-holding capacity of ground litter ordered as Sichuan alder plantation (1.70mm)>Taiwan alder plantation (1.62mm)> suitable afforestation land(0.13mm).
     Reservation of ground litter layer and non-decomposed layer of Alder forest increased with seasonal change, a gradual increase was found in semi-decomposed litter layer with seasonal change. Reservation amount of ground litter and non-decomposed layer were Sichuan alder plantation> Taiwan alder plantation, while moisture of semi-decomposed and ground litter layer was Taiwan alder>Sichuan alder, highest moisture content was found in non-decomposed litter layer of Sichuan alder. Ground litter biomass had a negative correlation with soil moisture; moisture content in all layers of ground litter and soil moisture were positively correlated.
     Moisture in 0-75cm soil layer increased with the increasing depth, the average water content were Sichuan alder (19.86%)>Taiwan alder (17.59%)>suitable afforestation land (17.18%). Within 30-75cm soil layer, regardless sub-levels, the water content of soil was always the Sichuan alder>Alnus alder>suitable afforestation land. Coefficient of variation of soil moisture gradually decreased with the soil depth.
     No significant correlation was found between rainfall and water content in the soil that deeper than 30cm below the ground; daily average temperature had no significant effect on soil moisture (p>0.05) in both Sichuan alder and Taiwan alder plantation; daily average relative humidity in Sichuan alder plantation has no significant effect on moisture content at all soil layers, however that had significant positive relationship with 0-75cm soil layer of Taiwan alder plantation.
引文
[1]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京,科学出版社,1999,251-287.
    [2]刘允芬.农业生态系统碳循环研究[J].自然资源学报,1995,10(1):1-8.
    [3]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报.1996,16(4):497-508.
    [4]刘增文.森林养分研究国际动态[J].西北林学院学报,2004,19(3):183-187.
    [5]Cain S.Subler,JP Evans,et al.Sampling spatial and temporal variation in soil nitrogen availability[J].Oecologia,1999,11 (8):397-404.
    [6]Jumpponen A,Hogberg P,Huss-Danell K et al.Interspecific and spatial differences in nitrogen uptake in monocultures and two-species mixtures in north European grasslands[J].Functional Ecology,2002,16:454-461.
    [7]Kleb HR,Wilson SD.Vegetation effects on soil resource heterogeneity in prairie and forest[J].The American Naturalist,1997,150:283-298.
    [8]方精云主编.全球生态学—气候变化与生态响应[M].北京:高等教育出版社;海德堡:施普林格出版社,2000:191.
    [9]Leith,R.H.Whittaker(eds.) Primary Productivity of Biosphere[M].Berlin: Springer-Verlag,1975,26-30.
    [10]Andersson,F.O.,Agren,G.I.,Fuhrer,E.Sustainable tree biomass production[J].Forest Ecology and Management,2000 (132):51-62.
    [11]Mitchell,C.P.,Zsuffa,F.Andersson,S.,Stevens,D.J.Forestry,Forest biomass and biomass conversion:the IEA bio-energy agreement(1986-1989) summary report[C].Elsevier Science Publishers LTD,1990,51-54.
    [12]Ebermeyr,E.Die gesamte Lechr der Waldstreu mit Rucksicht auf die chemische Statik des Waldbaues [M].Belin:J.Springer,1876:SS 300+116.
    [13]潘维俦,李利村,高正衡.12个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979(4):12-41.
    [14]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    [15]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究(试刊),1981,34-50.
    [16]刘志刚,马钦彦,潘向丽.兴安落叶松天然林生物量及生物力的研究[J].植物生 态学报,1994,18(4):328-337.
    [17]方升佐.水杉人工林林冠结构及生物生产力的研究[J].应用生态学报,1995,6(3):223-225.
    [18]陈炳浩,陈楚莹.沙地红皮云杉森林群落生物量和生产力的初步研究[J].林业科学,1980(4):269-278.
    [19]林开敏,俞新妥,何智英.不同密度杉木林分生物量结构与土壤肥力差异研究[J].林业科学,1996,32(5):385-392.
    [20]陈存根,龚立群,彭鸿,等.秦岭锐齿栎林的生物量和生产力[J].西北林学院学报,1996,11(S):103-114.
    [21]冯志立,郑征,唐建维,等.西双版纳白背桐群落生物量研究[J],生态学杂志,2005,24(3):238-242.
    [22]蒋宗恺.香叶树人工林生长及生物生产力[J].福建林学院学报,2005,25(3):206-210.
    [23]林益明,林鹏,叶勇.绿竹种群生物量结构研究[J].竹子研究汇刊,1998,17(2) : 9-13.
    [24]黄成林,赵昌恒,傅松玲,等.安徽休宁倭竹水分生理及生物量的研究[J].水土保持学报,2005,19(1):188-191.
    [25]李钢铁,张密柱,张补在,等.梭梭林生物量研究[J].内蒙古林学院学报(自然科学版),1995,17(2):35-43.
    [261曾珍英,刘琪憬,张建萍,等.灌木各测树因子相关性以及器官生物量相关性的研究[J].江西农业大学学报,2005,27(5):694-699.
    [27]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981,2:1-12.
    [28]胥辉.一种生物量模型构建的新方法[J].西北农林科技大学学报(自然科学版),2001,29(3):35-40.
    [29]Botkin.B.,G.M.Woodwell.Temple Forest productivity etimated from carbon dioxide uptake [J].Ecology,1970,51:1057-1060.
    [30]Wofy.P.,M.L.Goulden,J.W.Munger.Bazzaz Net exehange of CO2 in a mid-latitude forest[J].science,1993,260:1314-1317.
    [31]Lee,N.J..and K.Nakane.Forest vegetation claification and bioma etimation baed on landat TM data in a mountainiou region of wwt Japan[A],In Gholz,H.L.,K.Nakanwe, and H.himoda ed:The use of remote enging in the modeling of forest productivity.Kluwer Academic Publiher.Netherland,1997,159-171.
    [32]Landsbery.J.J,and S.T Gower.Applications of physiological ecology to forest management [M]. Academic Press,1997:125-160.
    [33]Reichle D.E.,J.F.Franclin and D.E.Goodwell(ed).Productivity of world Ecosystem[J],National Academy of science,Wahington D.C.1975,123-125.
    [34]Duvigneaud,P.Denaeyet-De met,Mineral Cycling in Terretrtial Ecosystem[J],In" productivity of world Ecosystem",National Academy of science,Wahington D.C,1975:133-153.
    [35]木村允.陆地植物群落生物量的测定法[M].姜恕等译.北京:科学出版社,1981.59-105.
    [36]佐藤大七郎.陆地植物群落的物质生产[M].北京:科学出版社,1986.1-18.
    [37]Whittaker,R.H,and G..M,Liken,carbon in the biota[A].In:G..M.woodwell and E.V.Pecaned.Carbon and the biosphere,National Technical Information service, C0NF720510,Pringfeild,VA,1975.
    [38]Canell,M.G.R.World Forest Bioma and Primary Production Data [M].Academic Pre, London,New,york.1982,120-124.
    [39]冯宗炜,汪效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.99-103.
    [40]方精云主编.全球生态学—气候变化与生态响应[M].北京:高等教育出版社;海德堡:施普林格出版社,2000:pp191.
    [41]冯宗炜,汪效科.中国森林生态系统生物量和第一性生产力[M].北京:科学出版社,1998.
    [42]Hector.A.The effect of diversity on productivity:detecting the role of species complementarity [J].Oikos.1998,82:597-599.
    [43]Naaem.S..K.Hakansson.J.H.Lawton.et al.Biodiveersity and plant productivity in a model assemblage of plant species [J].Oikos.1996,76:259-264.
    [44]Loreau.M.Biodiversity and ecosystem functioning:recent theoretical advances[J].Oikos.2000,91:3-17.
    [45]Bauhus.J..P.K.Khanna.and N.Menden.Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus ans Acacia mearnsii[J]. Cannadian Journal of Forest Research.2000,30:1886-1894.
    [46]Khanna.P.K.Comparison of growth and nutrition of young monocultures and mixed stands of Eucalyptus globulus ans Acacia mearnsii [J].Forest Ecology and Management.1997,94:105-113.
    [47]Adler.P.B..J.B.Bradford.An alternative method for analyzing diversity-productivity experiments [J].Oikos.2002,96:411-420.
    [48]彭少麟,方炜.南亚热带森林演替过程生物量和牛产力动态特征[J].生态科学,1995(2):1-9.
    [49j江西省常绿阔叶林课题研究组.江西省常绿阔叶林地上部分生物量研究[J].江西林业科技,1999 (2):1-4.
    [50]陈辉,何方.锥栗人工林生物量和生产力的研究[J].中南林学院学报,2000,20(2):11-14
    [51]刘茜.不同林龄组马尾松人工林牛物量及生产力的研究[J].中南林学院学报,1996,16 (1):47-51.
    [52]丁贵杰,王鹏程. 马尾松人工林生物量及生产力变化规律研究[J].林业科学研究,2001,15 (1):54-60.
    [53]刘广全,倪文进,刘慧芳. 秦岭南坡锐齿栎林的牛态环境及其营养积累[J].应用生态学报,2002,13(5):513-518.
    [54]Pregitzer,K.S.,R.L.Hendrick,R.Fogel.The demography of fine roots in response to patches of water and nitrogen[J].New Ph-tologist,1993,125:575-580.
    [55]Eissenstat D M and R.D.Yanai.The ecology of root lifespan[J].Advances in Ecological Research,1997.27:1-60.
    [56]Forde B.G,H.Lorenzo.The nutritional control of root development[J].Plant Soil 2001.232:51-68.
    [57]Gordon W.S.and R.B.Jackson.Nutrient concentrations in fine roots[J].Ecology,2000, 81:275-280.
    [58]Essenstat,D.M.On the relationship between specific root length and the rate of proliferation:a field study using citrus rootstocks[J].New Phytologist,1991,118:63-68.
    [59]马元喜,王晨阳,贺德先,等.小麦的根(第一版)[M].北京:中国农业出版社,1999.176-189.
    [60]Bilbrough,C.J.M.M.Caldwell.Exploitation of springtime ephemeral N pulses by six great basin plant species[J].Ecoology,1997,78:231-243.
    [61]Fitter.A.H.Functional significance of root morphology and root system architecture [A].In:Fitter.A.H.,Atinson,D.,Read,D.J.,Usher,M.B, (eds).Ecological interaction in soil plant microbes and animals[C].Special Bulletin Number 4 of British Ecological Society Oxford:Blackwell scientific publication,1985,87-106.
    [62]Berntson, GM..Fodell in 5 root architecture:Are there tradeoffs between efficiency and potential of acquisition[J].New Phytol,(1994),127:483-493.
    [63]Fitter AH.Costs and benefits of mycorrhizas[J].Implications for functioning under natural conditions Experentia,1991,47:350-355.
    [64]张小全,吴可红.森林细根生产和周转研究[J].林业科学,2001,37(3):126-138.
    [65]Joslin J D,Henderson G S.Organic matter and nutrients associated with fine root turnover in a white oak stand [J].Forest Science,1987,33:330-346.
    [66]Copley J.Ecology goes underground[J].Nature,2000,406:452-454.
    [67]Morgan J A.Looking beneath the surface[J].Science,2002,298:1903-1904.
    [68]Vogt K A.,Grier C C,Meier C E,et al.Organic Matter and Nutrient Dynamics in Forest Floors of Young and Mature Abides Ambles Stands in Western Washington,as Affected by Fine-root Input[J].Ecol Mongr,1983,53:139-157.
    [69]Raich J W.Fine roots regrow rapidly after forest felling[J].Biotropica,1980,12: 231-232.
    [70]Finer L,Messier C,De Grandpre L.Fine-root dynamics in mixed boreal conifer borad-leafed-forest stands at different successional stages after fire[J].Can J For Res.l 997,27:304-314.
    [71]Ruark G A Bockhem J G. Below-ground biomass of 10-,20-,and 32-year-old Popul- us tromuloides in Wisconsin[J].Pedobiologia,1987,30:207-217.
    [72]Vogt K A,Noore E E.Vogt D J,et al. Conifer fine root and mycorrhisal root biomass within the forest floors floors of douglas fir stands of different ages and site produc-tivities[J].Canadian Journal of Forest Research,1983,13:429-435.
    [73]Vogt K A,Vogt D J,Edmonds R L.Effect of stand development and site quality on the amount of fne root growth occurring in the forest floors of douglas fir stand.In:Root Ecology and its Practical Application,int,symp[J].Gurnpemateion,1982,Bun-desanslali Gurmpenslein,A-8952 Irdning,1983a,85-594.
    [74]Duvigneaud,P,Denaeyet-De met,Mineral Cycling in Terretrtial Ecosystem,In" productivity of world Ecosystem" [J].National Academy of science,Wahington D.C,1975,133-153.
    [75]Grier C C,Vogt K A,Keyes M R,etal.Biomass stribution and above-and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades[J].Can.J.For.Res.,1981,11:155-167.
    [76]Persson H.The distribution and production of fine roots in boreal forests[J].Plant and Soil,1983,71:87-101.
    [77]Pesson H.Dymamics of fine root growth, mortality and decomposition in a young Scots pure stand in central and water reines[J].Acta Phytogeogr Suee,1980,68:101 110.
    [78]Kavenagh T,Kellman M.Seasonal pattern of fine root proliferation in a tropical dry forest[J].Biotropica,1992,24:157-165.
    [79]Khiewtam R S,Ramakrishnan P S.Litter and fine root dynamics of a relict sacred grove forest at Cherrapunji in north-eastern India[J].Forest Ecology Manag,1993,60: 327-344.
    [80]Sundarapandian S M,Swamy P S.Fine root biomass distribution and productivity patterns under open and closed canopies of tropical forest ecosystems at Kodayar in Western Ghats,South India[J].Forest Ecology Manage.1996,86:181-192.
    [81]Burke M K,Raynal D J.Fine root growth phenology,production.and turnover in a northern hardwood forest ecosystems[J].Plant and Soil,1994,162:135-146.
    [82]Kimmins J P. Hawkes B C.Distribution of chemistry of fine roots in a white spruce subal pine fir stand in Britain Columbia:implication for management[J].Canadian Jo-urnal of Forest Research.1978,8:265-279.
    [83]Rytter R M,Hansson A C.Seasonal amount,growth and depth distribution of fine roots in an irrigated and fertilized Salixviminalis L.plantation[J].Biomass and Bio-energy.1996,11 (2-3):129-137.
    [84]Teskey R O,Hinckley T M.Influence of temperature and water potential on root growth of white oak[J].Physio Plant,1981.52:363-369.
    [85]廖利平,陈楚莹,张家武等.杉木、火力楠纯林及混交林细根周转的研究[J].应用生态学报,1995,6(1):7-10.
    [86]温志达, 魏平, 孔国辉,等.鼎湖山南亚热带森林细根牛产力与周转[J].植物牛态学报,1999,23(4):361-369.
    [87]Dewar R C,Ludlow A R.Dougherty P M.Environmental influences on carbon allo-cation in pines[J].Ecol Bull.,1994,43:92-101.
    [88]张劲松,孟平,尹昌君,等.果农复合系统中果树根系空间分布特征[J].林业科学,2002,38(4):30-33.
    [89]李鹏,赵忠,李占斌,澹台湛.渭北黄土区刺槐根系空间分布特征研究[J].生态环境,2005,14(3):405-409.
    [90]张小全,吴可红.森林细根生产和周转研究[J].林业科学,2001,37(3):126-138.
    [91]Lawson G.J.Roots in tropical agroforestry system(Appendix 1),In:Cannell M.G.R.,Crout N.M.J.,Dewar R.C.,et al. Annual Report June 1993-June 1994 of Agroforestry Modelling and Research Coordination[J].ODA Forestry Research Programme RS,1995,651-125.
    [92]张小全.环境因子对树木细根生物量、生产与周转的影响[J].林业科学研究,2001,14(5):566-573.
    [93]Jackson,R.B.,Canadell,J.R.&Mooney H.A.etal.A globle analysis of root distribution for terrestrial biomass[J].Oecologia,1996,108:389-411.
    [94]李凌浩,林鹏,邢雪荣.武夷山甜储林细根生物量和生长量研究[J].应用生态学报,1998,9(4):337-340.
    [95]廖兰玉,丁明惫,张祝平,等.鼎湖山某些植物群落根系生物量及其氮素动态[J].植物生态学报,1993,17(1):56-60.
    [96]Steele S.J.,Gower S.T.&Vogel J.G.etal.Root mass,net primary production and turnover in Aspen,Jack pine and Black spruce forests in Saskatchewan and Manitoba[J], Canada.Trec physiology,1997,17:577-587.
    [97]Persson H.A.,Fircks Y.V&Majdi H.etal.Root distribution in a Norway spruce (Pinusabies L.Karst.) stank subjected to drought and ammonium-sulphate application[J].Plant andSoil,1995,16:161-165.
    [98]梅莉,王政权,韩有志,等.水曲柳根系生物量、比根长和根长密度的分布格局[J].应用生态学报,2006,17(1):1-4.
    [99]于贵瑞,温发全,王秋凤,等.全球气候变化与陆地生态系统碳循环[J].2003:43-96.
    [100]周广胜,王玉辉.全球变化与气候植被分类研究和展望[J].科学通报,1999,24: 587.
    [101]冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369.
    [102]IPCC,2000.Land use,land-use change and forestry [J].Cambridge:Cambridge University Press,1-51.
    [103]Dixon R K,Brown S,Houghton R A.et al.Carbon pools and flux of global forest ecosystems[J]. Science,1994,263:185-190.
    [104]Winjum J K,Dixon R K,Paule S.Forest management and carbon storage:an analysis of key forest nations[J].Water,Air,And Soil Pollution,1993,70:239-257.
    [105]Dixon P K,Carbon pools and flux of global forest ecosystem[J].1995, Proceedings of Tsukubaglobal carbon cycle workshop-global environment.Tsukuba,95:117-119.
    [106]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳贮量和碳密度研究[J].应用生态学报,2001:12(1):13-16.
    [107]Fang J Y,Chen A P,Peng C H,Zhao S Q,Ci L J.Changes in forest biomass carbon storage in china between 1949 and 1998[J]. Science,2001,292:2320-2322.
    [108]Fang J,Wang G G,Liu G,et al.Forest biomass of China:anestimate based on the imoassvolume relationship[J]. Ecol Appl,1998,8:1084-1091.
    [109]Marland G.The prospect of solving the carbon dioxide problem through global reforestation[M].Oak Ridge National aboratory,1988,DOE/NBB20082,Oakidge,TN, USA.
    [110]Ni J,Sykes M T, Prentice I C, et al.Modeling the vegetation of China using process-based equilibrium terrestrial biosphere model BIOME3[J].Global Ecology & Biogeography,2000,9:463-479.Forest Ecology and Management,176:485-495.
    [111]Peng C H,Apps J M.Contribution of China to the Global Carbon Cycle since the last Glacial Maximum Reconstruction from Palaeovegetation Maps and an Empirical Biosphere Model[J].Tellus,1997,49(B):393-408.
    [112]张德全,桑卫国,李曰峰等.山东省森林有机碳储量及其动态研究[J].植物牛态学报,2002,26(增刊):93-97.
    [113]光增云.河南省森林碳储量及动态变化研究[J].林业资源管理,2006,4:56-60.
    [114]曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化[J].地理研究,2002,21 (5):551-560.
    [115]焦秀梅.湖南省森林植被的碳储量及其地理分布规律[J].中南林学院学报,2005,25 (1):4-8.
    [116]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24 (1):50-54.
    [117]PostW M,EmanuelW R,Zinke P J,et al.Soil carbon pools and life zones[J].Nature, 298:156-159.
    [118]Schleisinger W H.Evidence from chronosequence studies for a low carbon storage potential of soils[J].Nature.1990,348:232-234.
    [119]Eswarran H,Vandenberg E V,Reich P.Organic carbon in soil of the world[J].Soil Sci.Soc.Am.J.,1993,57:192-194.
    [120]Batjes N H.Total carbon and nitrogen in the soil of the world[J].European Journal of Soil Science,1996,47:151-163.
    [121]张东辉,施明恒,金峰,等.土壤有机碳转化与迁移研究概况[J].土壤学报, 2000, (6):305-309.
    [122]方精云等.中国陆地生态系统碳库[A].王如松等编著.现代生态学的热点问题研究[C].北京:中国科学技术出版社,1996.251-267.
    [123]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-355.
    [124]潘根兴.中国有机碳、无机碳库量研究[J].科技通报,1999,15(5):330-332.
    [125]王绍强,周成虎,李克让等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    [126]吴仲民,曾庆波,李意德等.尖峰岭热带森林土壤C储量和CO2排放量的初步研究[J].植物生态学报,1997,21(5):416-423.
    [127]李意德,吴仲民,曾庆波.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378.
    [128]王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究[J].西北林学院学报,2000,15(1):9-14.
    [129]刘元.针叶树木中矿质元素的分布[J].世界林业研究,2001,14(1):16-21.
    [130]Comerford N.B.Ditributional Gradient and Variabilitie of Macroelement Concentration in the Crown of Plantation Grown Pinu reinoa (Ait) [J].Plant and oil, 1981,63:345-355.
    [131]罗汝英.森林土壤学(问题与方法)[M].北京:科学出版社,1983,55-67.
    [132]李季.农业生态系统的人类生态学分析模式探讨[J].生态学报.1993(2):23-24.
    [133]卢琦等.桂东北栲树林营养元素的空间格局[J].生态学报,1995,15(2).
    [134]项文化、田大伦.不同年龄阶段马尾松人工林养分循环的研究[J].植物生态学报,2002,26(1):89-95.
    [135]陈永瑞.千烟洲湿地松人工林林分养分元素的特征[J].北京林业大学学报,1999,21(6):40-45.
    [136]郭天峰,冯汉华,徐期瑚.四川桤木人工林生态系统养分的积累与分布[J].四川林业科技.2009,30(4):89-91
    [137]马祥庆,刘爱琴,等.不同代数杉木林养分积累和分布的比较研究[J].应用生态学报,2000,11(4):501-506.
    [138]肖祥希.马尾松人工林生态系统养分特性的研究[J].福建林业科技,2000,27(4): 14-18.
    [139]刘兴良等.川西云杉人工林养分含量、贮量及分配的研究[J].林业科学,2001,37(4):10-19.
    [140]刘广全,土小宁,倪文进.锐齿烁森林生态系统主要营养元素的层次分布[J].西北植物学报,2001,21(2):237-246.
    [141]刘世海,余新晓.京北山区刺槐林主要养分元素积累与分配的研究[J].北京林业大学学报,2003,25(6):20-26.
    [142]李跃林,李志辉,谢耀坚. 巨尾按人工林养分循环研究[J].生态学报,2001,21(10):1734-1739.
    [143]陈国梁等.林业发展制浆造纸工业的战略研究[J].甫京林业大学学报,1999,4(16): 6-12.
    [144]周晓峰.森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1991,117-129.
    [145]聂道平.森林生态系统营养元素的生物循环[J].林业科学研究,1991,4(4):435-440.
    [146]姚迎久.樟树人工林的生物量和养分积累与分布[D].长沙:中南林学院研究生处,2003.23-25.
    [147]刘增文.森林养分研究国际动态[J].西北林学院学报.2004,19(3):183-187.
    [148]阮宏华.苏南丘陵区主要森林类型养分生物循环的研究[A].见:朱建林主编.中国森林生态定位研究[C].哈尔滨:东北林业大学出版社,1994.123-134.
    [149]潘维俦.杉木人工林养分循环的形研究(二)[A].见:潘维俦主编南方人工林生态系统研究论文汇编[C].北京:中国林业出版社,1993.18-22.
    [150]李志辉,李跃林.巨尾桉人工林营养元素积累、分布和循环的研究[J].中南林学院学报,2000,20(3):11-19.
    [151]辛学兵,孔庆云,方江平.西藏色季拉山冷杉林木根系营养元素的特征分析[J].林业科学研究,2007,20(5):717-721.
    [152]马雪华.森林与水质[A].全国森林水文学术讨论会文集.北京:测绘出版社,1989.31-35.
    [153]朱庆平.分布式流域水文模型研究中的儿个问题[J].水利水电科技进展,2002,22(3):56-58.
    [154]成晨,王玉杰,等.长江三峡库区不同森林类型涵养水源能力比较研究[J].水土保持研究,2007,14(2):215-217.
    [155]吴饮孝,赵鸿雁.黄土高原森林水文生态效应和林草适宜覆盖指标[J].水土保持通报,2000,20(5):32-34.
    [156]周晓峰,赵惠勋,孙慧珍.正确评价森林水文效应[J].自然资源学报.2001,16(5):420-426.
    [157]Asdak C,Jarvis P,Gardingen P V.Evaporation of intercepted precipitation based on an energy balance in unlogged and logged for estareas of central kalamantan,Indonesia[J].Agricultural and forest meteorology,1998,92 (3):173-180.
    [158]潘维俦等.亚热带衫木人工林水文学过程中的营养化学动态与平衡[A].第四届国际生态学会论文集,1986.130-149.
    [159]温远光,刘世荣.我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1995,3(4):289-298.
    [160]石培礼,李文华.森林植被变化过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487.
    [161]Franklin J.Toward a new forestry [J].American Forests,1989 (5):37-44.
    [162]Valente F,David J.S,GashJ.H.C.Modelling interception loss for two sparse euealypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models [J].Jounral of Hydorlogy,1997,190:141-162.
    [163]周国逸,余作岳,彭少麟.小良试验站三种植被类型地表径流效应的对比研究[J].热带地理,1995,15(4):306-312
    [164]Crockford R H,Richardson D P.Partitioning of rainfall into throughfall,stemflow and interception:effect of forest type, ground cover and climate[J].Hydrological Processe, 2000,14(1617):2903-2920.
    [165]马雪华.降雨在杉木和马尾松人工林养分循环中的作用[J].林业科学研究,1988,(2): 123-130.
    [166]Herw itz S R.Intercep t ion sto rage capacit ies of tropical rain forest canopy t rees [J] Journal of Hydro logy,1985,77:237-252.
    [167]王馨,张一平,西双版纳热带季节雨林与橡胶林林冠的持水能力[[J].应用生态学报,2006,17(10):1782-1788.
    [168]赵金荣.黄土高原主要造林树种应为灌木[J].人民黄河,1995,(3):21-24.
    [169]曾曙才,谢正生等.广州白云山几种森林群落生物量和持水性能[J].华南农业大学学报(自然科学版),2002,23(4):41-44.
    [170]刘向东.森林枯枝落叶层涵养水源保持水土的作用评价[J].土壤侵蚀与水土保持学报,1998,4(2):23-28.
    [171]申卫军,彭少麟,周国逸,等.马占相思与湿地松人工林枯落物层的水文生态功能[J].生态学报,2001,21(5):846-862.
    [172]曹成有,朱丽晖,韩春声,等.辽宁东部山区森林枯落物层的水文作用[J].沈阳农业大学学报,1997,28(1):44-48.
    [173]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林水文生态效应[J].生态学报,2003,23(2):376-379.
    [174]韦红波,李锐,杨勤科.我国植被水土保持功能研究进展[J].植物生态学报,2002,26(2):489-496.
    [175]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.3-710.
    [176]杨文利.不同林分枯落物层持水特性研究[J].南昌工程学院学报,2007,26(6):70-73.
    [177]史晓巍等.林分蓄积量与其静态持水能力关系的研究[J].防护林科技,2007,3:33-35.
    [178]刘培娟,杨吉华,李申安.三里庄水库上游水源涵养林不同林分枯落物水容量研究[J].水土保持研究,2007,14(1):239-241.
    [179]Putuhena W M.Cordeyr I.Estimation of interception capaeity of the forest floor [J].Joumal of Hydrology,1996,180:283-299.
    [180]吕仕洪,向悟生,李先棍,等.漓江上游植被类型的水文特征与功能评价[J].水土保持通报,2002,22(5):24-28.
    [181]王治国,张云龙,刘徐师,等.林业生态工程学[M].北京:中国林业出版社,2000.79-97.
    [182]杨新民.黄土高原灌木林地水分环境特性研究[J].干旱区研究,2001,18(1):8-13.
    [183]车克钧,傅辉恩,王金叶.祁连山水源林生态系统结构与功能的研究[J].林业科学,1998,3(5):29-37.
    [184]赵文智.河北坝上半干旱、半湿润过渡带土壤水分状况研究[J].中国沙漠,1996,16(2):105-111.
    [185]王孟本,李洪建.柠条林蒸腾状况与土壤水分动态研究[J].水土保持通报,1990,10(6):85-90.
    [186]魏天兴,朱金兆,张学培,等.晋西南黄土区刺槐油松林地耗水规律的研究[J].北京林业大学学报,1998,20(4):36-40.
    [187]田大伦,项文化.杉木林地土壤水分动态规律的研究[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993.209-215.
    [188]魏天兴,朱金兆.黄土区人工林地水分供耗特点和林分生产力研究[J].水土保持学报,1999,5(4):45-51.
    [189]张建国,李吉跃.北方主要造林树种耐旱机理及其分类模型的研究:叶保水力 及维持膨压[J].河北林学院学报,1995,10(3):157-193.
    [190]高人,周广柱.辽宁东部山区几种主要森林植被类型土壤矿质层蓄水能力分析[J].沈阳农业大学学报,2003,34(1):31-34.
    [191]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,11(6):14-22.
    [192]何东宁,王占林,张洪勋.青海乐都地区森林涵养水源效能研究[J].植物生态学报,1991,15(1):71-78.
    [193]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995.63-88.
    [194]周重光.浙江山地森林及其生态经济效益[A].见:杨玉波,张江陵主编.国际林联山地森林保护与管理学术会议论文集[C].北京:科学出版社,1992.40-43.
    [195]马良清,张毓锐.重庆地区森林水文作用的初步研究[J].北京林业大学学报,1998,20(1):14-19.
    [196]周择福.太行山低山区不同立地土壤水分生态及综合评价研究[A].见:林业部科学技术司主编.林业部青年学术讨论会论文集[C].北京:中国林业出版社,1997.267-274.
    [197]Kalma J D,Boulet G M.Measurement and prediction of soil moisture in a medium-sized catchment [J].Hydrological Science,1998,43 (4):597-610.
    [198]Wester A W,Rodger B G.The Tarrawarflux data set:soil moisture patterns,soil characteristies,and hydrological flux measurements[J]. Water Resources Researcher,1998,34(10),2765-2768.
    [199]Familglietti J S,Rudnicki J W,Rodell M.Vaiability in surface moisture content along a hillslope transect:Rattlesnake Hill,Texas[J].Journal of Hydrology,1998,21 (10): 259-281.
    [200]喻荣岗,左长清,杨洁,等.红壤侵蚀区几种水土保持林水文效应研究[J].水土保持通报,2007,27(6):194-198.
    [201]田大伦,陈书军.樟树人工林土壤水文-物理性质特征分析[J].中南林学院学报,2005,22(2):1-6.
    [202]Coronato F R,Bertiller M B.Precipitation and landscape related effects on soil moisture in semi-arid range lands of Patagonia[J].Journal of Arid Environments, 1996,34:1-4.
    [203]Qiu Y,Fu B,Wang J,et al.Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau [J].Journal of Arid Environments,2001,49:723-750.
    [204]Gomez P A,Martinez M M,Albaladejo J,et al.Factors regulating spatial distribution of soil water content in small semi-arid catchments[J]. Journal of Hydrology,2001,253:221-226.
    [205]Singh J S,Milchunas D G,Lauenroth W K.Soil water dynamics and vegetation patterns in a semiarid grassland[J].Plant Ecology,1998,134:76-80.
    [206]Millikil C S,Bledsoe C S.Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in the northern Sierra Nevada foothills of California[J].Plant Soil,1999,214:25-29.
    [207]侯喜禄,白岗栓,曹清玉.黄土丘陵区湾塌地乔灌林土壤水分动态监测[J].水土保持研究,1996,3(2):57-65.
    [208]黄志刚,曹云,欧阳志云,等.南方红壤丘陵区油桐人工林土壤水分动态[J].应用生态学报,2007,18(2):242-247.
    [209]黄志宏,周国逸,JimMorris,等.用典型相关法分析桉树人工林干季土壤水分影响因子[J].林业科学,2003,39(5):10-17.
    [210]邓廷秀,刘国凡.桤木人工林结瘤固氮的时空变化及其对后续植物的效应(2)[J].山地研究,1996,14(增刊):30-35.
    [211]刘国凡,邓廷秀.桤木人工林结瘤固氮的时空变化及其对后续植物的效应(1)[J].山地研究,1996,14(增刊):25-29.
    [212]石培礼,杨修.桤柏混交林的氮素积累与生物循环[J].生态学杂志,1997,16(5):14-18.
    [213]王军辉, 顾万春, 夏良放等.桤木种源(家系)苗期根瘤固氮能力的遗传变异[J].南京林业大学学报(自然科学版),2004,28(4):68-72.
    [214]吴祖洪、周国璋.四川桤木根瘤主要氮素同化酶活力及其超微结构研究[J].林业科学研究.1994,7(6):629-633.
    [215]付洪, 陈爱国.云南省自然休闲地与桤木休闲地地上部分生物量与养分蓄积量的研究[J].生态学报,2004,24(2):209-214.
    [216]Semwal R L,Maikhuria R K,Raob K S,Senb K K,Saxenac K G.Leaf litter decomposition and nutrient release patterns ofsix multipurpose tree species of Central Himalaya, India[J].Biomass & Bioenergy,2003,24:3-11.
    [217]颜绍馗, 汪思龙, 于小军,等.桤木混交对杉木人工林大型土壤动物群落的影响[J].应用与环境生物学报,2004,10(4):462-466.
    [218]蔡宏明.桤木生长适应性及其对土壤肥力影响的研究[J].华东森林经理,1997, 11:49-52.
    [219]戴慈荣,钱玉红,许利群,等.杉木桤木混交林土壤肥力的研究[J].河北林学院学报,1996,11(增刊):65-69.
    [220]许鲁平.不同立地条件桤木生长效果研究[J].林业科技开发,2002,16(增刊):55-56.
    [221]谢福荣.杉木桤木混交林生长量与土壤肥力的研究[J].福建林学院学报,2006,26(2): 161-164.
    [222]李贵祥, 孟广涛, 方向京,等.滇中高原桤木人工林群落特征及生物量分析[J].浙江林学院学报,2006,23(4):362-366.
    [223]石培礼,钟章成,李旭光.四川桤柏混交林生物量的研究[J].植物生态学报,1996,20(6):524-533.
    [224]朱万泽, 薛建辉, 王金锡等.台湾桤木林分生物量与营养元素的分布[J].南京林业大学学报(自然科学版),2002,26(2):15-20.
    [225]徐世凤,吴立勋.江南桤木光合特性研究[J].湖南林业科技,1994,4:10-14.
    [226]彭培好,王金锡,王成善.人工桤柏混交林光合生理生态机理研究[J].四川林业科技,2001,22(4):19-23.
    [227]朱万泽,王金锡,薛建辉等.四川桤木光合生理特性研究[J].西南林学院学报.2001,21(4):196-204.
    [228]潘维俦,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981,(2):1-12.
    [229]田大伦.杉木林生态系统定位研究方法[M].北京:科学出版社,2004.201-226.
    [230]张万儒,许本彤.森林土壤定位研究方法[M].北京:中国林业出版社,1986.30-45.
    [231]文仕知,何炳飞.杉木人工林生态系统不同干扰条件下径流规律的研究[A].见:刘煊章主编.森林生态系统定位研究[C].北京:中国林业出版社,1993.221-227.
    [232]宋会兴,苏智先,彭远英.山地土壤肥力与植物群落次生演替关系研究[J].生态学杂志,2005,24(12):1531-1533.
    [233]游秀花,蒋尔可.不同森林类型土壤化学性质的比较研究[ J].江西农业大学学报,2005,27(3):357-360.
    [234]吴长文,王礼先.林地土壤的人渗及其模拟分析[J].水土保持研究,1995,2(1):71-75.
    [235]贾守信,梁志广,梁淑兰,等.长白山北坡原始林采伐对土壤性质影响的研究[J].土壤学报,1984,21(4):426-433.
    [236]北京林学院主编.土壤学(上册)[M].北京:中国林业出版社,1982.203-246.
    [237]山东省林业学校主编.土壤肥料学[M].北京:高等教育出版社,2001.20-25.
    [238]夏祥友,蒙宽宏,史晓巍,等.水曲柳人工混交林静态持水能力的研究[J].防护林利技,2005,9(5):11-13.
    [239]Nyc,P.H.,Advances in PlantNutrition [M].New York, Ed.B,Tinker and A.Lauchl, PraegerScientific,1986.129-153.
    [240]文仕知.黧蒴栲林生物量及生产力的研究[A]. 见:刘煊章.森林生态系统定位研究.北京:中国林业出版社,1993.42-48.
    [241]Winjum J K,Schroeder P E. Forest plantations of the world:Their extent, ecological attributes,and carbon storage[J].Agricultural and Forest Meteorology,1997,84:153-167.
    [242]方晰.杉木人工林生态系统碳贮量与碳平衡的研究[D].长沙:中南林业科技大学研究生处,2003.33-35.
    [243]李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307.
    [244]刘景双,杨继松,于君宝,等.三江平原沼泽湿地土壤有机碳垂直分布特征研究[J].水土保持学报,2003,17(3):5-8.
    [245]N.C布雷迪(美)著.士壤的本质与性状[M].南京农学院土化系等译.北京:科学出版社,1982.
    [246]姚槐应,何振立,陈国超,等.红壤微牛物量在土壤黑麦草系统中的肥力意义[J].应用生态学报,1999,10(6):725-728.
    [247]Niklinska M, Maryanski M,Laskowski R.Effect of temperature on humus respiration rate and nitrogen mineralization:implication for global climate change[J].Biogeochemistry,1999,44:239-257.
    [248]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    [249]何宗明,李丽红,王义祥,等.33年生福建柏人工林碳库与碳吸存[J].山地学报,2003,21 (3):298-303.
    [250]代顺民,唐巍,唐大云.四川桤木短轮伐期用材林合理采伐年龄研究[J].四川林勘设计,2007, (2):18-20.
    [251]徐清乾,许忠坤,蒋玉璋.四川桤木引种湖南生长状况及适应性研究[J].湖南林业科技,2006,33(6):20-24.
    [252]王效科,冯宗炜.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [253]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [254]田大伦,方晰,项文化.湖南会同杉木人工林生态系统的碳素含量[J].生态学报,2004,24(11):2382-2386.
    [255]方晰,田大伦,项文化.速生阶段杉木人工林碳素密度、贮量和分布[J].林业科学,2002,38(3):14-19.
    [256]田大伦,方晰,项文化.湖南会同杉木人工林生态系统的碳素密度[J].生态学报,2004,24(11):2382-2386.
    [257]雷丕锋,项文化,田大伦,等.樟树人工林生态系统碳素贮量与分布研究[J].生态学杂志,2004,23(4):25-30.
    [258]马明东,江洪,刘跃建.楠木人工林生态系统生物量、碳含量、碳贮量及其分布[J].林业科学,2008,44(3):34-39.
    [259]王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究[J].西北林学院学报,2000,15(1):9-14.
    [260]Jobbagy E G,Jackson R B.The vertical Distribution of Soil Organic Carbon and its Relation to Climate and Vegetation[J].Ecological Applications,2002,10 (2):423-436.
    [261]方晰,田大伦,项文化.2002.速生阶段杉木人工林C密度、贮量和分布.林业科学,38(3):14-19.
    [262]周玉荣,于枕良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].2000,植物生态学报,24(5):518-522.
    [263]Dixon R K. Carbon pools and flux of global forest ecosystems[J].Science,1994,263: 185-189.
    [264]项文化,田大伦,闫文德,等.第2代杉木林速生阶段营养元素的空间分布特征和生物循环[J].林业科学,2002,38(2):2-8.
    [265]潘维俦,田大伦,李利村,等.杉木人工林养分循环的研究[J1.中南林学院学报,1981,1(1):1-21.
    [266]聂道平.不同立地杉木人工林生产力和养分循环的比较[J],中国森林生态系统定位研究(林业部科技司编).哈尔滨:东北林业大学出版社,1994,123-134.
    [267]O liveira,G.,M,A.M artins-Loucao & O.Correia. Nutrient dynamics in crown tissues of co rk-oak[J]. Trees,1996,10:247-254.
    [268]Boerner R.E.J.Foliar nutrient dynamics and nutrient use of four deciduous tree spccics in relation to site fertility[J].J Applicd Ecology,1984,21:1029-1040.
    [269]林益明,何建源,杨志伟,等.武夷山甜槠群落凋落物的产量及其动态[J].厦 门大学学报(自然科学版),1999,38(2):280-286.
    [270]林瑞余,蔡丽平,何宗明,等.木荚红豆人工林凋落物的养分动态特征[J].中南林学院学报,2002,22(2):25-29.
    [271]李志安,王伯荪,翁轰,等.鼎湖山南亚热带季风常绿阔叶林凋落物的养分动态[J].热带亚热带植物学报,1998,6(3):209-215.
    [272]李景文,刘传照,任淑文,等.天然枫桦红松林凋落量动态及养分归还量[J].植物生态学与地植物学学报,1989,13(1):42-48.
    [273]刘文耀,荆贵芬,郑征.滇中常绿阔叶林及云南松林枯落物的初步研究[J].广西植物,1989,9(4):347-355.
    [274]廖利平,汪思龙,高洪等.火力楠人工林凋落物动态及其养分含量[J].应用生态学报,2000,11(增刊):137-140.
    [275]田大伦,盘宏华,康文星等.第二代杉木林养分动态研究[J].中南林学院学报,2001,21(3):6-12.
    [276]林鹏,刘初钿,李振基,等.武夷山黄山松群落凋落物产量及其动态研究[A].见:林鹏主编.武夷山研究:森林生态系统[C].厦门:厦门大学出版社,1998.123-129.
    [277]陈金林,俞元春,罗汝英,等.杉木、马尾松、甜槠等林分下土壤养分状况研究[J].林业科学研究,1998,11(6):585-591.
    [278]潘维俦,田大伦,李利村,等.杉木人工林养分循环的研究: (一)不同生育阶段杉木林的产量结构和养分动态[J].中南林学院学报,1981,1(1):1-21.
    [279]鲍文,包维楷,何丙辉,丁德蓉.森林生态系统对降水的分配与拦截效应[J].山地学报,22(4):483-497.
    [280]温远光,刘世荣.我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1995,3(4):289-298.
    [281]杨文利.不同林分枯落物层持水特性研究[J].南昌工程学院学报,2007,26(6):70-73.
    [282]周永文,黄文辉,陈红跃.不同人工林分枯落物和土壤持水能力的研究.生态环境,2003,12(4):449-451.
    [283]赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林水文生态效应[J].生态学报,2003,23(2):376-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700